JPS6117302B2 - - Google Patents

Info

Publication number
JPS6117302B2
JPS6117302B2 JP2778378A JP2778378A JPS6117302B2 JP S6117302 B2 JPS6117302 B2 JP S6117302B2 JP 2778378 A JP2778378 A JP 2778378A JP 2778378 A JP2778378 A JP 2778378A JP S6117302 B2 JPS6117302 B2 JP S6117302B2
Authority
JP
Japan
Prior art keywords
terminal
current value
terminal switching
section
switching section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2778378A
Other languages
Japanese (ja)
Other versions
JPS54121064A (en
Inventor
Satoru Todoroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2778378A priority Critical patent/JPS54121064A/en
Publication of JPS54121064A publication Critical patent/JPS54121064A/en
Publication of JPS6117302B2 publication Critical patent/JPS6117302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は半導体部品のサージ耐量を簡便に自動
測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for easily and automatically measuring the surge resistance of semiconductor components.

従来、半導体部品の良品及び不良品の選別は、
観測者がオシロスコープ等を利用して、標準品の
標準電圧−電流波形と個々の部品の電圧−電流波
形とを比較する方法がとられてきたが、この方法
では観測者の選別判断の誤り、あるいは良否判定
の迅速化が困難である等の欠点を伴なつており、
そのために上記欠点の改良対策として下記に示す
従来技術が報告されている。以下、これを具体的
に述べると、被測定物の出力電流値を予め定めた
数個の基準電流値と比較しつつ両者が等しくなつ
たときの出力電圧値を測定して記憶し、任意の2
点の出力電圧値の差が予め設定した許容値と比較
してその結果を表示するようにした自動波形判別
装置(特公昭51−5912)と、あるいは複数の被試
〓〓〓〓
験ダイオードの順方向及び逆方向電圧−電流特性
を共通の計測器を用いて任意の時点で切換えて測
定できるようにした特性試験用回路(実開昭51−
98972)と、あるいは供試半導体素子の入力端子
に電圧の時間変化率を示すαv/αt信号を与
え、被試験物の出力端電流値または電圧値が基準
値に達したとき予め定めた判定信号とαv/αt
電源信号を比較することを特徴とする半導体特性
測定装置(実公昭51−17007)と、さらに複数の
端子を有する集積回路の標準試料と被測定試料と
を適当な動作回路にて動作状態におき両者の各出
力端子の出力電圧差を予め定めた基準電圧値と比
較し、電圧値に異常が発生したときに指示計の指
針を振らせることを特徴とした集積回路不良検出
装置(実公昭51−22603)と、あるいはIC、Trs
及び他の半導体の如き電子装置を自動的に検査す
る装置に関して、特に斯る装置用に改良された検
査治具に関する電子装置の自動検査装置(特公昭
51−23153)となどが公開されている。
Conventionally, the selection of good and defective semiconductor parts was done by
A method has been used in which an observer uses an oscilloscope or the like to compare the standard voltage-current waveform of a standard product with the voltage-current waveform of an individual component, but this method can lead to errors in the observer's selection judgment, Or, it is accompanied by drawbacks such as the difficulty of speeding up the pass/fail judgment.
For this reason, the following prior art has been reported as a countermeasure for improving the above-mentioned drawbacks. To describe this in detail below, the output current value of the object to be measured is compared with several predetermined reference current values, and the output voltage value when the two become equal is measured and memorized. 2
An automatic waveform discrimination device (Special Publication No. 51-5912) that compares the difference between the output voltage values of points with a preset tolerance value and displays the results, or multiple test samples.
A characteristic testing circuit that enables the forward and reverse voltage-current characteristics of test diodes to be switched and measured at any time using a common measuring instrument (Utility Model 51-
98972), or by applying an αv/αt signal indicating the time rate of voltage change to the input terminal of the semiconductor device under test, and when the output terminal current value or voltage value of the DUT reaches a reference value, a predetermined judgment signal is generated. and αv/αt
A semiconductor characteristic measuring device (Utility Model Publication No. 51-17007) characterized by comparing power supply signals, and a standard sample of an integrated circuit having a plurality of terminals and a sample to be measured are placed in an operating state using an appropriate operating circuit. An integrated circuit defect detection device (1973), which compares the output voltage difference of each output terminal between the two with a predetermined reference voltage value, and causes the pointer of the indicator to swing when an abnormality occurs in the voltage value. −22603) or IC, Trs
and other devices for automatically testing electronic devices such as semiconductors, and in particular regarding improved testing jigs for such devices.
51-23153) and others have been published.

