JPS61172031A - Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen - Google Patents

Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen

Info

Publication number
JPS61172031A
JPS61172031A JP261686A JP261686A JPS61172031A JP S61172031 A JPS61172031 A JP S61172031A JP 261686 A JP261686 A JP 261686A JP 261686 A JP261686 A JP 261686A JP S61172031 A JPS61172031 A JP S61172031A
Authority
JP
Japan
Prior art keywords
nitrogen
measured
wavelengths
absorbancies
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP261686A
Other languages
Japanese (ja)
Other versions
JPS62449B2 (en
Inventor
Kazuo Hiiro
日色 和夫
Takashi Tanaka
孝 田中
Akinobu Kawahara
川原 昭宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP261686A priority Critical patent/JPS61172031A/en
Publication of JPS61172031A publication Critical patent/JPS61172031A/en
Publication of JPS62449B2 publication Critical patent/JPS62449B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately calculate nitrogen content, by calculating wavelengths absorb ing specific ultraviolet rays with respect to two kinds of standard specimens respective ly indivisually containing nitrate nitrogen and nitrite nitrogen and measuring the ultraviolet absorption of a specimen to be measured on the basis of the calculated wavelengths. CONSTITUTION:Ultraviolet abosorption spectra A, B are measured with respect to standard specimens respectively indivusually containing nitrate nitrogen and nitrite nitrogen, for example, in an amount of 0.1ppm and wavelengths lambda2, lambda3 wherein the differences (E21-E22). (E31-E32) of respective absorbancies of the spectra A, B become equal, are calculated. For example, the difference E2-E3 of absorbancies at lambda2=223nm and lambda2=232nm comes to 0.14. Absorbancies at wavelengths lambda2, lambda3 are measured with respect to a specimen to be measured to calculate the difference E2'-E3' of absorbancies. The difference E2'-E3' of absorbancies and the difference E2-E3 of absorbancies are proportional to nitrogen content. Therefore, the total nitrogen content in a solution mixture containing nitrate nitrogen and nitrite nitrogen can be accurately calculated from the absorbancy measurement of the wavelengths lambda2, lambda3 and this method is useful for the monitoring of environmental contamination.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は無機態窒素、更に詳しくは水中における硝酸態
窒素及び亜硝酸態窒素の合計の含有量(以下合量という
)を正しく、かつ自動的に測定する方法に関するもので
ある。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention accurately and automatically measures inorganic nitrogen, more specifically, the total content of nitrate nitrogen and nitrite nitrogen (hereinafter referred to as the total amount) in water. It is related to the method of measuring.

〔従来技術〕[Prior art]

無機態窒素にはアンモニア態窒素、硝酸態窒素及び亜硝
酸態窒素の3態が存在し、これらを廃水に混ぜて放流、
特に内海や湖へ放流すると、水域の赤潮発生の原因とな
る。そこで関係者は無機態窒素含有廃液を流さないよう
努力を続けているが一方では放流に対する監視体制、特
に自動的に水中の無機態窒素の含有量を測定する方法の
確立にも努力が払われている。
Inorganic nitrogen exists in three states: ammonia nitrogen, nitrate nitrogen, and nitrite nitrogen, and these are mixed with wastewater and discharged.
In particular, if released into inland seas or lakes, it can cause red tide in the water area. Therefore, those involved are continuing to make efforts to prevent inorganic nitrogen-containing wastewater from being discharged, but efforts are also being made to establish a monitoring system for discharge, especially a method to automatically measure the content of inorganic nitrogen in water. ing.

無機態窒素3態のうち、アンモニア態窒素の含有量につ
いてはイオン選択性電極を使って一応相当の精度をもっ
て測定することができるのでその自動測定はいまやさし
て重要な課題ではないが、硝酸態窒素ど亜硝酸態窒素の
合量を自動測定する方法の確立は重要な課題となってい
る。
Among the three forms of inorganic nitrogen, the content of ammonia nitrogen can be measured with considerable accuracy using an ion-selective electrode, so automatic measurement is not an important issue at the moment. Establishing a method to automatically measure the total amount of nitrite is an important issue.

