JP4389493B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP4389493B2
JP4389493B2 JP2003165953A JP2003165953A JP4389493B2 JP 4389493 B2 JP4389493 B2 JP 4389493B2 JP 2003165953 A JP2003165953 A JP 2003165953A JP 2003165953 A JP2003165953 A JP 2003165953A JP 4389493 B2 JP4389493 B2 JP 4389493B2
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
oxidant
cell stack
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003165953A
Other languages
Japanese (ja)
Other versions
JP2005005074A (en
Inventor
直也 村上
順 秋草
昭宏 長谷川
隆 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2003165953A priority Critical patent/JP4389493B2/en
Publication of JP2005005074A publication Critical patent/JP2005005074A/en
Application granted granted Critical
Publication of JP4389493B2 publication Critical patent/JP4389493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電セルとセパレータを交互に積層した構造を有する燃料電池に関し、特に、燃料電池スタックの積層方向の温度分布を均一化することにより発電の効率化を図った燃料電池に関するものである。
【0002】
【従来の技術】
固体酸化物形燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。現在、この固体酸化物形燃料電池は、円筒型、モノリス型、および平板積層型の3種類が提案されており、何れも酸化物イオン伝導体から成る固体電解質を空気極層と燃料極層との間に挟んだ積層構造を有する。この積層体から成る発電セルとセパレータを交互に積層することにより所定出力の燃料電池スタックが構成できる。
【0003】
発電セルには、空気極側に酸化剤ガスとしての酸素(空気)が、燃料極側に燃料ガス(H2 、CO、CH4 等)が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるように、いずれも多孔質とされている。空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で、空気極から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。
【0004】
燃料に水素を用いた場合の電極反応は次のようになる。
空気極: 1/2 O2 + 2e- → O2-
燃料極: H2 + O2- → H2 O+2e-
全体 : H2 + 1/2 O2 → H2
【0005】
ところで、特に平板積層型の燃料電池スタックでは、その積層方向の温度分布をみると、発電セルの積層方向において燃料電池スタック両端付近の温度が中段部分に比べて極端に低下するという傾向が見られる(図3参照)。これは、燃料電池スタックの両端を除く部分は各発熱体(発電セル)が別の発熱体により上下で挟まれる構造であるため、運転時の発電セルのジュール熱が外に発散し難く、一方、燃料電池スタック両端部の発電セルはモジュール内雰囲気に直接接触しているためジュール熱が発散し易いことに起因している。温度が低い部分の発電セルは、高温部分の発電セルに比べて電極反応が活発に行われないため発電性能(電流密度)が低下している。
【0006】
燃料電池スタックの積層方向における温度分布の均一化を図るための技術として特許文献1が開示されている。
【0007】
【特許文献1】
特開昭60−254568号公報
【0008】
【発明が解決しようとする課題】
複数の発電セルを直列に接続して構成される燃料電池スタックでは、燃料電池スタックの積層方向に上記したような両肩下がりの温度分布が生じていると、燃料電池全体の発電性能が低温部の発電セルの発電性能で制限されることになり、よって、燃料電池スタック中段部分の発電セルに高い発電性能が得られていても総合的にみると性能向上に与らない全く無意味な発電になってしまう。
【0009】
そこで、本発明は、燃料電池スタックの積層方向の温度分布を均一化することにより、発電の効率化を図った燃料電池を提供することを目的としている。
【0010】
【課題を解決するための手段】
