JPS58164161A - Operation stopping method of fuel cell - Google Patents

Operation stopping method of fuel cell

Info

Publication number
JPS58164161A
JPS58164161A JP57047995A JP4799582A JPS58164161A JP S58164161 A JPS58164161 A JP S58164161A JP 57047995 A JP57047995 A JP 57047995A JP 4799582 A JP4799582 A JP 4799582A JP S58164161 A JPS58164161 A JP S58164161A
Authority
JP
Japan
Prior art keywords
gas
fuel
oxidizer
fuel cell
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57047995A
Other languages
Japanese (ja)
Other versions
JPS6341192B2 (en
Inventor
Kiyoshi Kamitsuji
清 上辻
Hiroyuki Tajima
田島 博之
Masahiro Sakurai
正博 桜井
Atsuo Watanabe
敦夫 渡辺
Tomoyoshi Kamoshita
友義 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP57047995A priority Critical patent/JPS58164161A/en
Publication of JPS58164161A publication Critical patent/JPS58164161A/en
Publication of JPS6341192B2 publication Critical patent/JPS6341192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To eliminate causes for deteriorating cell characteristics by heating a fuel cell when an operation is stopped in the fuel cell which pinches a matrix holding the electrolyte such as phosphoric acid with a fuel electrode and oxidizer electrode. CONSTITUTION:In a fuel gas system, a fuel feed valve 17 is closed to cut off the fuel gas feed, the N2 gas is fed to a gas partition chamber 15 and pipeline system through an N2 gas feed valve 23, and the fuel gas barges in, then the N2 gas is filled under pressure. In an oxidizer gas system, an oxidizer feed valve 20 and oxidizer discharge valve 22 are closed to cut off the feed of the oxidizer gas and an intake of the outer air, a heater 25 is heated, and the oxidizer gas system, particularly a gas partition chamber 16 is heated by means of a circulating valve 13 and circulating fan 24. The heating temperature is kept at a level not lower than the crystal deposition temperature of phosphoric acid being held in a matrix 12. Thereby, the deposition of the electrolyte and cracks or interlayer flaking of a matrix membrane can be prevented from occurring.

Description

【発明の詳細な説明】 この発明は電解質固定型燃料電池のマトリックス(電解
液保持部材)中の電解質の晶析(結晶の析出)を防止さ
せる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing crystallization (crystal precipitation) of an electrolyte in a matrix (electrolyte holding member) of a fixed electrolyte fuel cell.

燃料ガスとして水素ガスt7tはメタン、エタン等の天
然カスを改質した改質水素ガスを用い、酸化剤カスとし
て#本ガスま友は空気を用いる電解l[固定溜燃料電池
においては、電池内部での反応カスノ滉4gt主に電極
触媒面からマトリックスを通過し対極へ到達するガス洩
れ)t−防止する役割tマトリックスに4たせることが
望ましい。このマトリックスはりん酸等の電解液を保持
した状態で^いガスふきぬけ圧力(0,5〜2#/in
有しなければならない。
Hydrogen gas t7t uses reformed hydrogen gas obtained by reforming natural sludge such as methane and ethane as fuel gas, and as oxidizer sludge, electrolysis using air [In fixed reservoir fuel cells, the inside of the cell The role of preventing gas leakage, which mainly passes through the matrix from the electrode catalyst surface and reaches the counter electrode, is preferably given to the matrix. This matrix holds an electrolyte such as phosphoric acid under a high gas blowing pressure (0.5~2#/in).
Must have.

電解液固定型燃料電池は、一般に第1図に示す構成含有
する。すなわち燃料電池IFi、耐熱性、耐蝕性および
電気絶縁性を有する多孔性薄膜部材にりん酸などの電解
液を含浸さぜ危マトリックス2と、゛前記マトリックス
により隔置されたガス拡散および電解液浸透性を有する
多孔性の燃料電極C水素電極)3および酸化剤電極(酸
素電極または空気電極)4と、これら電極のガス側基材
に接触し集電の役割を果すとともにそれぞれの電極へ反
応ガスを供給するためのガス区画室5.6とを形成する
セパレータプレート(バイポーラフレー)37.8とか
ら成立っている。
A fixed electrolyte fuel cell generally includes the configuration shown in FIG. That is, the fuel cell IFi includes a porous thin film member having heat resistance, corrosion resistance, and electrical insulation properties impregnated with an electrolyte such as phosphoric acid, and a matrix 2 that is separated by the matrix for gas diffusion and electrolyte permeation. A porous fuel electrode C (hydrogen electrode) 3 and an oxidizer electrode (oxygen electrode or air electrode) 4 are in contact with the gas side base material of these electrodes to play the role of current collection and to carry the reactive gas to each electrode. It consists of a gas compartment 5.6 for supplying gas and a separator plate 37.8 forming a gas compartment 5.6.

電極は、カスの拡f&または透通を容易にする沈めの多
孔性カーボン不織布基材3a、4a上にグラファイト粉
末をポリテトラフルオロエチレンIPTFE)で結合さ
せた薄膜([1水層)36.46と電極反応を容易に行
わせるための貴金属を担持したカーボン粉末触媒をPT
FEで結合させた薄膜(触媒層J3c、4cより構成さ
れている。
The electrode is a thin film ([1 water layer) 36.46] in which graphite powder is bonded with polytetrafluoroethylene IPTFE) on a submerged porous carbon nonwoven fabric base material 3a, 4a that facilitates the expansion and/or penetration of scum. PT is a carbon powder catalyst supporting noble metals to facilitate the electrode reaction.
It consists of a thin film (catalyst layers J3c and 4c) bonded by FE.

マトリックス2は耐熱、耐蝕性、非電導性を有する微粉
末を少量のPTFEで結合させへ薄膜である。前記マト
リックスには、eD電解液による高湿洞性、@大きな電
解液保持力、θ高いガスふきぬけ圧力、O機械的強度が
大きい事などの特性を有することが望まれる。
The matrix 2 is a thin film made by bonding heat-resistant, corrosion-resistant, and non-conductive fine powder with a small amount of PTFE. The matrix is desired to have characteristics such as high humidity due to the eD electrolyte, large electrolyte holding power, high gas bleed pressure in θ, and high mechanical strength in O.

かかる燃料電池において、電解液としてりん酸が使用さ
れる場合には、マトリックスに含浸させるりん酸は一般
に95〜100wt1の濃度のものが使用され1通常の
運転条件下(fi[150〜200℃)ではマトリック
ス中に保持されているりん酸の濃度は300〜105w
t96となる。ところで、前記濃度のりん酸は第2図に
示されたような氷晶温度を壱する・縦軸はm度、横軸は
濃度である。すなわちりん11jll[100wt饅 
で氷晶m度は約42℃、 102wtチ・で約35℃、
105wt−で約30℃となる。このような氷晶温11
有する濃度のりん酸を保持したマトリックスからなる燃
料電池を休止状II(電池の@!度が大気に等しい温度
状態で運転休止するIK放装した場合には、マトリック
スおよび電極触媒層反応界面に保持されたりん酸は氷晶
@度以下であり、に晶析用が起る。りん酸に濡れやすく
しかもりん酸の保持力を高めるために撥水性を有するP
TFE結合剤結合蛇管可能少ない量で作製しているマト
リックスにおいて、このりん酸の結晶析出が起ると、マ
トリックス膜に亀裂および層間剥離および構造破壊など
をもたらし、eD電解液保持力の低下、0絶縁抵抗の低
下、OマドIIックス強度の低下、O電池内部での反応
ガスの漏洩および混電池lは燃料電4k13と酸化剤1
14とこれ、、t*ttstt、ts*amう□ゎ、ア
、6ff)+7ツ  ゛ラス12お工びそれぞれの電極
へ反応カスを供給するためのガス区画室15および16
より構成されている。このような構成を有する燃料電池
において、電池の運転時には、燃料ガスは燃料供給パル
プ17および流量計18を経由し、ガス区画室15へ供
給され、燃料排出パルプ19より排出される。−万、酸
化剤ガスは酸化剤供給パルプ20および流量計21を経
由し、ガス区画室16へ供給され、酸化剤排出パルプ2
2へ排出される。
In such fuel cells, when phosphoric acid is used as the electrolyte, the phosphoric acid impregnated into the matrix is generally used at a concentration of 95 to 100 wt1 under normal operating conditions (fi [150 to 200°C). Then, the concentration of phosphoric acid held in the matrix is 300~105w
It becomes t96. By the way, phosphoric acid at the above concentration has an ice crystal temperature as shown in FIG. 2. The vertical axis is m degrees and the horizontal axis is the concentration. In other words, 11jll of phosphorus [100wt rice cake]
The ice crystal m degree is about 42℃, and the ice crystal temperature is about 35℃ at 102wt.
At 105 wt-, the temperature is about 30°C. Such ice crystal temperature 11
When a fuel cell consisting of a matrix holding phosphoric acid at a concentration of The phosphoric acid that is used has a crystallinity below the ice crystal level, and crystallization occurs.
When this phosphoric acid crystal precipitation occurs in a matrix prepared with a small amount of TFE binder-bonded corrugated tube, it causes cracks, delamination, and structural destruction in the matrix film, resulting in a decrease in eD electrolyte retention capacity and 0. Decrease in insulation resistance, decrease in O-Made II box strength, leakage of reactant gas inside the O-cell, and mixed battery l contains Fuel Electric 4K13 and Oxidizer 1.
14 and this, t*ttstt, ts*amu□wa, a, 6ff) + 7 glass 12 gas compartments 15 and 16 for supplying reaction waste to each electrode.
It is composed of In a fuel cell having such a configuration, during operation of the cell, fuel gas is supplied to the gas compartment 15 via the fuel supply pulp 17 and the flow meter 18, and is discharged from the fuel discharge pulp 19. - 10,000, the oxidizing gas is supplied to the gas compartment 16 via the oxidizing agent supply pulp 20 and the flow meter 21, and is supplied to the oxidizing agent discharging pulp 2
It is discharged to 2.

運転休止時には、燃料ガス系統では燃料供゛給ノ(°シ
ブ1フを閉じることKより燃料ガスの供給を遮断し、馬
(窒素ガス)供給パルプ23LすN!ガスをカス区画室
15および配管系に供給し、燃料カスのパージ後h N
lガスを加圧充填させる。一方、酸化剤ガス系統におい
ては、酸化剤供給パルプ20および酸化剤排出パルプ2
2を閉じ、酸化剤ガスの供給と外気の進入ta断すると
ともに、ヒーター251″加熱し、循環パルプ13と循
環ファン14とにエリ、al化剤ガス系統、とくにガス
区画室16を加熱する。この加熱源[はマトリックス内
に保持されたりん酸が結晶析出温度以下にならない楊j
[K保てばよい。空冷式の燃料電池においては。
When the operation is stopped, the fuel gas system shuts off the fuel gas supply by closing the fuel supply valve 1, and supplies the nitrogen gas to the waste compartment 15 and the piping. After supplying the fuel to the system and purging the fuel residue, hN
Fill with l gas under pressure. On the other hand, in the oxidizing gas system, the oxidizing agent supply pulp 20 and the oxidizing agent discharge pulp 2
2 is closed to cut off the supply of oxidizing gas and the inflow of outside air, and at the same time, the heater 251'' is heated to heat the circulation pulp 13 and circulation fan 14, the aluminizing gas system, especially the gas compartment 16. This heating source does not allow the phosphoric acid held within the matrix to fall below the crystallization temperature.
[Just keep K. In air-cooled fuel cells.

循環ファン24により常時反応に必要な空気量の数倍も
の空気を流しており、また燃料電池の起動時′には燃料
電池を運転IIIItLまで予備加熱するためのヒータ
ーが循環系内に配置されるのが常であるので、かかるタ
イプの燃料電池では上述のりん酸保温のための特別な機
器を必要としない利点が得られる。
The circulation fan 24 constantly flows air several times the amount of air required for the reaction, and at the time of starting the fuel cell, a heater is placed in the circulation system to preheat the fuel cell to operation IIItL. Therefore, this type of fuel cell has the advantage of not requiring the above-mentioned special equipment for keeping the phosphoric acid warm.