ところが、上記窒素を単独で測定する方法は存在するが
、合量を測定する有効な方法はない。
However, although there are methods for measuring nitrogen alone, there is no effective method for measuring the total amount.

例えばこれまで水中の硝酸態窒素の定量法として、アー
ル・エル・ヤングらのポーラログラフを用いる方法、エ
ル・アール・マツケンジーらのイオン選択性電極による
方法、ニス・シャハイネらによる吸光光度法やビー・ケ
ー・アフグハンらによるケイ光光度法があり、また、硝
酸態窒素の紫外部吸収測定法として210nmにおける
吸光度測定法、210nmにおける吸光度から275n
mにおける吸光度の4倍を差引く方法、220nmにお
ける吸光度から275nmにおける吸光度の2.5倍を
差引(方法または215nm 、220nm、205n
m。
For example, the methods for quantifying nitrate nitrogen in water that have been used so far include a polarographic method by R.L. Young et al., a method using an ion-selective electrode by L.R. Matsukenzie et al., a spectrophotometric method by Nis Shahine et al.・There is a fluorescence photometry method by K. Afghan et al. Also, as a method for measuring ultraviolet absorption of nitrate nitrogen, there is a method of measuring absorbance at 210 nm, and a method of measuring absorbance at 275 nm from the absorbance at 210 nm.
2.5 times the absorbance at 275 nm from the absorbance at 220 nm (method or 215 nm, 220 nm, 205 nm)
m.

210nn+、 225nn+、 230nmにおける
吸光度を測定し、複雑な計算をした後、硝酸態窒素の含
有量を求める方法等がある。
There is a method of measuring the absorbance at 210 nn+, 225 nn+, and 230 nm and calculating the nitrate nitrogen content after performing complicated calculations.

また、亜硝酸態窒素のみを測定する方法としては特殊な
有機試薬を使用する吸光光度法による方法がある。しか
しいずれも硝酸態窒素と亜硝酸態窒素の合量を測定する
ことができない。
Further, as a method for measuring only nitrite nitrogen, there is a method using a spectrophotometric method using a special organic reagent. However, neither method can measure the total amount of nitrate nitrogen and nitrite nitrogen.

ただ、英国特許第1309551号明細書にのみ、水中
の有機性炭素や懸濁物などとともに窒素酸化物の全量を
測定する方法が提案されているが、この方法は複雑な特
殊構造の装置を使用しなければならないので簡単に、ど
こでもこの方法を利用して窒素酸化物を測定することは
できない。
However, only British Patent No. 1309551 proposes a method for measuring the total amount of nitrogen oxides as well as organic carbon and suspended solids in water, but this method uses a device with a complicated special structure. Because it has to be done easily, nitrogen oxides cannot be measured everywhere using this method.

硝酸態窒素及び亜硝酸態窒素は共に赤潮発生をもたらす
富栄養化源であるから、それらの個個の含有量を測定し
なくても両者の合量としてそれらの含有量を容易に、か
つ正確に測定することができれば、アンモニア態窒素の
測定法と°併用して水中の無機態窒素の測定及び汚染監
視体制の強化が可能となり、工業的または公害防止的な
見地からする極めて意義深い。
Since both nitrate nitrogen and nitrite nitrogen are eutrophication sources that cause red tide, it is easy and accurate to calculate their total content without measuring their individual contents. If it can be measured, it will be possible to measure inorganic nitrogen in water and strengthen the pollution monitoring system by using it in conjunction with the method for measuring ammonia nitrogen, which is extremely significant from an industrial or pollution prevention standpoint.

一般に吸光光度分析においては、スペクトルの特定の波
長をいくつか選んで、それらの波長における吸光度を測
定し、計算によって試料中に含まれている数種の各成分
の各含有量を決定する方法が公知である。この方法に対
し、本発明者の意図するところは、態様の異なる2種類
の窒素化合物の合量を正しく測定しようとするものであ
り、その指向する目的に従来と異なる点があると同時に
、むしろ本発明の利用分野を考えれば、発明者の意図は
合理的である。
In general, in spectrophotometric analysis, a number of specific wavelengths in the spectrum are selected, the absorbance at those wavelengths is measured, and the content of each of the several components contained in the sample is determined by calculation. It is publicly known. The inventor's intention with this method is to accurately measure the total amount of two types of nitrogen compounds with different embodiments, and at the same time that the intended purpose is different from the conventional method, it is rather Considering the field of application of the present invention, the inventor's intention is reasonable.

そこで、本発明者は硝酸態窒素と亜硝酸態窒素の合量の
測定法について鋭意検討した結果、特定の波長における
吸光度を測定してこれに基づく演算により、上記の合量
を正確に測定し得るとの事実を見い出すに到った。
Therefore, the inventors of the present invention have conducted extensive research on methods for measuring the total amount of nitrate nitrogen and nitrite nitrogen, and have determined that the above total amount can be accurately measured by measuring the absorbance at a specific wavelength and performing calculations based on this. I have come to discover the fact that it can be obtained.

〔発明の目的〕[Purpose of the invention]

従って本発明の目的は硝酸態窒素と亜硝酸態窒素の合量
を正確に測定する方法を確立することにある。
Therefore, an object of the present invention is to establish a method for accurately measuring the total amount of nitrate nitrogen and nitrite nitrogen.

〔発明の構成〕[Structure of the invention]

すなわち本発明の硝酸態窒素と亜硝酸態窒素の合量を測
定する方法は、硝酸態窒素及び亜硝酸態窒素がそれぞれ
単独に同じ量だけ含まれる二種の標準試料の紫外線吸収
スペクトルS1及び32.の任意の波長λ2、λ3であ
って、前記スペクトルS1と32のそれぞれの吸光度E
λ1とE1λとの差(Eλ+−Ex工)及びE31とE
Jユとの差(E31−E32)が等しくなるような波長
λ2、とλ3における標準溶液の吸光度E2、E3を測
定し、一方、被測定試料についても同様に前記波長λ2
とλ3における吸光度E’2%E3を測定し、ランバー
ド・ベルの法則に基づきE2E3とE’2−E’3とか
ら被測定試料中の硝酸態窒素と亜硝酸態窒素の合量を算
出することを特徴とするものである。
That is, the method of measuring the total amount of nitrate nitrogen and nitrite nitrogen of the present invention is based on the ultraviolet absorption spectra S1 and 32 of two standard samples containing the same amounts of nitrate nitrogen and nitrite nitrogen, respectively. .. arbitrary wavelengths λ2 and λ3, and the respective absorbances E of the spectra S1 and 32
The difference between λ1 and E1λ (Eλ+-Ex engineering) and E31 and E
Measure the absorbances E2 and E3 of the standard solution at wavelengths λ2 and λ3 such that the difference (E31-E32) from
Measure the absorbance E'2%E3 at It is characterized by this.

具体的に図を用いて本発明法を説明する。まず硝酸態窒
素と亜硝酸態窒素がそれぞれ単独に同じ量、例えば1.
Op、p、mだけ含まれる二種の人工海水の標準試料を
つくり、対照液として窒素を含まない人工海水を用い1
0.0rvのセル中におけるこれらの紫外線吸光度を測
定しスペクトルを得る。すると第1図のごときスペクト
ルが得られる。即ち曲線Aが硝酸態窒素の紫外線吸収ス
ペクトルS1であり、曲線Bが亜硝酸態窒素の紫外線吸
収スペクトルS2であり、両スペクトルS、と82とは
波長λ+ = 219nmのところで交錯し、吸光度E
1=0.3を示す。他方その波長λ、より大きい波長λ
4のところでも二つのスペクトルS1と82とが交錯し
、その間におけるスペクトルS、と32において、任意
の波長λ2.λ3であって、しかも、その波長λ2とλ
3におけるスペクトルS1と82のそれぞれの吸光度E
λ1.E1λとE31 、E12の差(E、L+Ezz
)と(E、、−E、λ)が等しくなるようなλ2とλ3
が存在する。上記1.0p、p、mの試料においてはλ
2 =223nm、λ3 =232nm、Eal =0
.21゜Eaz =0.07.  EJl =0.26
.  E7上=0.12である。
The method of the present invention will be specifically explained using figures. First, nitrate nitrogen and nitrite nitrogen are each individually in the same amount, for example, 1.
Two standard samples of artificial seawater containing only Op, p, and m were prepared, and artificial seawater containing no nitrogen was used as a control solution.
The absorbance of these ultraviolet rays in a 0.0 rv cell is measured to obtain a spectrum. Then, a spectrum as shown in FIG. 1 is obtained. That is, curve A is the ultraviolet absorption spectrum S1 of nitrate nitrogen, curve B is the ultraviolet absorption spectrum S2 of nitrite nitrogen, and both spectra S and 82 intersect at the wavelength λ+ = 219 nm, and the absorbance E
1=0.3 is shown. On the other hand, its wavelength λ, the larger wavelength λ
At point 4, the two spectra S1 and 82 also intersect, and at spectrum S and 32 between them, an arbitrary wavelength λ2. λ3, and its wavelengths λ2 and λ
The respective absorbances E of spectra S1 and 82 at 3
λ1. Difference between E1λ and E31, E12 (E, L+Ezz
) and (E, , -E, λ) are equal.
exists. In the sample of 1.0p, p, m above, λ
2 = 223 nm, λ3 = 232 nm, Eal = 0
.. 21°Eaz =0.07. EJl=0.26
.. E7 upper = 0.12.

本発明においては次に窒素酸化物の含有量を測定せんと
する試料の上記λ2とλ3における試料の吸光度E2及
びE3を測定し、吸光度の差(E2  E3)を算出し
、ランバード・ベルの法則を利用して硝酸態窒素と亜硝
酸態窒素の合量を求めるのである。
In the present invention, next, the absorbances E2 and E3 of the sample whose nitrogen oxide content is to be measured are measured at the above λ2 and λ3, the difference in absorbance (E2 E3) is calculated, and the Lambard-Bell law is calculated. This is used to find the total amount of nitrate nitrogen and nitrite nitrogen.

かくのどと(すれば硝酸態窒素と亜硝酸態窒素の個々の
含有量を求めてそれらを合量することなく、ただちに水
中の上記二態の窒素の合量を正しく測定することができ
る。
If you do this, you can immediately accurately measure the total amount of the above two nitrogen states in water without having to calculate the individual contents of nitrate nitrogen and nitrite nitrogen and add them together.

すなわち、上記λ2とλ3においては、硝酸態窒素と亜
硝酸態窒素のいずれについても、同じ含を量の場合は同
じ吸光度差(E2−Ex )を与えるが、もし別の波長
で測定すれば、両態窒素が異なった吸光度を示すので、
測定値は不正確となる。
That is, in the above λ2 and λ3, the same absorbance difference (E2-Ex) will be given for both nitrate nitrogen and nitrite nitrogen if they have the same content, but if measured at different wavelengths, Since both nitrogen states exhibit different absorbances,
Measurements will be inaccurate.

〔発明の効果〕〔Effect of the invention〕

このように、本発明による測定法ではλ2゜λ3のおの
おのが、両態窒素について同じ(E 2−E3)を与え
るように選定されるがゆえに、測定の高精度が保証され
るのである。
Thus, in the measuring method according to the invention, each of λ2 and λ3 is selected so as to give the same (E 2 -E3) for amphoteric nitrogen, thus ensuring high accuracy of the measurement.