すなわち、請求項1に記載の本発明は、ハウジング内に、発電セルとセパレータを交互に積層した燃料電池スタックを設け前記セパレータに各発電セルに酸化剤ガスを供給する酸化剤通路を形成してなる燃料電池において、前記燃料電池スタックの前記積層方向に延在するとともに、各々の前記酸化剤通路に接続管を通して前記酸化剤ガスを供給する酸化剤用マニホールドを設け、この酸化剤用マニホールドの前記積層方向の中央部に、前記ハウジングの外部から前記酸化剤ガスを導入し、かつ前記酸化剤用マニホールドの両端に、それぞれ前記ハウジング内に収容されて外部からの前記酸化剤用ガスを予熱する酸化剤ガス予熱管の下流側端部を接続したことを特徴としている。
【0011】
通常、燃料電池においては、反応用ガス(燃料ガス、および酸化剤ガスとしての空気)は発電セルの積層方向に延設した各マニホールドを介して各発電セルに供給されるように構成されている。従って、上記構成では、燃料電池スタック中段部の発電セルは冷空気により冷却されると共に、スタック両端部の発電セルは冷空気がマニホールドの中央から端部に流通する過程で暖められた温空気により暖められる。その結果、燃料電池スタックにおける積層方向の温度分布は均一化され、効率的な発電が可能となる。
【0013】
更に、マニホールドの両端部より予熱した温空気が導入されるため、スタック両端部の昇温効果が向上し、燃料電池スタックの温度分布はより一層均一化できる。
【0016】
【発明の実施の形態】
以下、図1、図2に基づいて本発明の実施形態を説明する。
図1は本発明が適用された固体酸化物形燃料電池の内部概略構成を示し、図2は燃料電池スタックの要部概略構成を示している。
【0017】
図1において、符号1は固体酸化物形燃料電池、符号2は内壁に断熱材21を層状に付装した円筒状のハウジング、符号3は積層方向を縦にしてハウジング2内の中央に配置された円筒状の燃料電池スタックである。図2に示すように、この燃料電池スタック3は、固体電解質層4の両面に燃料極層5および空気極層(酸化剤極層)6を配した発電セル7と、燃料極層5の外側の燃料極集電体8と、空気極層6の外側の空気極集電体(酸化剤極集電体)9と、各集電体8、9の外側のセパレータ10を順番に積層した構造を有する。
【0018】
ここで、固体電解質層4はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層5はNi、Co等の金属あるいはNi−YSZ、Co−YSZ等のサーメットで構成され、空気極層6はLaMnO3 、LaCoO3 等で構成され、燃料極集電体8はNi基合金等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体9はAg基合金等のスポンジ状の多孔質焼結金属板で構成され、セパレータ10はステンレス等で構成されている。
【0019】
また、燃料電池スタック3の側方には、各セパレータ10の燃料通路26に接続管11を通して燃料ガスを供給する燃料用マニホールド13と、各セパレータ10の酸化剤通路25に接続管12を通して酸化剤ガスとしての空気を供給する酸化剤用マニホールド14とが、発電セル7の積層方向に延在して設けられている。
【0020】
また、マニホールド13、14の外周側には、燃料ガス予熱管15および酸化剤ガス予熱管16が一定の間隔で螺旋状に配設されている。これら予熱管15、16は、ハウジング2の内部に収容されており、ハウジング2内の各予熱管15、16に対して外部の燃料ガス供給管17、酸化剤ガス供給管18がそれぞれ接続されている。
【0021】
また、この固体酸化物形燃料電池1は、発電セル7の外周部にガス漏れ防止シールを設けないシールレス構造とされており、運転時には、図2に示すように、燃料通路26および酸化剤通路25を通してセパレータ10の略中心部から発電セル7に向けて供給される燃料ガスおよび酸化剤ガス(空気)を、発電セル7の外周方向に拡散させながら燃料極層5および空気極層6の全面に良好な分布で行き渡らせて発電反応を生じさせると共に、発電反応で消費されなかった残余のガスを発電セル7の外周部から外側に自由に放出するようになっている。
【0022】
ところで、本実施形態では、酸化剤ガス供給管18は、ハウジング内において酸化剤ガス予熱管16に接続され、その下流側の端部が酸化剤用マニホールド14の両端に接続されており、且つ、酸化剤用マニホールド14の長手中央部には外部からの冷却用空気配管22が接続されている。
【0023】
本構成では、運転時、一方では、外部からの冷空気が冷却用空気配管22を通して直接酸化剤用マニホールド14の長手中央部に導入される。既述したように、酸化剤用マニホールド14と各発電セル7とは複数の接続管12を介して個々に接続される構造であるから、燃料電池スタック3の中段部に当たる発電セル7には中央部分の接続管12を通して冷空気が導入されると共に、スタック両端部の発電セル7には冷空気が酸化剤用マニホールド14の中央部から末端部に流通する過程で(図1中の矢印参照)排熱と熱交換して暖められた温空気が導入される。
