JPH0196533A - Method for measuring total nitrogen by eliminating influence of bromide - Google Patents

Method for measuring total nitrogen by eliminating influence of bromide

Info

Publication number
JPH0196533A
JPH0196533A JP25401887A JP25401887A JPH0196533A JP H0196533 A JPH0196533 A JP H0196533A JP 25401887 A JP25401887 A JP 25401887A JP 25401887 A JP25401887 A JP 25401887A JP H0196533 A JPH0196533 A JP H0196533A
Authority
JP
Japan
Prior art keywords
sample
nitrogen
bromide
wavelengths
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25401887A
Other languages
Japanese (ja)
Other versions
JPH0579137B2 (en
Inventor
Kazuo Hiiro
日色 和夫
Akinobu Kawahara
川原 昭宣
Takashi Tanaka
孝 田中
Shinichi Wakita
慎一 脇田
Masataka Yamane
山根 昌隆
Kunishige Azuma
東 国茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP25401887A priority Critical patent/JPH0196533A/en
Publication of JPH0196533A publication Critical patent/JPH0196533A/en
Publication of JPH0579137B2 publication Critical patent/JPH0579137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain exactness by measuring absorbancy at arbitrary two wavelengths with a liquid prepd. by diluting a sample and a sample liquid prepd. without diluting the same, then by making calculation by using the absorbancy obtd. in such a manner. CONSTITUTION:The sample water is diluted twice by pure water to decrease the concn. of the sea water to <=1.5-2.0% in the case of, for example, the sea water sample. This sample water is then put into a high-pressure steam sterilizer, etc., where an oxidizing agent and an alkaline agent, etc., at need are added to the sample water. The vessel is hermetically closed and is heated. The decomposed liquid is taken out and an acid is added at need to the liquid to adjust the pH to 2-3. The measurement of the absorbancy of this soln. is executed by selecting the measuring wavelengths at two wavelengths, for example, 220nm and 210nm or 220nm and 215nm and calculating the content of nitrogen by calculation from the absorbancies at the two wavelengths. The correct content of the nitrogen is thereby determined.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は全窒素の測定方法に関する。さらに詳しくは、
海水中の全窒素量を臭化物の影響を排除して正確に測定
する方法に関するものである。海水汚染、とくに富栄養
化の計測、ひいては赤潮発生の予知や海域での養殖漁業
の管理にも有用である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for measuring total nitrogen. For more details,
This invention relates to a method for accurately measuring the total amount of nitrogen in seawater while excluding the effects of bromide. It is also useful for measuring seawater pollution, especially eutrophication, predicting the occurrence of red tide, and managing aquaculture in marine areas.

従m 従来技術では、とくに海水中の全窒素を測定する場合に
おいて、臭化物の影響を排除して正しい全窒素の測定値
を得る方法としては、複雑な化学操作を行うことによっ
て臭化物と窒素とを分離した後、窒素量を測定する方法
が用いられていた。従って、測定には時間がかかり、特
別の技術を必要とし、とくに操作が複雑であるために自
動化ができない問題点があった。全窒素の自動計測装置
は近年開発されたが、これらの全窒素の自動計測装置で
は臭化物を分離する機能が備えられていなかった。従っ
て、この全窒素自動計測装置は、臭化物を含まない湖水
や河川水試料には利用できたが、海水には利用できない
点が大きな欠点となっていた。
In conventional technology, especially when measuring total nitrogen in seawater, the way to eliminate the influence of bromide and obtain correct total nitrogen measurements is to separate bromide and nitrogen by performing complex chemical operations. A method was used in which the amount of nitrogen was measured after separation. Therefore, measurement takes time, requires special techniques, and has the problem that automation is particularly difficult due to complicated operations. Automatic total nitrogen measuring devices have been developed in recent years, but these automatic total nitrogen measuring devices did not have a function to separate bromide. Therefore, although this automatic total nitrogen measuring device could be used for lake and river water samples that do not contain bromide, it had a major drawback in that it could not be used for seawater.

lが解 しようζ[ゲ肛延点 このように、従来技術では複雑な化学操作を行って、臭
化物と窒素とを分離したのち、窒素量を測定していたの
で操作に時間がかかり、熟練者でないと操作できないと
か、自動化装置が作れないという問題点があった。
In this way, in the conventional technology, complicated chemical operations were performed to separate bromide and nitrogen, and then the amount of nitrogen was measured, which took time and required a lot of skill. Otherwise, there were problems in that it could not be operated or automated equipment could not be created.