なお、実施例では酸化剤ガス系統からの加熱について述
べたが、燃料ガス系統でN、ガスを加熱循環させる工う
Kして電池を保温してもよいことはいうまでもない。
In the embodiment, heating from the oxidant gas system has been described, but it goes without saying that the battery may be kept warm by heating and circulating nitrogen or gas in the fuel gas system.

さらに、変形例としては、燃料電池が水冷、油冷系Wt
t有する場合には、ここにヒータを設けるか、あるいは
既設のヒータを利用して、電池休止中にりん酸が所定温
度以上となるよう加熱を行うようにしてもよい。
Furthermore, as a modification, the fuel cell may be water-cooled or oil-cooled Wt.
t, a heater may be provided here or an existing heater may be used to heat the phosphoric acid to a predetermined temperature or higher while the battery is in rest.

また、場合にLっては、燃料電池の周囲全体を加熱・す
ることによってりん酸を所定m度板上に保つ↓うvCす
ることも考えらnる。
In addition, in some cases, it is also conceivable to maintain the phosphoric acid on the plate by a predetermined degree by heating the entire area around the fuel cell.

なお、実施例ではりん酸を電解質とした例について述べ
たが、同様な析出M回を示す他の電解質を用いる場合に
も本発明は適用可能である。
Although the examples have been described using phosphoric acid as the electrolyte, the present invention is also applicable to cases where other electrolytes showing similar M times of precipitation are used.

このように、本発明によれば燃料電池の運転休止時に燃
料電池の電解質を保温することにより、電解質の析出を
防止し、マ) IJツクス膜の電装。
As described above, according to the present invention, precipitation of the electrolyte is prevented by keeping the electrolyte of the fuel cell warm during suspension of operation of the fuel cell, and the electrical equipment of the IJTx membrane is improved.

1@間剥離などが生じなくなり、電解液保持力の低下、
絶縁抵抗の低下、マ) IJツクス強腹の低下ないしは
電池内部での反応カスの漏洩および混合に伴う電池性能
低下原因を除去することが111J酢となる。
1 @ Peeling etc. no longer occur, and the electrolyte holding power decreases.
The purpose of 111J vinegar is to eliminate the causes of a decrease in battery performance due to a decrease in insulation resistance, a decrease in IJTx strength, or leakage and mixing of reaction scum inside the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用可能な燃料電池の要部断面図、!
2図はりん酸の氷晶温度特性図、第3図は本発明の実施
例の流体回路図である。 IQ−・・・燃料電池、12・・・マトリックス、 1
5.16・・・ガス区1iii室、24・・・m項ファ
ン、25・・・ヒータ O で   1   M 才  2  口 ’ C %H3Fθ4 f  3  岡
FIG. 1 is a sectional view of essential parts of a fuel cell to which the present invention can be applied!
FIG. 2 is an ice crystal temperature characteristic diagram of phosphoric acid, and FIG. 3 is a fluid circuit diagram of an embodiment of the present invention. IQ-...Fuel cell, 12...Matrix, 1
5.16...Gas section 1iii room, 24...M-term fan, 25...Heater O 1 M year old 2 mouth'C%H3Fθ4 f3

Claims (1)

【特許請求の範囲】 】)りん酸等の電解質を保□持するマトリックス會燃料
電極と酸化剤電極とで挾持してなる燃料電池において、
運転休止時に燃料電池を電解質が晶析する温度゛以上に
保温することを特徴とする燃料電池の運転休止方法。 2)%計請求の範囲II]Jjl記載の方法において。 運転休止時に、燃料電池の酸化剤供給系内のヒータを加
熱して燃料電池の酸化剤区画室側からマトリックスを保
温することを特徴とする燃料電池の運転休止方法。
[Claims] ]) In a fuel cell formed by sandwiching an oxidizer electrode and a matrix fuel electrode holding an electrolyte such as phosphoric acid,
A method for suspending operation of a fuel cell, which comprises keeping the fuel cell at a temperature higher than the temperature at which an electrolyte crystallizes during suspension of operation. 2) Percentage Claim II] In the method described in Jjl. 1. A method for suspending operation of a fuel cell, which comprises heating a heater in an oxidizer supply system of the fuel cell to keep a matrix warm from the oxidizer compartment side of the fuel cell when the operation is suspended.
JP57047995A 1982-03-25 1982-03-25 Operation stopping method of fuel cell Granted JPS58164161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047995A JPS58164161A (en) 1982-03-25 1982-03-25 Operation stopping method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047995A JPS58164161A (en) 1982-03-25 1982-03-25 Operation stopping method of fuel cell