更に、これと併行して、酸化剤ガス供給管18より供給された冷空気が酸化剤ガス予熱管16を通して断熱材21の層内を周回する過程で予熱され、温空気となって酸化剤用マニホールド14の両端部に導入されているため、燃料電池スタック両端部の昇温効果はより高められている。
【0024】
このように、燃料電池の運転時、温度の高い燃料電池スタック3の中段部は外部の冷空気により冷却され、温度の低い燃料電池スタック3の両端部は排ガスと熱交換した温空気により昇温される。その結果、燃料電池スタック3における積層方向の温度分布は均一化される。
【0025】
また、本実施形態では、燃料電池スタック3の両端部の昇温効果を更に高めるため、例えば、図1に示すように、温度の低い燃料電池スタック3の上下端部に対応するハウジング2の部位に排気口19a、19bを設け、発電反応室20内に放出された高温排ガスが矢印で示すように燃料電池スタック3の端部をなめるように流通してハウジング2の外に排出されるように構成した。
これにより、燃料電池スタック3の両端部が近傍を流通する高温の排ガスにより外側から加熱されることになり、よって、燃料電池スタックの積層方向の温度分布は、より一層均一化されることになる。
【0026】
図3は運転時の燃料電池スタック3における積層方向の温度分布を示しており、実線は酸化剤用マニホールド14の長手中央部より酸化剤ガス予熱管16からの温空気を供給した場合(従来型)、破線は図1に示した本発明の構成によるものである。
図3に示すように、従来型の場合は燃料電池スタック3の積層方向の温度分布が両肩下がりの特性となるが、本発明のように燃料電池スタックの高温部分を冷却し、低温部分を昇温することにより、高温部と低温部の温度差を極力少なくして積層方向の全域に亘ってほぼ均一な温度分布を得ることができ、これにより、発電の効率化が図れる。加えて、破線のように高温部の発電セルの温度を低減することにより、熱応力による燃料極層の剥離等、発電セル7の破損が防止でき、燃料電池の耐久性(熱サイクル特性)が向上する。
【0027】
以上、本実施形態では、各マニホールド13、14を燃料電池スタック3の側方に延設した構造のものについて述べたが、各マニホールド13、14を燃料電池スタック3の内部において積層方向に設けた構造のものについても適用できることは勿論である。
また、冷空気の予熱手段として、螺旋状の予熱管を用いたが、高温排ガスを利用した他の公知の熱交換機構を採用することもできる。
【0028】
【発明の効果】
以上説明したように、本発明によれば、燃料電池スタックの中段部に冷空気が供給され両端部に温空気が供給されるように構成したので、燃料電池スタックの積層方向の温度分布を均一化でき、これにより効率的な発電が可能となる。
【図面の簡単な説明】
【図1】本発明が適用された固体酸化物形燃料電池の内部概略構成を示す断面図。
【図2】燃料電池スタックの要部概略構成図で、運転時のガスの流れを示す。
【図3】燃料電池スタックにおける発電セルの積層方向の温度分布を示す図。
【符号の説明】
1 燃料電池(固体酸化物形燃料電池)
3 燃料電池スタック
7 発電セル
10 セパレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell having a structure in which power generation cells and separators are alternately stacked, and more particularly, to a fuel cell in which the temperature distribution in the stacking direction of the fuel cell stack is made uniform to improve power generation efficiency. .
[0002]
[Prior art]
Solid oxide fuel cells are being developed as third-generation fuel cells for power generation. At present, three types of solid oxide fuel cells have been proposed: a cylindrical type, a monolith type, and a flat plate type, all of which include a solid electrolyte composed of an oxide ion conductor as an air electrode layer, a fuel electrode layer, and a fuel electrode layer. It has a laminated structure sandwiched between. A fuel cell stack having a predetermined output can be configured by alternately laminating power generation cells and separators made of this laminate.