、 t ゛する;めの 本発明は、操作が簡単で、熟練を必要とせず、かつ、自
動化装置が容易に作成し得るような、臭化物の影響を排
除して全窒素の測定が可能な新規な方法を提供するもの
である。
The present invention is a novel method that is easy to operate, does not require any skill, and is capable of measuring total nitrogen without the influence of bromides, such that automated equipment can be easily created. This method provides a method.

従来からの全窒素の測定方法では、試料水を高圧蒸気滅
菌器あるいはこれに類する耐圧耐熱耐薬品性材料製の容
器にとり、これにベルオキソニ硫酸カリウムなどの酸化
剤および必要に応じて水酸化ナトリウムなどのアルカリ
剤を加え、容器を密閉して加熱する。この操作によって
すべての窒素化合物を酸化分解して硝酸性窒素に変化さ
せる。こうして得られた分解液のpHを調整した後、紫
外部での光吸収、たとえば220n+oにおける吸光度
を測定して窒素量を決定している。
In the conventional method for measuring total nitrogen, sample water is placed in a high-pressure steam sterilizer or a similar container made of pressure-resistant, heat-resistant, chemical-resistant material, and then treated with an oxidizing agent such as potassium belloxonisulfate and, if necessary, sodium hydroxide. Add the alkaline agent, seal the container, and heat. This operation oxidizes and decomposes all nitrogen compounds and converts them into nitrate nitrogen. After adjusting the pH of the decomposition solution obtained in this way, the amount of nitrogen is determined by measuring light absorption in the ultraviolet region, for example, absorbance at 220n+o.

この場合、試料水中に臭化物が共存すると、臭化物の一
部は酸化分解過程で一部臭素酸塩になることがある。臭
化物自身も、またその酸化生成物である臭素酸塩も紫外
部、たとえば、22Or+a+で吸収を示すので、窒素
を測定する場合には、臭化物または臭素酸塩はいずれも
正の誤差を招来することになる。このとき臭化物から臭
素酸塩が生成する割合は一定ではなく、試料水中の塩分
濃度に左右され、しかも臭化物と臭素酸塩の吸収強度1
モル吸光係数が異なるという問題点もある。
In this case, if bromide coexists in the sample water, some of the bromide may become a bromate during the oxidative decomposition process. Both bromide and its oxidation product, bromate, absorb in the ultraviolet region, e.g. 22Or+a+, so when measuring nitrogen, either bromide or bromate will introduce a positive error. become. At this time, the rate at which bromate is generated from bromide is not constant and depends on the salt concentration in the sample water, and the absorption strength of bromide and bromate is 1
Another problem is that the molar extinction coefficients are different.

本発明では以下の方法を提案するものである。The present invention proposes the following method.

海水試料の場合では、まず試料水を純水で希釈する。た
とえば純水で2倍に希釈して塩分濃度を1.5〜2.0
%以下にする。海水と河川水が混合されているなどの理
由で塩分濃度が1゜5〜2.0%以下の試料の場合には
、この希釈操作は不要である。次にこの試料水を高圧蒸
気滅菌器またはこれに類する耐圧耐熱耐薬品製容器内に
入れ、酸化剤と必要に応じてアルカリ剤などを加えて、
容器を密閉して加熱する。この加熱分解の時間は通常3
0分である。次に分解液を取り出し、必要に応じて酸を
添加してpHをたとえば2〜3に調節する。この溶液の
吸光度を測定するが、測定波長は、たとえば220nm
と210nm、あるいは220nmと215nmという
ように2つの波長を選定する。最後に、これら2波長に
おける吸光度から、計算によって窒素量を算出する。
In the case of a seawater sample, first dilute the sample water with pure water. For example, dilute it twice with pure water to reduce the salt concentration to 1.5 to 2.0.
% or less. If the sample has a salinity of 1.5 to 2.0% or less, such as because it is a mixture of seawater and river water, this dilution operation is not necessary. Next, this sample water is placed in a high-pressure steam sterilizer or similar pressure-resistant, heat-resistant, and chemical-resistant container, and an oxidizing agent and, if necessary, an alkaline agent are added.
Seal the container and heat. The time for this thermal decomposition is usually 3
It is 0 minutes. Next, the decomposition liquid is taken out, and an acid is added as necessary to adjust the pH to, for example, 2 to 3. The absorbance of this solution is measured, and the measurement wavelength is, for example, 220 nm.
Two wavelengths are selected, such as and 210 nm, or 220 nm and 215 nm. Finally, the amount of nitrogen is calculated from the absorbance at these two wavelengths.