しかしながら、上記の装置は製造された半導体
部品の品質管理を徹底し、製品の初期特性の級別
という目的で使用するには有効な手段であるが、
初期特性とは異なつた信頼性が問題になる実際の
市場では上記の装置で良品と判定された製品から
非常に多くの故障を生じる例が多い。この件に関
する発明者の研究によれば、この最大の原因は外
部からの不要な異常信号である外来サージによる
ものであり、上記した従来装置が部品のサージに
対する信頼性を保証しうる手段とはなりえないの
である。例えば、初期特性の電圧−電流特性の立
上がりが悪く、かつ動作抵抗の過大なものは奇妙
にも耐サージ性に劣る傾向がみられる。したがつ
て外来サージに対する部品の寿命の推定試験すな
わち信頼性試験は個別のあるいは破壊試験等の実
験データに頼らざるを得ず、非破壊でサージ寿命
を予想する手段は部品の信頼性向上という社会的
ニーズがあるにもかかわらず、いまだ存在してい
ないというべきであつた。
However, although the above-mentioned device is an effective means for thorough quality control of manufactured semiconductor components and for grading the initial characteristics of products,
In actual markets where reliability, which differs from initial characteristics, is an issue, there are many cases in which a large number of products that are determined to be good by the above-mentioned device fail. According to the inventor's research on this matter, the biggest cause of this is an external surge, which is an unnecessary abnormal signal from the outside, and the above-mentioned conventional device can guarantee the reliability of parts against surges. It cannot be. For example, if the voltage-current characteristics of the initial characteristics have a poor rise and the operating resistance is excessive, there is a strange tendency for the surge resistance to be poor. Therefore, tests for estimating the lifespan of parts against external surges, that is, reliability tests, have to rely on experimental data such as individual or destructive tests, and the only non-destructive way to predict surge lifespans is to improve the reliability of parts. It should have been said that it still does not exist, even though there is a need for it.

そこで、本出願人は、上記の従来技術の欠点を
改良し、半導体部品の信頼性向上を計る目安とな
るサージ耐量を非破壊で自動測定を行なう新規な
自動サージ耐量測定装置(特願昭53−2805号(特
公昭57−49871号))を先に出願した。
Therefore, the present applicant has developed a new automatic surge withstand capacity measuring device (patent application filed in 1983) that improves the shortcomings of the above-mentioned conventional technology and automatically measures the surge withstand capacity in a non-destructive manner, which is a guideline for improving the reliability of semiconductor components. -2805 (Special Publication No. 57-49871)) was filed first.

以下、上述の自動サージ耐量測定装置を第1
図、第3図および第4図を参照して説明する。
Below, the above-mentioned automatic surge resistance measuring device is used as the first
This will be explained with reference to FIGS. 3 and 4.

図中、1は配列部、2は端子対切換部、3は電
流設定部、4は電圧電流測定部、5は電圧比較
部、6はアナログ−デイジタル変換部、7は記憶
部、8は演算部、9は印字部、10は制御部であ
る。
In the figure, 1 is an array section, 2 is a terminal pair switching section, 3 is a current setting section, 4 is a voltage/current measurement section, 5 is a voltage comparison section, 6 is an analog-digital conversion section, 7 is a storage section, and 8 is a calculation section. 9 is a printing section, and 10 is a control section.