[0003]
The power generation cell is supplied with oxygen (air) as an oxidant gas on the air electrode side and fuel gas (H 2 , CO, CH 4, etc.) on the fuel electrode side. The air electrode and the fuel electrode are both porous so that the gas can reach the interface with the solid electrolyte. Oxygen supplied to the air electrode side passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. At this part, it receives electrons from the air electrode and converts them into oxide ions (O 2− ). Ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode.
[0004]
The electrode reaction when hydrogen is used as the fuel is as follows.
Air electrode: 1/2 O 2 + 2e → O 2-
Fuel electrode: H 2 + O 2− → H 2 O + 2e
Overall: H 2 +1/2 O 2 → H 2 O
[0005]
By the way, in particular, in the flat plate type fuel cell stack, when looking at the temperature distribution in the stacking direction, the temperature near the both ends of the fuel cell stack in the stacking direction of the power generation cells tends to be extremely lower than that in the middle part. (See FIG. 3). This is because the structure excluding both ends of the fuel cell stack is such that each heating element (power generation cell) is sandwiched between different heating elements, so the Joule heat of the power generation cell during operation is difficult to dissipate outside. This is because the power generation cells at both ends of the fuel cell stack are in direct contact with the atmosphere in the module, and thus Joule heat is easily dissipated. The power generation cell (current density) in the power generation cell at the low temperature portion is lowered because the electrode reaction is not actively performed as compared with the power generation cell at the high temperature portion.
[0006]
Patent Document 1 is disclosed as a technique for achieving a uniform temperature distribution in the stacking direction of the fuel cell stack.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 60-254568
[Problems to be solved by the invention]
In a fuel cell stack configured by connecting a plurality of power generation cells in series, if the temperature distribution with both shoulders down as described above occurs in the stacking direction of the fuel cell stack, the power generation performance of the entire fuel cell is reduced to a low temperature part. Therefore, even if high power generation performance is obtained in the power generation cells in the middle part of the fuel cell stack, it is totally meaningless power generation that does not contribute to improvement in performance. Become.
[0009]
Accordingly, an object of the present invention is to provide a fuel cell in which the temperature distribution in the stacking direction of the fuel cell stack is made uniform to improve the efficiency of power generation.
[0010]
[Means for Solving the Problems]
That is, according to the first aspect of the present invention, a fuel cell stack in which power generation cells and separators are alternately stacked is provided in a housing, and an oxidant passage for supplying an oxidant gas to each power generation cell is formed in the separator. The fuel cell stack is provided with an oxidant manifold that extends in the stacking direction of the fuel cell stack and supplies the oxidant gas to each oxidant passage through a connecting pipe. The oxidant gas is introduced from the outside of the housing into the central portion in the stacking direction, and the oxidant gas from the outside is preheated by being accommodated in the housing at both ends of the oxidant manifold. The downstream end of the oxidant gas preheating pipe is connected .
[0011]
Usually, a fuel cell is configured such that a reaction gas (fuel gas and air as an oxidant gas) is supplied to each power generation cell via each manifold extending in the stacking direction of the power generation cells. . Therefore, in the above configuration, the power generation cells in the middle stage of the fuel cell stack are cooled by the cold air, and the power generation cells at both ends of the stack are heated by the warm air heated in the course of the cold air flowing from the center to the end of the manifold. Warmed. As a result, the temperature distribution in the stacking direction in the fuel cell stack is made uniform, and efficient power generation becomes possible.
[0013]
Furthermore, since preheated warm air is introduced from both ends of the manifold, the temperature rising effect at both ends of the stack is improved, and the temperature distribution of the fuel cell stack can be made more uniform.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows an internal schematic configuration of a solid oxide fuel cell to which the present invention is applied, and FIG. 2 shows an essential configuration of a fuel cell stack.