本発明の原理は以下のとおりである。The principle of the present invention is as follows.

すなわち、まず塩分濃度の高い海水試料の場合は、最初
に純水で希釈して塩分濃度を1.5〜2.0%以下とし
た試料水を、また海水と河川水が混合した試料のように
塩分濃度が1.5〜2.0%以下の場合は、希釈しない
試料水を高温、高圧で酸化剤やアルカリ剤の共存下で分
解を行って、窒素化合物を硝酸性窒素に変える。
In other words, first, in the case of a seawater sample with a high salinity concentration, first dilute the sample water with pure water to bring the salinity concentration to 1.5 to 2.0% or less, or for a sample that is a mixture of seawater and river water. If the salt concentration is 1.5 to 2.0% or less, the undiluted sample water is decomposed at high temperature and pressure in the presence of an oxidizing agent or an alkaline agent to convert nitrogen compounds into nitrate nitrogen.

このように操作すると、塩分濃度が比較的低いために共
存する臭化物が臭素酸塩に変ることがなく、臭化物のま
まで存在する。
When operated in this manner, the coexisting bromide does not change to bromate because the salt concentration is relatively low, and remains as bromide.

分解操作後の溶液の吸光度を紫外部の2波長で測定する
が、この場合、硝酸性窒素も臭化物も共に2波長で吸収
を示す。
The absorbance of the solution after the decomposition operation is measured at two wavelengths in the ultraviolet region, and in this case, both nitrate nitrogen and bromide exhibit absorption at two wavelengths.

しかし、それぞれのモル吸光係数が異なるために、たと
えば、lppmの臭化物が存在すると、220nmでは
、0.0021.215nmでは0.0074.210
nmでは0.0225の吸光度を示す。一方、測定しよ
うとする全窒素から変化した硝酸性窒素も、それぞれの
波長で異なった吸光度を示す。たとえば、lppmの硝
酸性窒素は220nmで0.2134,215nmで0
.3486.210nmで0.4166の吸光度である
。したがって、かりにippmの硝酸性窒素とippm
の臭化物が共存する場合には、それぞれの波長において
、それぞれの吸光度の和に相当する吸光度を示すことに
なる。実際はこの吸光度の和に更に塩分や海水中のその
他の成分あるいは、測定に用いた吸収セル自身の吸収な
どが加わる。以上のように各波長において硝酸塩窒素も
臭化物もそれぞれ異なる吸光度を示すのであらかじめ単
位濃度あたりの吸光度を濃度既知の海水を使用して任意
の2波長で求めておけば、実際の゛海水試料についても
これらの2波長で吸光度を測定し、計算によって正しい
窒素量を決定することが出来るのである。
However, since their respective molar extinction coefficients are different, for example, in the presence of lppm bromide, at 220 nm, 0.0074.210 at 0.0021.215 nm,
It shows an absorbance of 0.0225 in nm. On the other hand, nitrate nitrogen, which is a change from total nitrogen to be measured, also exhibits different absorbance at each wavelength. For example, lppm of nitrate nitrogen is 0.2134 at 220 nm and 0 at 215 nm.
.. It has an absorbance of 0.4166 at 3486.210 nm. Therefore, ippm of nitrate nitrogen and ippm of
When bromides coexist, they exhibit absorbance corresponding to the sum of their respective absorbances at each wavelength. In reality, this sum of absorbance is further supplemented by salt, other components in seawater, and the absorption of the absorption cell itself used for measurement. As mentioned above, both nitrate nitrogen and bromide exhibit different absorbances at each wavelength, so if the absorbance per unit concentration is determined in advance at any two wavelengths using seawater with a known concentration, it is possible to By measuring the absorbance at these two wavelengths and calculating the correct amount of nitrogen, it is possible to determine the correct amount of nitrogen.