次に、その稼動について説明する。マイクロコ
ンピユータを用いた制御部10からの信号は機械
的に半導体部品の被測定物(以下、単に被測定物
と称す。)の端子対を順次切換える端子対切換部
2に与えられ、端子対切換部2に接続されかつ予
め番号を定めて方形配列した配列部1の被測定物
端子対にセツトされる。同時に制御部10からの
信号は直流ステツプパルス発生器を有する電流設
定部3に与えられ、1番目の端子対に予め設した
第1の電流値I0、第2の電流値I1及び第3の電流
値I2が順次印加される。なお、設定電流値は素子
の属するロツト全体について平均的な値であり予
め求めておく。
Next, its operation will be explained. A signal from a control section 10 using a microcomputer is applied to a terminal pair switching section 2 that mechanically switches terminal pairs of an object to be measured (hereinafter simply referred to as an object to be measured), which is a semiconductor component, sequentially. The terminals are connected to the array section 2 and set in pairs of terminals to be measured in the arrangement section 1, which are arranged in a rectangular manner with predetermined numbers. At the same time, a signal from the control section 10 is given to a current setting section 3 having a DC step pulse generator, and a first current value I 0 , a second current value I 1 and a third current value set in advance to the first terminal pair are given to the current setting section 3 having a DC step pulse generator. A current value I 2 of is sequentially applied. Note that the set current value is an average value for the entire lot to which the element belongs, and is determined in advance.

つぎに、被測定物を流れる第1の電流値I0と被
測定物両端に現れる第1の電圧値V0、第2の電
流値I1と第2の電流値V1、第3の電流値I2と第3
の電圧値V2は被測定物に対して直列及び並列に
結線された直流電流計及び直流電圧計を備えた測
定部4でそれぞれ測定される。測定部4の出力電
圧端は予め定めた基準電圧値を発生する電圧比較
部5に結線され配列部1の端子対が最終端子対で
あるか否かを判断する。
Next, the first current value I 0 flowing through the object to be measured, the first voltage value V 0 appearing across the object to be measured, the second current value I 1 and the second current value V 1 , and the third current value value I 2 and 3rd
The voltage value V 2 is measured by a measuring section 4 equipped with a DC ammeter and a DC voltmeter connected in series and parallel to the object to be measured. The output voltage terminal of the measuring section 4 is connected to a voltage comparing section 5 which generates a predetermined reference voltage value, and it is determined whether the terminal pair of the array section 1 is the final terminal pair.

測定部4の出力電圧値が基準電圧値以上である
とき、すなわち最終端子対でないときその出力電
圧値及び出力電流値は個々に設けられたアナログ
−デイジタル変換部6でデイジタル数値化され記
憶部7に一旦記憶される。また、同時にアナログ
−デイジタル変換部6の出力は演算部8に入力さ
れ、下記の(1)式、(2)式でそれぞれ示される電圧制
限指数α及びサージ耐量Nの演算が実施される。
When the output voltage value of the measuring section 4 is equal to or higher than the reference voltage value, that is, when it is not the final terminal pair, the output voltage value and output current value are converted into digital values by the individually provided analog-digital conversion section 6 and stored in the storage section 7. is stored once. At the same time, the output of the analog-to-digital converter 6 is input to the arithmetic unit 8, and the voltage limit index α and surge withstand capacity N shown in the following equations (1) and (2) are calculated.

α=log(I/I)/log(V/V)……
(1) N=α・(K1+K2・α・logV0-1……(2) 但し、K1、K2は特定ロツトに対して実験的に
求められる定数。
α=log(I 1 /I 2 )/log(V 1 /V 2 )...
(1) N=α・(K 1 +K 2・α・logV 0 ) -1 ...(2) However, K 1 and K 2 are constants determined experimentally for a specific lot.

前記演算部8は通常のマイクロコンピユータを
使用したものであり、演算部8の出力を再び記憶
部7に入力するとともに前記記憶部7で記憶した
〓〓〓〓〓
端子対番号第1の設定電流値I0とそれに対応する
第1の測定電圧値V0、第2の設定電流値I1と第2
の測定電圧値V1、及び第3の設定電流値I2と第3
の測定電圧値V2とを対応させて印字部9より出
力する。以上の操作列を予め定められたプログラ
ムに従つて最終端子対に至るまで、制御部10を
介して繰返し行なう。
The arithmetic unit 8 uses a normal microcomputer, and the output of the arithmetic unit 8 is inputted again to the storage unit 7 and stored in the storage unit 7.
Terminal pair number The first set current value I 0 and the corresponding first measured voltage value V 0 , the second set current value I 1 and the second
The measured voltage value V 1 and the third set current value I 2 and the third
The printing unit 9 outputs the measured voltage value V 2 in correspondence with the measured voltage value V 2 . The above sequence of operations is repeated via the control unit 10 according to a predetermined program until the final terminal pair is reached.

