JPH0579137B2 - - Google Patents

Info

Publication number
JPH0579137B2
JPH0579137B2 JP62254018A JP25401887A JPH0579137B2 JP H0579137 B2 JPH0579137 B2 JP H0579137B2 JP 62254018 A JP62254018 A JP 62254018A JP 25401887 A JP25401887 A JP 25401887A JP H0579137 B2 JPH0579137 B2 JP H0579137B2
Authority
JP
Japan
Prior art keywords
nitrogen
bromide
absorbance
sample
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62254018A
Other languages
Japanese (ja)
Other versions
JPH0196533A (en
Inventor
Kazuo Hiiro
Akinobu Kawahara
Takashi Tanaka
Shinichi Wakita
Masataka Yamane
Kunishige Azuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP25401887A priority Critical patent/JPH0196533A/en
Publication of JPH0196533A publication Critical patent/JPH0196533A/en
Publication of JPH0579137B2 publication Critical patent/JPH0579137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は全窒素の測定方法に関する。さらに詳
しくは、海水中の全窒素量を臭化物の影響を排除
して正確に測定する方法に関するものである。海
水汚染、とくに富栄養化の計測、ひいては赤潮発
生の予知や海域での養殖漁業の管理にも有用であ
る。 従来技術 従来技術では、とくに海水中の全窒素を測定す
る場合において、臭化物の影響を排除して正しい
全窒素の測定値を得る方法としては、複雑な化学
操作を行うことによつて臭化物と窒素とを分離し
た後、窒素量を測定する方法が用いられていた。
従つて、測定には時間がかかり、特別の技術を必
要とし、とくに操作が複雑であるために自動化が
できない問題点があつた。全窒素の自動計測装置
は近年開発されたが、これらの全窒素の自動計測
装置では臭化物を分離する機能が備えられていな
かつた。従つて、この全窒素自動計測装置は、臭
化物を含まない湖水や河川水試料には利用できた
が、海水には利用できない点が大きな欠点となつ
ていた。 発明が解決しようとする問題点 このように、従来技術では複雑な化学操作を行
つて、臭化物と窒素とを分離したのち、窒素量を
測定していたので操作に時間がかかり、熟練者で
ないと操作できないとか、自動化装置が作れない
という問題点があつた。 従来からの全窒素の測定方法では、試料水を高
圧蒸気滅菌器あるいはこれに類する耐圧耐熱耐薬
品性材料製の容器にとり、これにペルオキソ二硫
酸カリウムなどの酸化剤および必要に応じて水酸
化ナトリウムなどのアルカリ剤を加え、容器を密
閉して加熱する。この操作によつてすべての窒素
化合物を酸化分解して硝酸性窒素に変化させる。
こうして得られた分解液のPHを調整した後、紫外
部での光吸収、たとえば220nmにおける吸光度
を測定して窒素量を決定している。 この場合、試料水中に臭化物が共存すると、臭
化物の一部は酸化分解過程で一部臭素酸塩になる
ことがある。臭化物自身も、またその酸化生成物
である臭素酸塩も紫外部、たとえば、220nmで
吸収を示すので、窒素を測定する場合には、臭化
物または臭素酸塩はいずれも正の誤差を招来する
ことになる。このとき臭化物から臭素酸塩が生成
する割合は一定ではなく、試料水中の塩分濃度な
左右され、しかも臭化物と臭素酸塩の吸収強度、
モル吸光係数が異なるという問題点もある。 問題点を解決するための手段 本発明者は、上記の従来技術の問題点に鑑み
て、操作が簡単で、熟練を必要とせず、且つ、自
動化装置を容易に作成し得るような、臭化物の影
響を排除した全窒素の測定方法を見出すべく、鋭
意研究を重ねてきた。その結果、下記の方法によ
り、その目的が達成されることを見出し、ここに
本発明を完成するに至つた。 即ち、本発明は、臭化物を含む試料中の全窒素
を光吸収法で測定する場合において、塩分濃度が
2%を超える試料を希釈により塩分濃度を2%以
下とし、次いで酸化物を添加し、加圧加熱を行な
つて窒素化合物を硝酸性窒素とした後、硝酸性窒
素及び臭化物が共に吸収を有する紫外域の2波長
で吸光度を測定し、得られた吸光度を用いて全窒
素量を算出することを特徴とする臭化物の影響を
排除した全窒素測定方法に係るものである。 本発明の方法では、海水試料の場合には、まず
試料水を純水で希釈する。たとえば純水で2倍に
希釈して塩分濃度を2.0以下にする。次にこの試
料水を高圧蒸気滅菌器またはこれに類する耐圧耐
熱耐薬品製容器内に入れ、酸化剤と必要に応じて
アルカリ剤などを加えて、容器を密閉して加熱す
る。加熱条件は、従来の全窒素の測定方法におけ
る加熱条件と同様とすれば良い。この加熱分解の
時間は通常30分である。次に分解液を取り出し、
必要に応じて酸を添加してPHをたとえば2〜3に
調節する。この溶液の吸光度を測定するが、測定
波長は、硝酸性窒素及び臭化物が共に吸収を有す
る紫外域の2波長、たとえば220nmと210nm、
あるいは220nmと215nmというように2つの波
長を選定する。最後に、これら2波長における吸
光度から、計算によつて窒素量を算出する。 本発明の原理は以下のとおりである。 すなわち、まず塩分濃度の高い海水試料の場合
は、最初に純水で希釈して塩分濃度を2.0%以下
とした試料水を、また海水と河川水が混合した試
料のように塩分濃度が2.0%以下の場合は、希釈
しない試料水を高温、高圧で酸化剤やアルカリ剤
の共存下で分解を行つて、窒素化合物を硝酸性窒
素に変える。 このように操作すると、塩分濃度が比較的低い
ために共存する臭化物が臭素酸塩に変ることがな
く、臭化物のままで存在する。 分解操作後の溶液の吸光度を、硝酸性窒素及び
臭化物が共に吸収を示す紫外部の2波長で測定す
る。 しかし、それぞれのモル吸光係数が異なるため
に、たとえば、1ppmの臭化物が存在すると、
220nmでは、0.0021、215nmでは0.0074、210nm
では0.0225の吸光度を示す。一方、測定しようと
する全窒素から変化した硝酸性窒素も、それぞれ
の波長で異なつた吸光度を示す。たとえば、
1ppmの硝酸性窒素は220nmで0.2134、215nmで
0.3486、210nmで0.4166の吸光度である。したが
つて、かりに1ppmの硝酸性窒素と1ppmの臭化物
が共存する場合には、それぞれの波長において、
それぞれの吸光度の和に相当する吸光度を示すこ
とになる。実際はこの吸光度の和に更に塩分や海
水中のその他の成分あるいは、測定に用いた吸収
セル自身の吸収などが加わる。以上のように各波
長において硝酸塩窒素も臭化物もそれぞれ異なる
吸光度を示すのであらかじめ単位濃度あたりの吸
光度を濃度既知の海水を使用して硝酸性窒素及び
臭化物が共に吸収を有する紫外域における任意の
2波長で求めておけば、実際の海水試料について
もこれらの2波長で吸光度を測定し、計算によつ
て正しい窒素量を決定することが出来るのであ
る。 実施例 本発明を実施例によりさらに詳しく説明する。 実施例 1 人工海水を作成し、この中に濃度既知の硝酸性
窒素と臭化物を添加した。すなわち、硝酸性窒素
は0、0.50、1.0、1.5各ppm、臭化物は10、20、
40、60、各ppmを添加した。 次にこの人工海水を純水で2倍に希釈し、塩分
濃度を2.0%以下にした。この希釈海水中の硝酸
性窒素は0、0.25、0.50、0.75各ppm、臭化物は
5、10、20、30各ppmになつている。 この溶液を高圧蒸気滅菌器に入れ、ペルオキソ
二硫酸カリウムと水酸化ナトリウムを加え、密閉
状態で30分間加熱分解した。溶液を取り出し、酸
を加えてPHを2〜3に調節した。そして、220n
m、215nm、210nmの3波長において吸光度を
測定した。各種の試薬の添加による希釈分を計算
して、窒素及び臭化物1ppmあたりの平均吸光度
を光路長10mmの吸収セルを用いた場合について計