尖−庭一孤 本発明を実施例によりさらに詳しく説明する。Tsunen - Ikkou Niwa The present invention will be explained in more detail with reference to Examples.

実施例−1 人工海水を作成し、この中に濃度既知の硝酸性窒素と臭
化物を添加した。すなわち、硝酸性窒素はO,0,50
、■、0.1.5各ppm、臭化物は10.20.40
.60、各ppmを添加した。
Example-1 Artificial seawater was prepared, and nitrate nitrogen and bromide of known concentrations were added thereto. That is, nitrate nitrogen is O,0,50
, ■, 0.1.5 ppm each, bromide 10.20.40
.. 60 ppm of each were added.

次にこの人工海水を純水で2倍に希釈し、塩分濃度を約
1.5〜2.0%以下にした。この希釈海水中の硝酸性
窒素は0.0.25.0.50.0.75各ppm、臭
化物は5.10.20.30各ppmになっている。
Next, this artificial seawater was diluted twice with pure water to reduce the salinity to about 1.5 to 2.0% or less. Nitrate nitrogen in this diluted seawater is 0.0.25.0.50.0.75 ppm, and bromide is 5.10, 20.30 ppm.

この溶液を高圧蒸気滅菌器に入れ、ベルオキソニ硫酸カ
リウムと水酸化ナトリウムを加え、密閉状態で30分間
加熱分解した。溶液を取り出し、酸を加えてpHを2〜
3に調節した。
This solution was placed in a high-pressure steam sterilizer, potassium belloxonisulfate and sodium hydroxide were added, and the solution was heated and decomposed for 30 minutes in a closed state. Take out the solution and add acid to adjust the pH to 2~
Adjusted to 3.

そして、220nm、215r+m、21Or+II+
の3波長において吸光度を測定した。各種の試薬の添加
による希釈分を計算して、窒素及び臭化物lppmあた
りの平均吸光度を光路長10mmの吸収セルを用いた場
合について計算した。その結果は表1のとおりである。
And 220nm, 215r+m, 21Or+II+
Absorbance was measured at three wavelengths. The dilution due to the addition of various reagents was calculated, and the average absorbance per 1 ppm of nitrogen and bromide was calculated using an absorption cell with an optical path length of 10 mm. The results are shown in Table 1.

表1  各波長における窒素、臭化物の各ippmあた
りの吸光度の平均値 この結果から窒素と臭化物が共存するとき、各波長にお
ける吸光度は光路長10mmの吸収セルを用いた場合、
以下の式で表わされる。これらの式の中でN、及びBr
はそれぞれの含有量をppmで表わしており、またAは
それぞれの波長における吸光度を示している。
Table 1 Average value of absorbance per ippm of nitrogen and bromide at each wavelength From these results, when nitrogen and bromide coexist, the absorbance at each wavelength is as follows when using an absorption cell with an optical path length of 10 mm:
It is expressed by the following formula. In these formulas, N, and Br
represents the content in ppm, and A represents the absorbance at each wavelength.

A220 =0.2134N +〇、0021Br+0
.0140−(1)A215=0.3486N +0.
0074Br+0.0260−(2)A210 =0.
4166N +〇、0225B r+0.0810−(
3)次にこれらの式のうち、任意の2つの式を用い、連
立方程式を解くと、以下の(6)および(9)式を得る
A220 = 0.2134N +〇, 0021Br+0
.. 0140-(1) A215=0.3486N +0.
0074Br+0.0260-(2)A210=0.
4166N +〇, 0225B r+0.0810-(
3) Next, by solving the simultaneous equations using any two of these equations, the following equations (6) and (9) are obtained.

たとえば(1)式と(3)式を用いる場合は。For example, when using equations (1) and (3).

まず(1)式の両辺に10.7を掛けると(4)式を得
る。
First, by multiplying both sides of equation (1) by 10.7, equation (4) is obtained.

10.7A220=2.283N +0.0225Br
+0.150・・(4)(4)式から(3)式を差引く
と(5)式を得る。
10.7A220=2.283N +0.0225Br
+0.150...(4) By subtracting equation (3) from equation (4), equation (5) is obtained.

10.7A 220− A 210 = 1.866N
 + 0.0690・・・・・(5)(5)式を変形す
ると(6)式を得る。
10.7A 220-A 210 = 1.866N
+0.0690...(5) Equation (6) is obtained by transforming equation (5).

7Q= 10.“18””” −0,0370−、、−
、(G)1.866 同様に(1)式と(2)式を用いる場合は、まず(1)
式の両辺に3.52を掛ると(7)式を得る。
7Q=10. "18""" -0,0370-,,-
, (G)1.866 Similarly, when using equations (1) and (2), first
Multiplying both sides of the equation by 3.52 yields equation (7).

3.52A220 =0.7512N +0.0074
 B r+0.0493・・・・・・・・(7) (7)式から(2)式を差引くと(8)式を得る。
3.52A220 =0.7512N +0.0074
B r+0.0493 (7) By subtracting equation (2) from equation (7), equation (8) is obtained.

3.52A220− A215=0.402(iN +
0.0233・・・・(8)(8)式を変形すると(9
)式を得る。
3.52A220-A215=0.402(iN+
0.0233...(8) Transforming equation (8), (9
) to obtain the formula.

0.4026 すなわち、この方法によって、例えば220nmと21
0nm、または220nmと215nmの2波長で吸光
度を測定し、それぞれの波長における吸光度を(6)式
または(9)式に入れて、それぞれの式を解けばNの濃
度がppm値で決定できる。後は最初の操作で試料の純
水による希釈や各種試薬による容量の補正を行えば、元
の海水試料中の窒素濃度を正しく決定することができる
。ここでは便宜上220nmと210r+m、220n
mと215r+mを任意の2波長として選んだが、本発
明ではこれらの波長に限定されるものではない。なお本
発明によれば、必要に応じて臭化物イオンの濃度も決定
することができる。
0.4026 That is, by this method, for example, 220 nm and 21
By measuring the absorbance at two wavelengths, 0 nm or 220 nm and 215 nm, entering the absorbance at each wavelength into equation (6) or equation (9), and solving each equation, the concentration of N can be determined in ppm value. After that, the nitrogen concentration in the original seawater sample can be determined correctly by diluting the sample with pure water and correcting the volume with various reagents in the first operation. Here, for convenience, 220nm, 210r+m, 220n
Although m and 215r+m were selected as two arbitrary wavelengths, the present invention is not limited to these wavelengths. Note that according to the present invention, the concentration of bromide ions can also be determined as necessary.

実施例−2 大阪前の尼崎型、西宮布、神戸布で沿岸海水を採取し、
これを海水1.2.3とした。
Example-2 Coastal seawater was collected using Amagasaki-type, Nishinomiya-fu, and Kobe-fu in front of Osaka.
This was designated as seawater 1.2.3.

これらについて実施例1と同様に操作して吸光度を測定
した。また、これらの海水に一定量の窒素あるいは臭化
物を加えた試料も同様に処理して測定した。同時に、こ
れらの試料中の窒素濃度をオートアナライザーを用い、
吸光光度法で定量した。結果は表2のとおりである。
The absorbance of these samples was measured in the same manner as in Example 1. In addition, samples in which a certain amount of nitrogen or bromide was added to these seawaters were similarly treated and measured. At the same time, the nitrogen concentration in these samples was measured using an autoanalyzer.
Quantification was done by spectrophotometry. The results are shown in Table 2.

オーj−アナライザーによる測定値を基準にして1本発
明の方法による測定値の誤差を、式(6)を用いた場合
と式(9)を用いた場合とについて計算した。その結果
約7%以下の誤差でオートアナライザーの測定結果と一
致することが分った。
The error in the measured value by the method of the present invention was calculated based on the measured value by the O-J-analyzer for the case where Equation (6) was used and the case where Equation (9) was used. The results showed that the results agreed with the autoanalyzer measurement results with an error of about 7% or less.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims] 臭化物を含む試料中の全窒素を光吸収法で測定する場合
において、試料を希釈した液あるいは希釈しない試料液
について、任意の2波長で吸光度を測定し、得られた吸
光度を用いて計算を行うことにより、臭化物の影響を排
除して試料中の全窒素を正しく測定する方法
When measuring total nitrogen in a sample containing bromide by optical absorption method, measure the absorbance at two arbitrary wavelengths for a diluted sample solution or an undiluted sample solution, and perform calculations using the obtained absorbance. How to accurately measure total nitrogen in a sample by eliminating the influence of bromide
JP25401887A 1987-10-07 1987-10-07 Method for measuring total nitrogen by eliminating influence of bromide Granted JPH0196533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25401887A JPH0196533A (en) 1987-10-07 1987-10-07 Method for measuring total nitrogen by eliminating influence of bromide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25401887A JPH0196533A (en) 1987-10-07 1987-10-07 Method for measuring total nitrogen by eliminating influence of bromide

Publications (2)

Publication Number Publication Date
JPH0196533A true JPH0196533A (en) 1989-04-14
JPH0579137B2 JPH0579137B2 (en) 1993-11-01

Family

ID=17259106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25401887A Granted JPH0196533A (en) 1987-10-07 1987-10-07 Method for measuring total nitrogen by eliminating influence of bromide

Country Status (1)

Country Link
JP (1) JPH0196533A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106780A (en) * 1974-01-25 1975-08-22
JPS5330379A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Measurement of inorganic form nitrogen
JPS61172031A (en) * 1986-01-09 1986-08-02 Agency Of Ind Science & Technol Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen
JPS61246665A (en) * 1985-04-24 1986-11-01 Fuji Electric Co Ltd Analysis of nitrogen compound in water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106780A (en) * 1974-01-25 1975-08-22
JPS5330379A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Measurement of inorganic form nitrogen
JPS61246665A (en) * 1985-04-24 1986-11-01 Fuji Electric Co Ltd Analysis of nitrogen compound in water
JPS61172031A (en) * 1986-01-09 1986-08-02 Agency Of Ind Science & Technol Method for measuring combined amount of nitrate nitrogen and nitrite nitrogen

Also Published As

Publication number Publication date
JPH0579137B2 (en) 1993-11-01

Similar Documents

Publication Publication Date Title
Millero et al. Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength
Culberson et al. Ionization of water in seawater
Byrne Standardization of standard buffers by visible spectrometry
David et al. Photoredox chemistry of iron (III) chloride and iron (III) perchlorate in aqueous media. A comparative study
Foley et al. Spectrophotometric studies on complex formation with sulfosalicylic acid. I. With iron III
Weil et al. Equilibrium studies on N-chloro compounds. II. The base strength of N-chloro dialkylamines and of monochloramine
CA2071206A1 (en) Reagent and methods for calcium determination
Matei et al. Kinetic study of vitamin C degradation from pharmaceutical products
Klotz et al. Stability constants for some metal chelates of pyridine-2-azo-p-dimethylaniline
EP0472713A1 (en) Colorimetric processes for determining and adjusting the peracid content of a solution in the presence of hydrogen peroxide.
JPH0196533A (en) Method for measuring total nitrogen by eliminating influence of bromide
EP1546689B1 (en) Method of calibrating the zero point of an apparatus used to determine a quantity of silica using a colorimetric method
Fuller et al. The photolysis of aqueous-solutions of potassium hexacyanoferrate (III)
Elly Dithizone procedure for mercury analysis
Beale et al. Rapid incremental methods for the determination of serum iron and iron-binding capacity
RU2231060C2 (en) Azodye-base aqueous solution, method for its preparing and its using
JP5013313B2 (en) Residual chlorine concentration measurement composition
JP2006170897A (en) Method and apparatus for measuring chemical oxygen demand (cod)
JPS6118135B2 (en)
EP3956659A1 (en) Colorimetric detection of fluoride in an aqueous sample
Jacobsen et al. Spectrophotometric determination of cobalt with 1, 2-diaminocyclohexanetetraacetic acid
CN117607082B (en) Method for measuring concentration of each oxidant in mixed solution of peroxymonosulfate and free chlorine based on iodometry and application of method
Shull Suggested modified aluminon method for aluminum determination
Bairstow et al. The photometric determination of dissolved oxygen in condensates and feed waters by means of the starch-iodide complex
US5567406A (en) Manufacturing clear potassium sulfite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term