そして、端子対が最終端子対であるとき、即ち
測定部4の出力電圧値が基準電圧以下であるとき
電圧比較部5の出力信号は制御部10に入力さ
れ、同時にその制御部10からの信号は演算部8
に入力され、前記記憶部7に記憶した内容を読み
出し、第1の測定電圧値V0、第2の測定電圧値
V1、第3の測定電圧値V2、電圧制限指数α及び
サージ耐量Nの平均値と標準偏差σの演算を行
なつた後、印字部9で印字される。
When the terminal pair is the final terminal pair, that is, when the output voltage value of the measuring section 4 is below the reference voltage, the output signal of the voltage comparing section 5 is input to the control section 10, and at the same time, the signal from the control section 10 is input to the control section 10. is the calculation section 8
The content stored in the storage unit 7 is read out, and the first measured voltage value V 0 and the second measured voltage value are read out.
After calculating the average value and standard deviation σ of V 1 , the third measured voltage value V 2 , the voltage restriction index α, and the surge withstand capacity N, the printing unit 9 prints.

第3図は、半導体素子の逆方向電圧電流特性を
表わした説明図である。
FIG. 3 is an explanatory diagram showing the reverse voltage-current characteristics of a semiconductor element.

図中、I0とV0は前期降伏領域に属する上記の第
1の設定電流値と測定電圧値、またはI1とV1及び
I2とV2はそれぞれ降伏領域に属する同じく上記し
た第2の設定電流値と測定電圧値および第3の設
定電流値と測定電圧値を表わす。
In the figure, I 0 and V 0 are the above-mentioned first set current value and measured voltage value belonging to the early breakdown region, or I 1 and V 1 and
I 2 and V 2 represent the second set current value and measured voltage value and the third set current value and measured voltage value, respectively, which belong to the breakdown region.

第4図は、逆方向電圧と電圧制限指数との関係
を示す説明図であつて、三角波(立上り8μ
sec、立下り20μsec、ピーク値4000A)の標準衝
撃波を印加してサージ耐量N=1を得る場合の逆
方向電圧logV0と電圧制限指数αとの関係を例示
する。
FIG. 4 is an explanatory diagram showing the relationship between reverse voltage and voltage limit index, and shows a triangular wave (rising 8μ
sec, fall 20 μsec, peak value 4000 A) and apply a standard shock wave to obtain a surge withstand capacity N=1.

以上述べた自動サージ耐量測定装置は、各種電
子機器を外来サージから保護するためのサージ吸
収用半導体部品、例えば金属酸化物系パリスタ、
ツエナーダイオード等のサージ耐量を非破壊で定
量的に評価することが可能となり、従来の波形選
別技術では予測できなかつた市場での故障の発生
を予測することができるようになるので、部品の
品質向上、及び寿命の信頼性向上を計ることがで
き、また被測定物の端子対の数を増すだけで多数
の部品を同時に評価することが容易となるので、
電子部品の品質向上のみならず寿命の信頼性向上
に資することは大である。
The above-mentioned automatic surge resistance measurement device uses surge absorbing semiconductor components, such as metal oxide pallisters, to protect various electronic devices from external surges.
It becomes possible to non-destructively and quantitatively evaluate the surge resistance of Zener diodes, etc., and predict the occurrence of failures in the market that could not be predicted using conventional waveform sorting technology, thereby improving component quality. In addition, it is easy to evaluate many parts at the same time by simply increasing the number of terminal pairs of the object to be measured.
This greatly contributes to not only improving the quality of electronic components but also improving their reliability over their lifetime.

本発明は、上述の自動サージ耐量測定装置の改
良に係り、多数の被測定物の個々のサージ耐量を
正確に測定することができ、しかも構造が簡単な
端子切換機構を備えた自動サージ耐量測定装置を
提供することにある。
The present invention relates to an improvement of the above-mentioned automatic surge withstand capacity measuring device, which is capable of accurately measuring the individual surge withstand capacity of a large number of objects to be measured, and is equipped with a terminal switching mechanism having a simple structure. The goal is to provide equipment.