[0017]
In FIG. 1, reference numeral 1 is a solid oxide fuel cell, reference numeral 2 is a cylindrical housing in which a heat insulating material 21 is attached in layers on the inner wall, and reference numeral 3 is arranged in the center of the housing 2 with the stacking direction being vertical. A cylindrical fuel cell stack. As shown in FIG. 2, the fuel cell stack 3 includes a power generation cell 7 in which a fuel electrode layer 5 and an air electrode layer (oxidant electrode layer) 6 are disposed on both surfaces of a solid electrolyte layer 4, and an outer side of the fuel electrode layer 5. The fuel electrode current collector 8, the air electrode current collector (oxidant electrode current collector) 9 outside the air electrode layer 6, and the separator 10 outside the current collectors 8, 9 are sequentially stacked. Have
[0018]
Here, the solid electrolyte layer 4 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 5 is composed of a metal such as Ni or Co or a cermet such as Ni—YSZ or Co—YSZ, and air. The electrode layer 6 is made of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 8 is made of a sponge-like porous sintered metal plate such as a Ni-based alloy, and the air electrode current collector 9 is made of an Ag-based alloy or the like. The separator 10 is made of stainless steel or the like.
[0019]
Further, on the side of the fuel cell stack 3, a fuel manifold 13 for supplying fuel gas to the fuel passage 26 of each separator 10 through the connection pipe 11, and an oxidant through the connection pipe 12 to the oxidant passage 25 of each separator 10. An oxidant manifold 14 for supplying air as gas is provided extending in the stacking direction of the power generation cells 7.
[0020]
A fuel gas preheating pipe 15 and an oxidant gas preheating pipe 16 are spirally arranged at regular intervals on the outer peripheral side of the manifolds 13 and 14. These preheating pipes 15 and 16 are accommodated inside the housing 2, and external fuel gas supply pipes 17 and oxidant gas supply pipes 18 are connected to the respective preheating pipes 15 and 16 in the housing 2. Yes.
[0021]
Further, the solid oxide fuel cell 1 has a sealless structure in which a gas leak prevention seal is not provided on the outer peripheral portion of the power generation cell 7, and during operation, as shown in FIG. While the fuel gas and the oxidant gas (air) supplied from the substantially central portion of the separator 10 to the power generation cell 7 through the passage 25 are diffused in the outer peripheral direction of the power generation cell 7, the fuel electrode layer 5 and the air electrode layer 6 The power generation reaction is caused to spread over the entire surface with a good distribution, and the remaining gas that has not been consumed by the power generation reaction is freely released from the outer periphery of the power generation cell 7 to the outside.
[0022]
By the way, in this embodiment, the oxidant gas supply pipe 18 is connected to the oxidant gas preheating pipe 16 in the housing, and its downstream end is connected to both ends of the oxidant manifold 14, and An external cooling air pipe 22 is connected to the longitudinal center of the oxidant manifold 14.
[0023]
In this configuration, during operation, on the other hand, cold air from the outside is directly introduced into the longitudinal center of the oxidant manifold 14 through the cooling air pipe 22. As described above, since the oxidant manifold 14 and each power generation cell 7 are individually connected via the plurality of connection pipes 12, the power generation cell 7 corresponding to the middle portion of the fuel cell stack 3 has a central portion. While cold air is introduced through the connection pipe 12 of the portion, the cold air flows through the power generation cells 7 at both ends of the stack from the central portion to the end portion of the oxidant manifold 14 (see arrows in FIG. 1). Hot air warmed by heat exchange with exhaust heat is introduced.
In parallel with this, the cold air supplied from the oxidant gas supply pipe 18 is preheated in the process of circulating around the layer of the heat insulating material 21 through the oxidant gas preheating pipe 16 and becomes warm air for the oxidant. Since it is introduced into both ends of the manifold 14, the temperature increasing effect at both ends of the fuel cell stack is further enhanced.