〔実施例〕〔Example〕

次に実施例をもって本発明の効果を示す。 Next, the effects of the present invention will be illustrated with examples.

実施例1 硝酸態窒素と亜硝酸態窒素の合量が1.0p、p、mで
あり、各々の割合が異なる人工海水をつくり、波長22
3nmと232nmにおける吸光度E2とE3を測定し
、その差を算出した結果を第2図の曲線に示した。この
曲線は硝酸態窒素と亜硝酸態窒素の割合が変化しても吸
光度に変化がないこと、すなわち本発明法は正確である
ことを示している。
Example 1 Artificial seawater was created in which the total amount of nitrate nitrogen and nitrite nitrogen was 1.0 p, p, m, and the proportions of each were different.
The absorbances E2 and E3 at 3 nm and 232 nm were measured, and the difference between them was calculated, and the results are shown in the curve in FIG. This curve shows that the absorbance does not change even if the ratio of nitrate nitrogen to nitrite nitrogen changes, that is, the method of the present invention is accurate.

この実施例において、測定結果の精度を計算したところ
、変動係数の値で、最小が4.2%、最大で7.5%で
あり、本発明法の精度は高いことがわかった。また、硝
酸態窒素と亜硝酸態窒素の合量が2.0p、p、n+で
あり、各々の割合が異なる人工海水をつくり、同様の測
定をした結果、測定された吸光度E2 、E3から算出
した吸光度差(E2  E3)は合量1.0p、p、m
の場合の正確に2倍であった。同様に計算した精度も変
動係数の値で最小2.1%、最大3.3%であった。
In this example, when the accuracy of the measurement results was calculated, the minimum coefficient of variation was 4.2% and the maximum was 7.5%, indicating that the accuracy of the method of the present invention is high. In addition, the total amount of nitrate nitrogen and nitrite nitrogen was 2.0p, p, n+, and artificial seawater with different proportions was made and similar measurements were performed. Calculated from the measured absorbances E2 and E3. The absorbance difference (E2 E3) is a total of 1.0 p, p, m
It was exactly twice as large as in the case of . The precision calculated in the same manner was 2.1% at the minimum and 3.3% at the maximum in terms of the coefficient of variation.

実施例2 硝酸態窒素と亜硝酸態窒素の混合割合がl:1であり、
全窒素量、すなわち両態の合量の含有量を種々変化させ
た人工海水を作り、λ2=223nmにおける吸光度E
2.  λ3 = 23gnmにおける吸光度E3を測
定し、吸光度差(E2  E3 )を算出した。その結
果は第3図に示すとおりである。
Example 2 The mixing ratio of nitrate nitrogen and nitrite nitrogen was 1:1,
We created artificial seawater with various amounts of total nitrogen, that is, the total content of both nitrogen states, and determined the absorbance E at λ2 = 223 nm.
2. The absorbance E3 at λ3 = 23 gnm was measured, and the absorbance difference (E2 E3 ) was calculated. The results are shown in Figure 3.

これかられかるように人工海水中の全窒素含有量が高く
なれば、直線的に吸光度差(E2−E3)が高くなり、
これによって、本発明による測定法−によれば正しく両
態窒素の合量が決定できることがわかる。
As we will see, if the total nitrogen content in artificial seawater increases, the absorbance difference (E2-E3) will increase linearly.
This shows that the total amount of amphoteric nitrogen can be accurately determined by the measuring method according to the present invention.

実施例3 硝酸態窒素0.80p、p、m 、亜硝酸態窒素0.2
0p。
Example 3 Nitrate nitrogen 0.80 p, p, m, nitrite nitrogen 0.2
0p.

p、m 、合量1.OOp、p、mの人工海水に各種の
有機物や無機物を種々の量共存させて、それらと相互作
用があるか否かを検討した。この場合、λ2= 223
nmにおける吸光度E2+  λ3 = 232nmに
おける吸光度E3を測定し、吸光度差(E2−E′3)
を算出した。
p, m, total amount 1. Various organic and inorganic substances were allowed to coexist in the artificial seawater of OOp, p, and m in various amounts, and whether or not there were interactions with them was investigated. In this case, λ2=223
Absorbance E2 + λ3 = absorbance E3 at 232 nm was measured, and the absorbance difference (E2-E'3)
was calculated.

一方、共存物質を含まない、上記と同一の硝酸態及び亜
硝酸態濃度の人工海水(標準試料)についても同様に吸
光度差(E2  E3)を求め、(E2−E3 )と(
E’2−E3)とからランバード・ベルの法則によって
硝酸態窒素と亜硝酸態窒素の合量を算出し、その誤差を
求めた。
On the other hand, for artificial seawater (standard sample) containing no coexisting substances and having the same nitrate and nitrite concentrations as above, the absorbance difference (E2 E3) was determined in the same way, and (E2-E3) and (
E'2-E3), the total amount of nitrate nitrogen and nitrite nitrogen was calculated using Lambard-Bell's law, and the error thereof was determined.

結果を第1表に示す。The results are shown in Table 1.

(以下余白) 第1表かられかるように、E2  E3の値は、比較的
大量の有機物や無機物の共存下で少ない誤差で測定する
ことができ、したがって硝酸態窒素と亜硝酸態窒素の合
量を正しく決定することができる。
(Leaving space below) As shown in Table 1, the value of E2 and E3 can be measured with a small error in the coexistence of relatively large amounts of organic and inorganic substances. Able to determine quantities correctly.

実施例4 神戸港湾内の海水中の硝酸態窒素と亜硝酸態窒素の合量
をλ2 = 223nmにおける吸光度E2、λ3 =
 232nmにおける吸光度E3を測定し、吸光度差(
E2−E3)を算出することによって求めた。その場合
10.0nonと50 、0m111の2種のセルをつ
がい、2回ずつ測定を行なった。一方、標準溶液につい
ても同様に前記三波長における吸光度を測定して吸光度
差を算出し、ランバード・ベルの法則を利用して第2表
の結果を得た。
Example 4 The total amount of nitrate nitrogen and nitrite nitrogen in seawater in Kobe Port is determined by absorbance E2 at λ2 = 223 nm, λ3 =
The absorbance E3 at 232 nm was measured, and the absorbance difference (
E2-E3). In this case, two types of cells, 10.0 non, 50, and 0 m111, were paired and measurements were performed twice each. On the other hand, the absorbance of the standard solution at the three wavelengths was similarly measured, the absorbance difference was calculated, and the results shown in Table 2 were obtained using the Lambard-Bell law.

(以下余白) 第2表 海水試料の測定結果 第2表かられかるように、光路長10.0m−のセルを
用いた場合も、また50 、0m+wのセルを用いた場
合も同じ測定値が得られた。また測定した海水中の硝酸
態窒素と亜硝酸態窒素の合量は、約0.3〜0.4p、
p、mであることもわかった。
(Leaving space below) Table 2 Measurement results for seawater samples As shown in Table 2, the same measured values are obtained when using a cell with an optical path length of 10.0 m- and when using a cell with an optical path length of 50,0 m+w. Obtained. In addition, the total amount of nitrate nitrogen and nitrite nitrogen in the seawater measured was approximately 0.3 to 0.4 p,
It was also found that p and m.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための図面であり、ま
た、第2及び3図は本発明の一実施例の結果を示す図面
である。 第1図 、 第2図 硝酸態および亜硝酸態窒素の含有量(p、p、m)第3
FIG. 1 is a diagram for explaining the present invention in detail, and FIGS. 2 and 3 are diagrams showing the results of one embodiment of the present invention. Figure 1, Figure 2 Nitrate and nitrite nitrogen content (p, p, m) 3rd
figure

Claims (1)

【特許請求の範囲】[Claims] 硝酸態窒素及び亜硝酸態窒素がそれぞれ単独に同じ量だ
け含まれる二種の標準試料の紫外線吸収スペクトルS_
1及びS_2の任意の波長λ_2、λ_3であって、前
記スペクトルS_1とS_2のそれぞれの吸光度E_2
_1とE_1_2との差(E_2_1−E_2_2)及
びE_3_1とE_3_2との差(E_3_1−E_3
_2)が等しくなるような波長λ_2とλ_3における
標準溶液の吸光度E_2、E_3を測定し、一方、被測
定試料についても同様に前記波長λ_2とλ_3におけ
る吸光度E′_2、E′_3を測定し、ランバード・ベ
ルの法則に基づきE_2−E_3とE′_2−E′_3
とから被測定試料中の硝酸態窒素と亜硝酸態窒素の合量
を算出することを特徴とする硝酸態窒素と亜硝酸態窒素
の合量を測定する方法。
Ultraviolet absorption spectra S_ of two standard samples each containing the same amount of nitrate nitrogen and nitrite nitrogen
1 and S_2 at arbitrary wavelengths λ_2 and λ_3, and the respective absorbances E_2 of the spectra S_1 and S_2.
The difference between _1 and E_1_2 (E_2_1-E_2_2) and the difference between E_3_1 and E_3_2 (E_3_1-E_3
Measure the absorbances E_2 and E_3 of the standard solution at wavelengths λ_2 and λ_3 such that _2) are equal, and measure the absorbances E'_2 and E'_3 of the sample to be measured at the wavelengths λ_2 and λ_3 in the same way, Based on Lambard-Bell's law, E_2-E_3 and E'_2-E'_3
A method for measuring the total amount of nitrate nitrogen and nitrite nitrogen, comprising calculating the total amount of nitrate nitrogen and nitrite nitrogen in a sample to be measured from.
JP261686A 1986-01-09 1986-01-09 Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen Granted JPS61172031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP261686A JPS61172031A (en) 1986-01-09 1986-01-09 Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP261686A JPS61172031A (en) 1986-01-09 1986-01-09 Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10516376A Division JPS5330379A (en) 1976-09-01 1976-09-01 Measurement of inorganic form nitrogen

Publications (2)

Publication Number Publication Date
JPS61172031A true JPS61172031A (en) 1986-08-02
JPS62449B2 JPS62449B2 (en) 1987-01-08

Family

ID=11534334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP261686A Granted JPS61172031A (en) 1986-01-09 1986-01-09 Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen

Country Status (1)

Country Link
JP (1) JPS61172031A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191945A (en) * 1987-02-05 1988-08-09 Kankyo Eng Kk Method and apparatus for quantitative determination of non-functional nitrogen
JPH0196533A (en) * 1987-10-07 1989-04-14 Agency Of Ind Science & Technol Method for measuring total nitrogen by eliminating influence of bromide
EP0782202A3 (en) * 1995-12-27 1998-04-22 Shin-Etsu Handotai Co., Ltd Compound semiconductor epitaxial wafer
DE10228929A1 (en) * 2002-06-28 2004-01-15 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Arrangement for measuring the nitrate content in liquids
CN104155258A (en) * 2014-08-15 2014-11-19 广州衡创测试技术服务有限公司 Improved determination method for total nitrogen in water
JP2019109054A (en) * 2017-12-15 2019-07-04 国立大学法人豊橋技術科学大学 Method and apparatus for detecting concentration of nitrate ion and nitrite ion, and plant growth and prolongation agent manufacturing apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130342U (en) * 1987-02-20 1988-08-25
JPH048034Y2 (en) * 1987-09-14 1992-03-02
JPS6478943A (en) * 1987-09-21 1989-03-24 Koito Mfg Co Ltd Lighting fixture for rolling stock
JPH01160751A (en) * 1987-12-17 1989-06-23 Koito Mfg Co Ltd Vehicle lamp
JPH01233130A (en) * 1988-03-14 1989-09-18 Koito Mfg Co Ltd Lighting equipment for vehicle
JPH01293281A (en) * 1988-05-20 1989-11-27 Inoue Mtp Co Ltd Spoiler
JPH0314745A (en) * 1989-06-12 1991-01-23 Koito Mfg Co Ltd Lighting fixture for car

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191945A (en) * 1987-02-05 1988-08-09 Kankyo Eng Kk Method and apparatus for quantitative determination of non-functional nitrogen
JPH0196533A (en) * 1987-10-07 1989-04-14 Agency Of Ind Science & Technol Method for measuring total nitrogen by eliminating influence of bromide
JPH0579137B2 (en) * 1987-10-07 1993-11-01 Kogyo Gijutsuin
EP0782202A3 (en) * 1995-12-27 1998-04-22 Shin-Etsu Handotai Co., Ltd Compound semiconductor epitaxial wafer
DE10228929A1 (en) * 2002-06-28 2004-01-15 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Arrangement for measuring the nitrate content in liquids
CN104155258A (en) * 2014-08-15 2014-11-19 广州衡创测试技术服务有限公司 Improved determination method for total nitrogen in water
JP2019109054A (en) * 2017-12-15 2019-07-04 国立大学法人豊橋技術科学大学 Method and apparatus for detecting concentration of nitrate ion and nitrite ion, and plant growth and prolongation agent manufacturing apparatus

Also Published As

Publication number Publication date
JPS62449B2 (en) 1987-01-08

Similar Documents

Publication Publication Date Title
Schnetger et al. Determination of nitrate plus nitrite in small volume marine water samples using vanadium (III) chloride as a reduction agent
CN101813632B (en) Preparation method of water quality phosphate color comparison detection card and application method thereof
JPS61172031A (en) Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen
US9228986B2 (en) Simultaneous determination of multiple analytes in industrial water system
JPS608748A (en) Fluorimetrical measuring method of concentration of substance and measuring device of said concentration
CN103926239A (en) Detection method for oxidable contaminant in aqueous sample
Alizadeh et al. Poly (vinyl chloride)-membrane ion-selective bulk optode based on 1, 10-dibenzyl-1, 10-diaza-18-crown-6 and 1-(2-pyridylazo)-2-naphthol for Cu2+ and Pb2+ ions
KR101534562B1 (en) chlorine detecting reagent and the detecting kit and the chlorine detecting method
Helwig et al. Colorimetric method for continuous recording analysis of atmospheric sulfur dioxide
US4329149A (en) Method for spectrophotometric compensation for colorimetric reagent variation
US3697224A (en) Titration of excess chelating agent
JPS6118135B2 (en)
Wang et al. Identification and determination of ionic surface active agents
Afkhami et al. Design and characteristics of a sulfide and sulfite optode based on immobilization of methyl violet on a triacetylcellulose membrane
Nusbaum et al. Determination of cyanides in sewage and polluted waters
Wong et al. Colorimetric determination of potassium in whole blood, serum, and plasma.
Prathish et al. Dual optoelectronic visual detection and quantification of spectroscopically silent heavy metal toxins: A multi-measurand sensing strategy based on Rhodamine 6G as chromo or fluoro ionophore
SU1109608A1 (en) Method of quantitative determination of dibasol or pyrasinamide
Xiong et al. A novel WH-flags method based on reducing the acidity of molybdenum blue (MB) reaction and stabilization by EDTA for quickly detecting phosphorus in water
Golden et al. A method for the quantitative determination of bilirubin in urine
JP2004361397A (en) Apparatus for measuring multiple kinds of ions
RU2760002C2 (en) Method for determining mass concentration of total iron in associated waters and waters of oil and gas condensate fields by x-ray fluorescence method
SU821404A1 (en) Method of determining concentration of oxygen dissolved in water
SU1325333A1 (en) Method of determining diquat
Al-Ameera et al. corrected Proof