本発明は、方形配列された被測定物の端子対の
一端を各行毎に共通に結線してこれを各行に対応
した端子に接続した第1端子切換部と、方形配列
された被測定物の端子対の他端を各列毎に共通に
結線してこれを各列に対応した端子に接続した第
2端子切換部と、その第1端子切換部および第2
端子切換部の連係し、第1端子切換部もしくは第
2端子切換部の何れか一方の端子が1サイクル切
換わると第1端子切換部もしくは第2端子切換部
の何れか他方の端子が1ステツプ切換わるように
駆動する駆動部とを備えたことを特徴とする。こ
の駆動部を介して第1端子切換部および第2端子
切換部を駆動させることにより、多数の被測定物
の端子対を一定の順序に従つて選択することがで
きる。
The present invention provides a first terminal switching section in which one end of a pair of terminals of the objects to be measured arranged in a rectangular array is commonly connected for each row and connected to a terminal corresponding to each row; a second terminal switching section in which the other end of the terminal pair is commonly connected for each column and connected to a terminal corresponding to each column, the first terminal switching section and the second terminal switching section;
The terminal switching sections are linked so that when either the first terminal switching section or the second terminal switching section switches for one cycle, the other terminal of the first terminal switching section or the second terminal switching section switches for one step. The present invention is characterized by comprising a drive section that is driven to switch. By driving the first terminal switching section and the second terminal switching section via this driving section, it is possible to select terminal pairs of a large number of objects to be measured in a fixed order.

以下、本発明の自動サージ耐量測定装置の一実
施例を第2図を参照して説明する。
Hereinafter, one embodiment of the automatic surge resistance measuring device of the present invention will be described with reference to FIG. 2.

図中、第1図と同符号は同一のものを示す。配
列部1において多数の被測定物11がn行n列に
方形配列されている。なお、上述の多数の被測定
物11において、便宜上(n行n列)の符号をも
付記する。この方形配列された多数の被測定物1
1の端子対の一端を接続線12−1,12−2,
……………12−nにより各行毎に共通に結線
し、端子対の他端を接続線13−1,13−2,
……………13−nにより各列毎に共通に結線す
る。14はn個の端子16−1,16−2,……
………16−nを有する第1端子切換部で、上述
の接続線12−1,12−2,……………12−
nを各行に対応した端子16−1,16−2,…
…………16−nに接続する。15は同じくn個
の端子17−1,17−2,……………17−n
を有する第2端子切換部で、上述の接続線13−
1,13−2,……………13−nを各列に対応
した端子17−1,17−2,……………17−
nに接続する。19は制御部10と第2端子切換
部15とに連係した第2駆動モータで、この第2
駆動モータは制御部10からの信号により駆動し
て第2端子切換部15の端子17−1,17−
2,……………17−nを1ステツプ切換える。
18は制御部10と第1端子切換部14とに連係
した第1駆動モータで、この第1駆動モータは第
〓〓〓〓〓
2端子切換部15が1回転して端子17−1,1
7−2,……………17−nが1サイクル切換わ
ると発生する制御部10からのクロツクパルスに
より、駆動して第1端子切換部14の端子16−
1,16−2,……………16−3を1ステツプ
切換える。
In the figure, the same reference numerals as in FIG. 1 indicate the same parts. In the array section 1, a large number of objects to be measured 11 are arranged in a rectangular array in n rows and n columns. In addition, in the above-mentioned large number of objects to be measured 11, the reference numerals (n rows and n columns) are also added for convenience. This large number of objects to be measured 1 arranged in a rectangular arrangement
One end of the terminal pair of 1 is connected to the connecting wires 12-1, 12-2,
......12-n is used to connect each row in common, and the other end of the terminal pair is connected to the connecting wires 13-1, 13-2,
. . . 13-n connects each column in common. 14 is n terminals 16-1, 16-2,...
......16-n, the above-mentioned connection wires 12-1, 12-2, ......12-
n to terminals 16-1, 16-2, . . . corresponding to each row.
...Connect to 16-n. 15 is the same n terminals 17-1, 17-2, ......17-n
In the second terminal switching section having the above-mentioned connection line 13-
1, 13-2, 13-n are connected to terminals 17-1, 17-2, 17-n corresponding to each column.
Connect to n. 19 is a second drive motor linked to the control section 10 and the second terminal switching section 15;
The drive motor is driven by a signal from the control section 10 to connect the terminals 17-1 and 17- of the second terminal switching section 15.
2.....Switch 17-n by one step.
18 is a first drive motor linked to the control section 10 and the first terminal switching section 14;
The two-terminal switching unit 15 rotates once and the terminals 17-1, 1
7-2, . . . 17-n is driven by a clock pulse from the control section 10 that is generated when switching one cycle, and the terminal 16- of the first terminal switching section 14 is switched.
1, 16-2, 16-3 are switched in one step.