Publications (2)

Publication Number Publication Date
JPS58164161A true JPS58164161A (en) 1983-09-29
JPS6341192B2 JPS6341192B2 (en) 1988-08-16

Family

ID=12790893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047995A Granted JPS58164161A (en) 1982-03-25 1982-03-25 Operation stopping method of fuel cell

Country Status (1)

Country Link
JP (1) JPS58164161A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214166A (en) * 1983-05-18 1984-12-04 Toshiba Corp Phosphoric-acid-type fuel cell
JPS6093762A (en) * 1983-10-28 1985-05-25 Hitachi Ltd Phosphoric acid type fuel cell
JPS60177568A (en) * 1984-02-23 1985-09-11 Mitsubishi Electric Corp Fuel cell power generating system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IMPROVEMENT OF FUEL-CEL TECHNOLOGY BASE=1978 *
POWER SYSTEMS DIVISION=1978 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214166A (en) * 1983-05-18 1984-12-04 Toshiba Corp Phosphoric-acid-type fuel cell
JPS6093762A (en) * 1983-10-28 1985-05-25 Hitachi Ltd Phosphoric acid type fuel cell
JPS60177568A (en) * 1984-02-23 1985-09-11 Mitsubishi Electric Corp Fuel cell power generating system

Also Published As

Publication number Publication date
JPS6341192B2 (en) 1988-08-16

Similar Documents

Publication Publication Date Title
Zhang et al. Application of porous materials for the flow field in polymer electrolyte membrane fuel cells
KR102569814B1 (en) PEM Water Electrolyzer System, PEM Water Electrolyzer Cells, Stacks and Methods of Producing Hydrogen in the System
JP2019183258A (en) Electrochemical hydrogen pump and operation method of electrochemical hydrogen pump
JPH06504403A (en) Water removal method for electrochemical fuel cells
US11171342B2 (en) System for regulating the temperature and pressure of a high-temperature electrolyser (SOEC) reversibly operating as a fuel cell stack (SOFC)
US8518598B1 (en) Solid oxide fuel cell power plant with a molten metal anode
JPH0696782A (en) Internal reforming type fuel cell device and its operating method
US20240003028A1 (en) Alkaline water electrolysis system and method of operating alkaline water electrolysis system
JP6627532B2 (en) Gas diffusion layer and current collector for polymer electrolyte fuel cell, and polymer electrolyte fuel cell using the gas diffusion layer
JPS58164161A (en) Operation stopping method of fuel cell
JP2000277128A (en) Solid polymer type fuel cell
US4461813A (en) Electrochemical power generator
EP2309578A1 (en) Fuel cell structure with a porous metal plate for cooling
JP3346784B2 (en) Vertical stripe cylindrical solid electrolyte fuel cell
JPS60500190A (en) electrochemical cell with at least one gas electrode
JP3673252B2 (en) Fuel cell stack
JP3575650B2 (en) Molten carbonate fuel cell
JP6976876B2 (en) Fuel cell cell unit
JP2004529458A (en) Method for improving the moisture balance of a fuel cell
CN112820923A (en) Electrolyte adding method for molten carbonate fuel cell
CN218880072U (en) Diffusion layer structure and proton exchange membrane water electrolyzer
JP2000067893A (en) Solid polymer fuel cell
CN100399615C (en) Cooling-humidifying device for fuel cell
RU2230402C1 (en) Fuel cell using solid polymeric electrolyte and method for manufacturing i ts membrane
JPS58164162A (en) Operation stopping method of fuel cell