算した。その結果は表1のとおりである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for measuring total nitrogen. More specifically, the present invention relates to a method for accurately measuring the total amount of nitrogen in seawater while eliminating the influence of bromides. It is also useful for measuring seawater pollution, especially eutrophication, predicting the occurrence of red tide, and managing aquaculture in marine areas. Prior Art In the prior art, when measuring total nitrogen in seawater, the only way to eliminate the influence of bromide and obtain correct total nitrogen measurements is to perform complex chemical operations to separate bromide and nitrogen. A method was used in which the amount of nitrogen was measured after separating the two.
Therefore, measurement takes time, requires special techniques, and has the problem that it cannot be automated because the operation is particularly complicated. Although automatic total nitrogen measuring devices have been developed in recent years, these automatic total nitrogen measuring devices were not equipped with a function to separate bromide. Therefore, although this automatic total nitrogen measuring device could be used for lake water and river water samples that do not contain bromide, it had a major drawback in that it could not be used for seawater. Problems to be Solved by the Invention As described above, in the prior art, the amount of nitrogen was measured after separating bromide and nitrogen by performing complicated chemical operations, which took time and required only an experienced person. There were problems in that it could not be operated or automated equipment could not be created. In the conventional method for measuring total nitrogen, sample water is placed in a high-pressure steam sterilizer or a similar container made of pressure-resistant, heat-resistant, chemical-resistant material, and an oxidizing agent such as potassium peroxodisulfate and, if necessary, sodium hydroxide are added to the water sample. Add an alkaline agent such as, seal the container, and heat. Through this operation, all nitrogen compounds are oxidized and decomposed into nitrate nitrogen.
After adjusting the pH of the decomposition solution obtained in this way, the amount of nitrogen is determined by measuring light absorption in the ultraviolet region, for example, absorbance at 220 nm. In this case, if bromide coexists in the sample water, some of the bromide may become a bromate during the oxidative decomposition process. Both bromide and its oxidation product, bromate, absorb in the ultraviolet region, e.g. 220 nm, so when measuring nitrogen, either bromide or bromate will introduce a positive error. become. At this time, the rate at which bromate is generated from bromide is not constant and depends on the salt concentration in the sample water, and the absorption strength of bromide and bromate,
Another problem is that the molar extinction coefficients are different. Means for Solving the Problems In view of the problems of the prior art described above, the present inventor has devised a bromide solution that is easy to operate, does not require skill, and allows for easy creation of an automated device. We have been conducting extensive research to find a method for measuring total nitrogen that eliminates this influence. As a result, the inventors discovered that the object can be achieved by the method described below, and have now completed the present invention. That is, in the case of measuring total nitrogen in a sample containing bromide by a light absorption method, the present invention dilutes a sample with a salt concentration exceeding 2% to bring the salt concentration to 2% or less, then adds an oxide, After converting the nitrogen compound to nitrate nitrogen by heating under pressure, measure the absorbance at two wavelengths in the ultraviolet region where both nitrate nitrogen and bromide absorb, and use the obtained absorbance to calculate the total nitrogen amount. This invention relates to a method for measuring total nitrogen that excludes the influence of bromides. In the method of the present invention, in the case of a seawater sample, the sample water is first diluted with pure water. For example, dilute it twice with pure water to bring the salt concentration below 2.0. Next, this sample water is placed in a high-pressure steam sterilizer or a similar pressure-resistant, heat-resistant, and chemical-resistant container, an oxidizing agent and, if necessary, an alkali agent are added, and the container is sealed and heated. The heating conditions may be the same as those in the conventional method for measuring total nitrogen. The time for this thermal decomposition is usually 30 minutes. Next, take out the decomposition liquid,