次に、その動作について説明する。制御部10
の信号によつて第2駆動モータ19が駆動し、そ
れに伴つて第2端子切換部15が動作して端子1
7−1,17−2,……………17−nが1ステ
ツプ切換えられ、該第2端子切換部15が1回転
して端子17−1,17−2,……………17−
nが1サイクル切換わると、クロツクパルスが発
生し、それにより第1端子切換部14が動作して
端子16−1,16−2,……………16−nが
1ステツプ切換えられる。以下、上述の操作が繰
り返されて第1端子切換部14の端子16−1,
16−2,……………16−nが1サイクル切り
換えられることにより、多数の被測定物11の端
子対が1−1,2−1,……………n−1,1−
2,2−2,……………n−2,……………1−
n,2−n,……………n−nと一定の順序に従
つて選択される。
Next, its operation will be explained. Control unit 10
The second drive motor 19 is driven by the signal, and the second terminal switching section 15 operates accordingly to switch terminal 1
7-1, 17-2, . . . 17-n are switched by one step, and the second terminal switching section 15 rotates once, and the terminals 17-1, 17-2, . . . 17-n are switched by one step.
When n is switched by one cycle, a clock pulse is generated, which operates the first terminal switching section 14 and switches the terminals 16-1, 16-2, . . . 16-n by one step. Thereafter, the above-mentioned operation is repeated, and the terminal 16-1 of the first terminal switching section 14,
By switching 16-2, ......16-n for one cycle, the terminal pairs of many devices under test 11 are changed to 1-1, 2-1, ......n-1, 1-.
2, 2-2, ……………n-2, ……………1-
They are selected in a certain order: n, 2-n, . . . nn.