[0024]
Thus, during operation of the fuel cell, the middle part of the high temperature fuel cell stack 3 is cooled by the external cold air, and both ends of the low temperature fuel cell stack 3 are heated by the hot air heat exchanged with the exhaust gas. Is done. As a result, the temperature distribution in the stacking direction in the fuel cell stack 3 is made uniform.
[0025]
Further, in this embodiment, in order to further increase the temperature rising effect at both ends of the fuel cell stack 3, for example, as shown in FIG. 1, the portion of the housing 2 corresponding to the upper and lower ends of the fuel cell stack 3 having a low temperature Are provided with exhaust ports 19a and 19b so that the high-temperature exhaust gas discharged into the power generation reaction chamber 20 circulates so as to lick the end of the fuel cell stack 3 as indicated by the arrows and is discharged out of the housing 2. Configured.
As a result, both end portions of the fuel cell stack 3 are heated from the outside by the high-temperature exhaust gas flowing in the vicinity thereof, and thus the temperature distribution in the stacking direction of the fuel cell stack is made more uniform. .
[0026]
FIG. 3 shows the temperature distribution in the stacking direction in the fuel cell stack 3 during operation, and the solid line shows the case where hot air is supplied from the oxidant gas preheating pipe 16 from the longitudinal center of the oxidant manifold 14 (conventional type). ), The broken line is due to the configuration of the present invention shown in FIG.
As shown in FIG. 3, in the case of the conventional type, the temperature distribution in the stacking direction of the fuel cell stack 3 has a characteristic that both shoulders are lowered. However, as in the present invention, the high temperature portion of the fuel cell stack is cooled and the low temperature portion is reduced. By raising the temperature, the temperature difference between the high temperature part and the low temperature part can be reduced as much as possible, and a substantially uniform temperature distribution can be obtained over the entire region in the stacking direction, thereby improving the efficiency of power generation. In addition, by reducing the temperature of the power generation cell in the high temperature area as shown by the broken line, damage to the power generation cell 7 such as peeling of the fuel electrode layer due to thermal stress can be prevented, and the durability (thermal cycle characteristics) of the fuel cell is improved. improves.
[0027]
As described above, in the present embodiment, the structure in which the manifolds 13 and 14 are extended to the side of the fuel cell stack 3 has been described. However, the manifolds 13 and 14 are provided in the stacking direction inside the fuel cell stack 3. Of course, the present invention can also be applied to a structure.
Further, although a spiral preheating tube is used as a preheating means for cold air, other known heat exchange mechanisms using high-temperature exhaust gas can be employed.
[0028]
【The invention's effect】
As described above, according to the present invention, cold air is supplied to the middle part of the fuel cell stack and hot air is supplied to both ends, so the temperature distribution in the stacking direction of the fuel cell stack is uniform. This enables efficient power generation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic internal configuration of a solid oxide fuel cell to which the present invention is applied.
FIG. 2 is a schematic configuration diagram of a main part of a fuel cell stack, showing a gas flow during operation.
FIG. 3 is a diagram showing a temperature distribution in the stacking direction of power generation cells in a fuel cell stack.
[Explanation of symbols]
1 Fuel cell (solid oxide fuel cell)
3 Fuel cell stack 7 Power generation cell 10 Separator

Claims (1)

ハウジング内に、発電セルとセパレータを交互に積層した燃料電池スタックを設け前記セパレータに各発電セルに酸化剤ガスを供給する酸化剤通路を形成してなる燃料電池において、
前記燃料電池スタックの前記積層方向に延在するとともに、各々の前記酸化剤通路に接続管を通して前記酸化剤ガスを供給する酸化剤用マニホールドを設け、この酸化剤用マニホールドの前記積層方向の中央部に、前記ハウジングの外部から前記酸化剤ガスを導入し、かつ前記酸化剤用マニホールドの両端に、それぞれ前記ハウジング内に収容されて外部からの前記酸化剤用ガスを予熱する酸化剤ガス予熱管の下流側端部を接続したことを特徴とする燃料電池。
In a fuel cell in which a fuel cell stack in which power generation cells and separators are alternately stacked is provided in a housing, and an oxidant passage for supplying an oxidant gas to each power generation cell is formed in the separator .