If necessary, add acid to adjust the pH to, for example, 2 to 3. The absorbance of this solution is measured, and the measurement wavelengths are two wavelengths in the ultraviolet region where both nitrate nitrogen and bromide have absorption, for example, 220 nm and 210 nm.
Alternatively, select two wavelengths such as 220nm and 215nm. Finally, the amount of nitrogen is calculated from the absorbance at these two wavelengths. The principle of the present invention is as follows. In other words, in the case of a seawater sample with a high salinity concentration, first dilute the sample water with pure water to bring the salinity concentration to 2.0% or less, or use a sample water with a salinity concentration of 2.0% or less, such as a sample that is a mixture of seawater and river water. In the following cases, decompose the undiluted sample water at high temperature and pressure in the presence of an oxidizing agent or alkaline agent to convert nitrogen compounds to nitrate nitrogen. When operated in this manner, the coexisting bromide does not change to bromate because the salt concentration is relatively low, and remains as bromide. The absorbance of the solution after the decomposition operation is measured at two wavelengths in the ultraviolet region in which both nitrate nitrogen and bromide absorb. However, because their molar extinction coefficients are different, for example, if 1 ppm of bromide is present,
0.0021 at 220nm, 0.0074 at 215nm, 210nm
shows an absorbance of 0.0225. On the other hand, nitrate nitrogen, which is a change from total nitrogen to be measured, also exhibits different absorbance at each wavelength. for example,
1ppm nitrate nitrogen is 0.2134 at 220nm, and 0.2134 at 215nm.
0.3486, with an absorbance of 0.4166 at 210 nm. Therefore, if 1 ppm of nitrate nitrogen and 1 ppm of bromide coexist, at each wavelength,
The absorbance corresponds to the sum of the respective absorbances. In reality, this sum of absorbance is further supplemented by salt, other components in seawater, and the absorption of the absorption cell itself used for measurement. As mentioned above, since both nitrate nitrogen and bromide exhibit different absorbance at each wavelength, we can calculate the absorbance per unit concentration in advance using seawater with a known concentration at any two wavelengths in the ultraviolet region where both nitrate nitrogen and bromide absorb. If you calculate this, you can measure the absorbance of an actual seawater sample at these two wavelengths and use calculations to determine the correct amount of nitrogen. Examples The present invention will be explained in more detail by examples. Example 1 Artificial seawater was prepared, and nitrate nitrogen and bromide of known concentrations were added thereto. That is, nitrate nitrogen is 0, 0.50, 1.0, 1.5 ppm each, bromide is 10, 20,
40, 60, and each ppm were added. Next, this artificial seawater was diluted twice with pure water to reduce the salinity to 2.0% or less. Nitrate nitrogen in this diluted seawater is 0, 0.25, 0.50, and 0.75 ppm, and bromide is 5, 10, 20, and 30 ppm. This solution was placed in a high-pressure steam sterilizer, potassium peroxodisulfate and sodium hydroxide were added, and the solution was heated and decomposed for 30 minutes in a closed state. The solution was taken out and acid was added to adjust the pH to 2-3. And 220n
Absorbance was measured at three wavelengths: m, 215 nm, and 210 nm. The dilution due to the addition of various reagents was calculated, and the average absorbance per ppm of nitrogen and bromide was calculated using an absorption cell with an optical path length of 10 mm. The results are shown in Table 1.

【表】 この結果から窒素と臭化物が共存するとき、各
波長における吸光度は光路長10mmの吸収セルを用
いた場合、以下の式で表わされる。これらの式の
中でN、及びBrはそれぞれの含有量をppmで表
わしており、またAはそれぞれの波長における吸
光度を示している。 A220=0.2134N+0.0021Br+0.0140 ……(1) A215=0.3486N+0.0074Br+0.0260 ……(2) A210=0.4166N+0.0225Br+0.0810 ……(3) 次にこれらの式のうち、任意の2つの式を用
い、連立方程式を解くと、以下の(6)および(9)式を
得る。 たとえば(1)式と(3)式を用いる場合は、まず(1)式
の両辺に10.7を掛けると(4)式を得る。 10.7A220=2.283N+0.0225Br+0.150 ……(4) (4)式から(3)式を差引くと(5)式を得る。 10.7A220−A210=1.866N+0.0690 ……(5) (5)式を変形すると(6)式を得る。 N=10.7A220−A210/1.866−0.0370……(6) 同様に(1)式と(2)式を用いる場合は、 まず(1)式の両辺に3.52を掛ると(7)式を得る。 3.52A220=0.7512N+0.0074Br+0.0493 ……(7) (7)式から(2)式を差引くと(8)式を得る。 3.52A220−A215=0.4026N+0.0233 ……(8) (8)式を変形すると(9)式を得る。 N=3.52A220−A215/0.4026−0.0579 ……(9) すなわち、この方法によつて、例えば220nm
と210nm、または220nmと215nmの2波長で吸
光度を測定し、それぞれの波長における吸光度を
(6)式または(9)式に入れて、それぞれの式を解けば
Nの濃度がppm値で決定できる。後は最初の操作
で試料の純水による希釈や各種試薬による容量の
補正を行えば、元の海水試料中の窒素濃度を正し
く決定することができる。ここでは便宜上220n
mと210nm、220nmと215nmを任意の2波長と
して選んだが、本発明ではこれらの波長に限定さ
れるものではない。なお本発明によれぶば、必要
に応じて臭化物イオンの濃度も決定することがで
きる。 実施例 2 大阪湾の尼崎市、西宮市、神戸市で沿岸海水を
採取し、これを海水1、2、3とした。 これらについて実施例1と同様に操作して吸光
度を測定した。また、これらの海水に一定量の窒
素あるいは臭化物を加えた試料も同様に処理して
測定した。同時に、これらの試料中の窒素濃度を
オートアナライザーを用い、吸光光度法で定量し
た。結果は表2のとおりである。 オートアナライザーによる測定値を基準にし
て、本発明の方法による測定値の誤差を、式(6)を
用いた場合と式(9)を用いた場合とについて計算し
た。その結果約7%以下の誤差でオートアナライ
ザーの測定結果と一致することが分つた。
[Table] From this result, when nitrogen and bromide coexist, the absorbance at each wavelength can be expressed by the following formula when using an absorption cell with an optical path length of 10 mm. In these formulas, the contents of N and Br are expressed in ppm, and A indicates the absorbance at each wavelength. A220=0.2134N+0.0021Br+0.0140...(1) A215=0.3486N+0.0074Br+0.0260...(2) A210=0.4166N+0.0225Br+0.0810...(3) Next, any two of these equations By solving the simultaneous equations using these two equations, we obtain equations (6) and (9) below. For example, when using equations (1) and (3), first multiply both sides of equation (1) by 10.7 to obtain equation (4). 10.7A220=2.283N+0.0225Br+0.150...(4) Subtracting equation (3) from equation (4) yields equation (5). 10.7A220−A210=1.866N+0.0690 ……(5) Transforming equation (5), we obtain equation (6). N=10.7A220−A210/1.866−0.0370……(6) Similarly, when using formulas (1) and (2), first multiply both sides of formula (1) by 3.52 to obtain formula (7). 3.52A220=0.7512N+0.0074Br+0.0493...(7) Subtracting equation (2) from equation (7) yields equation (8). 3.52A220−A215=0.4026N+0.0233 ……(8) Transforming equation (8), we obtain equation (9). N=3.52A220-A215/0.4026-0.0579...(9) That is, by this method, for example, 220nm
Measure the absorbance at two wavelengths: and 210nm, or 220nm and 215nm, and calculate the absorbance at each wavelength.
By putting it into equation (6) or equation (9) and solving each equation, the concentration of N can be determined in ppm value. After that, the nitrogen concentration in the original seawater sample can be determined correctly by diluting the sample with pure water and correcting the volume with various reagents in the first operation. Here, for convenience, 220n
Although m and 210 nm and 220 nm and 215 nm were selected as two arbitrary wavelengths, the present invention is not limited to these wavelengths. Note that according to the present invention, the concentration of bromide ions can also be determined as necessary. Example 2 Coastal seawater was collected from Amagasaki City, Nishinomiya City, and Kobe City in Osaka Bay, and was designated as Seawater 1, 2, and 3. The absorbance of these samples was measured in the same manner as in Example 1. In addition, samples in which a certain amount of nitrogen or bromide was added to these seawaters were similarly treated and measured. At the same time, the nitrogen concentrations in these samples were determined by spectrophotometry using an autoanalyzer. The results are shown in Table 2. Based on the measured value by the autoanalyzer, the error in the measured value by the method of the present invention was calculated for the case of using equation (6) and the case of using equation (9). As a result, it was found that the results agreed with the autoanalyzer measurement results with an error of about 7% or less.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 臭化物を含む試料中の全窒素を光吸収法で測
定する場合において、塩分濃度が2%を超える試
料を希釈により塩分濃度を2%以下とし、次いで
酸化物を添加し、加圧加熱を行なつて窒素化合物
を硝酸性窒素とした後、硝酸性窒素及び臭化物が
共に吸収を有する紫外域の2波長で吸光度を測定
し、得られた吸光度を用いて全窒素量を算出する
ことを特徴とする臭化物の影響を排除した全窒素
測定方法。
1 When measuring total nitrogen in a sample containing bromide by optical absorption method, dilute a sample with a salt concentration of more than 2% to bring the salt concentration to 2% or less, then add oxides and heat under pressure. After turning the nitrogen compound into nitrate nitrogen, the absorbance is measured at two wavelengths in the ultraviolet region where both nitrate nitrogen and bromide have absorption, and the total nitrogen amount is calculated using the obtained absorbance. A total nitrogen measurement method that eliminates the effects of bromides.
JP25401887A 1987-10-07 1987-10-07 Method for measuring total nitrogen by eliminating influence of bromide Granted JPH0196533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25401887A JPH0196533A (en) 1987-10-07 1987-10-07 Method for measuring total nitrogen by eliminating influence of bromide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25401887A JPH0196533A (en) 1987-10-07 1987-10-07 Method for measuring total nitrogen by eliminating influence of bromide

Publications (2)

Publication Number Publication Date
JPH0196533A JPH0196533A (en) 1989-04-14
JPH0579137B2 true JPH0579137B2 (en) 1993-11-01

Family

ID=17259106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25401887A Granted JPH0196533A (en) 1987-10-07 1987-10-07 Method for measuring total nitrogen by eliminating influence of bromide

Country Status (1)

Country Link
JP (1) JPH0196533A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106780A (en) * 1974-01-25 1975-08-22
JPS5330379A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Measurement of inorganic form nitrogen
JPS61172031A (en) * 1986-01-09 1986-08-02 Agency Of Ind Science & Technol Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen
JPS61246665A (en) * 1985-04-24 1986-11-01 Fuji Electric Co Ltd Analysis of nitrogen compound in water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106780A (en) * 1974-01-25 1975-08-22
JPS5330379A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Measurement of inorganic form nitrogen
JPS61246665A (en) * 1985-04-24 1986-11-01 Fuji Electric Co Ltd Analysis of nitrogen compound in water
JPS61172031A (en) * 1986-01-09 1986-08-02 Agency Of Ind Science & Technol Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen

Also Published As

Publication number Publication date
JPH0196533A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
Millero et al. Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength
Culberson et al. Ionization of water in seawater
Byrne Standardization of standard buffers by visible spectrometry
David et al. Photoredox chemistry of iron (III) chloride and iron (III) perchlorate in aqueous media. A comparative study
Afkhami et al. Spectrophotometric determination of periodate, iodate and bromate mixtures based on their reaction with iodide
Liebhafsky The catalytic decomposition of hydrogen peroxide by the iodine-iodide couple at 25
Byrne et al. A potentiometric study of ferric ion complexes in synthetic media and seawater
Campbell Determination of fluoride in various matrices
Tang et al. Stoichiometry of the reaction between chorite ion and hypochlorous acid at pH 5
Matei et al. Kinetic study of vitamin C degradation from pharmaceutical products
CN104865246A (en) Method for detecting free residual chlorine in drinking water
Masschelein Spectrophotometric determination of chlorine dioxide with Acid Chrome Violet K
JPH0579137B2 (en)
Wong et al. The kinetics of the reactions between iodide and hydrogen peroxide in seawater
Thompson et al. The oxidation of lithium and the alkaline Earth metals in liquid ammonia
Hung et al. Spectrophotometric determination of silver with 2-(3, 5-dibromo-2-pyridylazo)-5-diethyl-aminophenol in the presence of anionic surfactant
Post et al. Determination of chlorine dioxide in treated surface waters
Dobolyi Field determination of bromide in water
JP2006170897A (en) Method and apparatus for measuring chemical oxygen demand (cod)
JP2010060437A (en) Reagent for measuring peracetic acid concentration and method for measuring peracetic acid concentration
Jacobsen et al. Spectrophotometric determination of cobalt with 1, 2-diaminocyclohexanetetraacetic acid
JPS6118135B2 (en)
Toshimitsu et al. Ion-exchanger colorimetry—IV microdetermination of bismuth in water
Olenin et al. Sols of silver nanoparticles as analytical reagents for the determination of active chlorine in water samples by spectrophotometry and photometric titration
Shull Suggested modified aluminon method for aluminum determination

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term