以述のように、本発明の自動サージ耐量測定装
置は、方形配列された被測定物の端子対の一端を
各行毎に共通に結線してこれを各行に対応した端
子に接続した第1端子切換部と、方形配列された
被測定物の端子対の他端を各列毎に共通に結線し
てこれを各列に対応した端子に接続した第2端子
切換部と、その第1端子切換部および第2端子切
換部に連係し、第1端子切換部もしくは第2端子
切換部の何れか一方の端子が1サイクル切換わる
と第1端子切換部もしくは第2端子切換部の何れ
か他方の端子が1ステツプ切換わるように駆動す
る駆動部とを備えたものであるから、駆動部を介
して第1端子切換部および第2端子切換部を駆動
させることにより、多数の被測定物の端子対を一
定の順序に従つて選択することができる。従つ
て、多数の被測定物の個々のサージ耐量を正確に
測定することができる。しかも、端子切換手段
は、第1端子切換部、第2端子切換部および駆動
部からなるので、構造が簡単である。
As described below, the automatic surge resistance measurement device of the present invention has a first terminal in which one end of a pair of terminals of the objects to be measured arranged in a rectangular array is connected in common for each row, and this is connected to a terminal corresponding to each row. a switching section, a second terminal switching section in which the other ends of the terminal pairs of the objects to be measured arranged in a rectangular array are connected in common for each column and connected to terminals corresponding to each column; and the first terminal switching section. and the second terminal switching section, and when the terminal of either the first terminal switching section or the second terminal switching section is switched for one cycle, the other terminal of the first terminal switching section or the second terminal switching section is switched. Since the device is equipped with a drive unit that drives the terminals to switch in one step, by driving the first terminal switching unit and the second terminal switching unit via the drive unit, the terminals of a large number of objects to be measured can be switched. The pairs can be selected according to a fixed order. Therefore, it is possible to accurately measure the individual surge resistance of a large number of objects to be measured. Furthermore, the terminal switching means is simple in structure because it consists of the first terminal switching section, the second terminal switching section, and the driving section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は先願の自動サージ耐量測定装置の一例
を示すブロツク図、第2図は本発明の自動サージ
耐量測定装置の一実施例を示す説明図、第3図は
半導体素子の逆方向電圧電流特性を表わした説明
図、第4図は逆方向電圧と電圧制限指数との関係
を示す説明図である。 1……被測定物の配列部、2……端子切換部、
3……電流設定部、4……電圧電流測定部、5…
…電圧比較部、6……アナログデイジタル変換
部、7……記憶部、8……演算部、9……印字
部、10……制御部、11……被測定物(半導体
部品)、12−1,12−2,……………12−
n,13−1,13−2,……………13−n…
…接続線、14……第1端子切換部、15……第
2端子切換部、16−1,16−2,……………
16−n,17−1,17−2,……………17
−n……接続用端子、18……第1駆動モータ、
19……第2駆動モータ。 〓〓〓〓〓
Fig. 1 is a block diagram showing an example of the automatic surge withstand capacity measuring device of the prior application, Fig. 2 is an explanatory diagram showing an embodiment of the automatic surge withstand capacity measuring device of the present invention, and Fig. 3 is a reverse voltage of a semiconductor element. FIG. 4 is an explanatory diagram showing the current characteristics, and FIG. 4 is an explanatory diagram showing the relationship between the reverse voltage and the voltage restriction index. 1...Measurement object arrangement section, 2...Terminal switching section,
3...Current setting section, 4...Voltage and current measuring section, 5...
... Voltage comparison section, 6 ... Analog-digital conversion section, 7 ... Storage section, 8 ... Calculation section, 9 ... Printing section, 10 ... Control section, 11 ... DUT (semiconductor component), 12- 1, 12-2, ……………12-
n, 13-1, 13-2, 13-n...
... Connection wire, 14 ... First terminal switching section, 15 ... Second terminal switching section, 16-1, 16-2, ......
16-n, 17-1, 17-2, ……………17
-n... Connection terminal, 18... First drive motor,
19...Second drive motor. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 接続用端子対を有する半導体部品の複数個
を、各端子対に予め定められた端子対番号を付与
して上記端子対を方形配列する配列手段と、これ
らの端子対を制御部を介して順次切換える端子切
換え手段と、上記半導体部品の前期降伏領域に属
する第1の電流値I0、第1の電流値以上の降伏領
域に属する第2の電流値I1及び第2の電流値I1
は異なる第3の電流値I2を電流供給源を介して設
定する電流設定手段と、第1の設定電流値I0に対
する第1の電圧値V0、第2の設定電流値I1に対す
る第2の電圧値V1及び第3の設定電流値I2に対す
る第3の電圧値V2を測定する測定手段と、予め
定めた基準電圧値を発生しこれと上記の測定電圧
値を比較し、上記配列の最終端子対を指示する比
較手段と、第1の測定電圧値V0、第2の設定電
流値I1と第2の測定電圧値V1及び第3の設定電流
値I2と第3の測定電圧値V2とから、下記の計算式
に従う電圧制限指数αおよびサージ耐量Nを求め
る演算手段とから構成された自動サージ耐量測定
装置において、前記端子切換手段は、方形配列さ
れた半導体部品の端子対の一端を各行毎に共通に
結線してこれを各行に対応した端子に接続した第
1端子切換部と、方形配列された半導体部品の端
子対の他端を各列毎に共通に結線してこれを各列
に対応した端子に接続した第2端子切換部と、そ
の第1端子切換部および第2端子切換部に連係
し、第1端子切換部もしくは第2端子切換部の何
れか一方の端子が1サイクル切換わると第1端子
切換部もしくは第2端子切換部の何れか他方の端
子が1ステツプ切換わるように駆動する駆動部と
を備えたことを特徴とする自動サージ耐量測定装
置。 α=log(I/I)/log(V/V) N=α・(K1+K2・α・logV0-1 (ただし、K1、K2は定数)
[Scope of Claims] 1. Arranging means for arranging a plurality of semiconductor components having connection terminal pairs in a rectangular manner by assigning a predetermined terminal pair number to each terminal pair, and these terminal pairs. a first current value I 0 belonging to the early breakdown region of the semiconductor component, a second current value I 1 belonging to the breakdown region equal to or higher than the first current value, and current setting means for setting a third current value I 2 different from the second current value I 1 via a current supply source; a measuring means for measuring a second voltage value V 1 for a set current value I 1 and a third voltage value V 2 for a third set current value I 2 ; a comparison means for comparing the measured voltage values and indicating the final terminal pair of the array; An automatic surge withstand capacity measuring device comprising a calculation means for calculating a voltage restriction index α and a surge withstand capacity N according to the following calculation formula from a set current value I 2 and a third measured voltage value V 2 , wherein the terminal switching unit consists of a first terminal switching section in which one end of a terminal pair of semiconductor components arranged in a rectangular array is commonly connected for each row and connected to a terminal corresponding to each row; a second terminal switching section whose ends are commonly wired for each column and connected to terminals corresponding to each column; and a first terminal switching section linked to the first terminal switching section and the second terminal switching section. Alternatively, the drive unit is provided with a drive unit that drives the other terminal of either the first terminal switching unit or the second terminal switching unit to switch by one step when either one of the terminals of the second terminal switching unit switches for one cycle. An automatic surge resistance measuring device characterized by: α=log(I 1 /I 2 )/log(V 1 /V 2 ) N=α・(K 1 +K 2・α・logV 0 ) -1 (K 1 and K 2 are constants)
JP2778378A 1978-03-13 1978-03-13 Automatic surge rating measuring device Granted JPS54121064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2778378A JPS54121064A (en) 1978-03-13 1978-03-13 Automatic surge rating measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2778378A JPS54121064A (en) 1978-03-13 1978-03-13 Automatic surge rating measuring device

Publications (2)

Publication Number Publication Date
JPS54121064A JPS54121064A (en) 1979-09-19
JPS6117302B2 true JPS6117302B2 (en) 1986-05-07

Family

ID=12230564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2778378A Granted JPS54121064A (en) 1978-03-13 1978-03-13 Automatic surge rating measuring device

Country Status (1)

Country Link
JP (1) JPS54121064A (en)

Also Published As

Publication number Publication date
JPS54121064A (en) 1979-09-19

Similar Documents

Publication Publication Date Title
CN100550115C (en) The method of test driving circuit and the driving circuit that is used for display device
EP0485480A1 (en) Method and package for integrated circuit identification and testing
US20060208754A1 (en) Method and apparatus for a reliability testing
US4862069A (en) Method of in-circuit testing
US20060259161A1 (en) Signal identification method and apparatus for analogue electrical systems
JPS6117302B2 (en)
KR100815244B1 (en) ICT:in-circuit tester using compensation of internal resistance of switches for it and measurement methods thereof
CN111596195B (en) Method and device for detecting diode circuit
US4785235A (en) Shorts testing technique reducing phantom shorts problems
CN114859210A (en) CMOS chip open-short circuit test system and test method
CN109270429B (en) Method for measuring noise of multi-channel high-low temperature interface circuit board
CN104656048B (en) A kind of calibration method of switch action characteristic testing stand
JP4314096B2 (en) Semiconductor integrated circuit inspection apparatus and semiconductor integrated circuit inspection method
JP4315495B2 (en) Semiconductor test equipment
CN110954750A (en) Segmented intelligent loop resistance tester based on four-wire measurement method
JPH02103479A (en) Method for testing withstand voltage against electrostatic discharge
JP3208195B2 (en) Measuring device for device drive current during aging
JPH0421106Y2 (en)
SU1698841A1 (en) Method of nondestructive quality control of electrical products insulation
US3048779A (en) Diode impedance tester
JP3057847B2 (en) Semiconductor integrated circuit
JP6299852B2 (en) Power generation output measuring device
US5841965A (en) System and method for automatically determining test point for DC parametric test
JP2944307B2 (en) A / D converter non-linearity inspection method
RU2149417C1 (en) Method for grading batch of integral memory circuits with respect to their radiation stability