An oxidant manifold that extends in the stacking direction of the fuel cell stack and supplies the oxidant gas to each of the oxidant passages through a connecting pipe is provided, and a central portion of the oxidant manifold in the stacking direction is provided. In addition, an oxidant gas preheating pipe that introduces the oxidant gas from the outside of the housing and is housed in the housing at both ends of the oxidant manifold and preheats the oxidant gas from the outside. A fuel cell having a downstream end connected thereto.
JP2003165953A 2003-06-11 2003-06-11 Fuel cell Expired - Fee Related JP4389493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165953A JP4389493B2 (en) 2003-06-11 2003-06-11 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165953A JP4389493B2 (en) 2003-06-11 2003-06-11 Fuel cell

Publications (2)

Publication Number Publication Date
JP2005005074A JP2005005074A (en) 2005-01-06
JP4389493B2 true JP4389493B2 (en) 2009-12-24

Family

ID=34092243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165953A Expired - Fee Related JP4389493B2 (en) 2003-06-11 2003-06-11 Fuel cell

Country Status (1)

Country Link
JP (1) JP4389493B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863600B2 (en) * 2003-11-26 2012-01-25 京セラ株式会社 Fuel cell assembly
JP2008226704A (en) * 2007-03-14 2008-09-25 Mitsubishi Materials Corp Solid oxide fuel cell, and supplying method of oxidizing gas
JP5233249B2 (en) * 2007-11-09 2013-07-10 日産自動車株式会社 Fuel cell
JP5164555B2 (en) * 2007-12-25 2013-03-21 京セラ株式会社 FUEL CELL STACK DEVICE, FUEL CELL MODULE, AND FUEL CELL DEVICE
JP2012186041A (en) * 2011-03-07 2012-09-27 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel battery
EP2775557B1 (en) 2011-11-02 2019-09-11 NGK Sparkplug Co., Ltd. Fuel cell
JP5981379B2 (en) 2013-03-29 2016-08-31 日本特殊陶業株式会社 Fuel cell
DK2980904T3 (en) 2013-03-29 2018-06-14 Ngk Spark Plug Co fuel Battery
JP6356480B2 (en) * 2014-05-09 2018-07-11 東京瓦斯株式会社 Hot module
EP3035431B1 (en) 2014-12-19 2019-04-24 Hexis AG Fuel cell module and method for operating a fuel cell module
JP6312912B2 (en) * 2016-08-30 2018-04-18 日本碍子株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2005005074A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US7892684B2 (en) Heat exchanger for fuel cell stack
US8062803B2 (en) Fuel cell system and a method of generating electricity
JP5922267B2 (en) Cylindrical SOFC assembly and fuel cell device using the same
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JP4389493B2 (en) Fuel cell
JP5122319B2 (en) Solid oxide fuel cell
JP4654567B2 (en) Solid oxide fuel cell and method of operating the same
JP5140926B2 (en) Solid oxide fuel cell
JP4736309B2 (en) Preheating method at the start of operation of solid oxide fuel cell
JP4513281B2 (en) Fuel cell
JP4470497B2 (en) Fuel cell
JP4300947B2 (en) Solid oxide fuel cell
JP4438315B2 (en) Preheating method at the start of operation of solid oxide fuel cell
JP2005044599A (en) Fuel cell
JP2004281353A (en) Separator for fuel cell
JP4984374B2 (en) Fuel cell
JP2005019034A (en) Solid oxide fuel cell
JP2005044600A (en) Fuel cell
JP4461705B2 (en) Operation method of solid oxide fuel cell
JP4654631B2 (en) Solid oxide fuel cell
JP2011210570A (en) Fuel cell module
JP2004335161A (en) Solid state oxide fuel cell, separator and operation method
JP2005019037A (en) Fuel cell
JP2010238436A (en) Solid oxide fuel battery
JP2006054133A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees