JPS61171850A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS61171850A
JPS61171850A JP1090085A JP1090085A JPS61171850A JP S61171850 A JPS61171850 A JP S61171850A JP 1090085 A JP1090085 A JP 1090085A JP 1090085 A JP1090085 A JP 1090085A JP S61171850 A JPS61171850 A JP S61171850A
Authority
JP
Japan
Prior art keywords
value
exhaust gas
fuel ratio
air
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1090085A
Other languages
Japanese (ja)
Inventor
Masami Shida
正実 志田
Yasunori Mori
毛利 康典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1090085A priority Critical patent/JPS61171850A/en
Publication of JPS61171850A publication Critical patent/JPS61171850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To keep an accurate air-fuel ratio at all times and thereby purify exhaust gas by operating a means for fixing a reference value to a prescribed one when concentration of a specific component in the exhaust gas of an engine is under specific conditions. CONSTITUTION:An exhaust gas sensor 2 detects concentration of a specific component involved in exhaust gas of an engine 1 as a binary signal comprising a maximum value on the rich side and a minimum value on the lean side. A reference value determination circuit 7 investigates the maximum value of a sensor output O input from a maximum value detecting circuit 5 and an amplitude B indicating a difference between the maximum and minimum values of the sensor output O input from an amplitude detecting circuit 6. Provided the amplitude B lines in a region less than a prescribed value, a reference value S fixed to a prescribed value is generated. Thus, an air-fuel ratio accurate at all times can be kept for purifying exhaust gas.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、排気ガスセンサを用いた内燃機関の空燃比フ
ィードバック制御に係シ、特にその検出特性に温度依存
性を有する排気ガスセンサを用いた空燃比制御装置に関
する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to air-fuel ratio feedback control of an internal combustion engine using an exhaust gas sensor, and in particular to air-fuel ratio feedback control using an exhaust gas sensor whose detection characteristics are temperature dependent. Regarding a control device.

〔発明の背景〕[Background of the invention]

自動車用ガソリンエンジンなどの内燃機関においては、
排気ガス中の特定成分を検出することによジエンジンの
出力空燃比、つまり実際の空燃比を求め、それのフィー
ドバックによシ空燃比を制御する方法が用いられており
、その−例は例えば特公昭5 g −9262号公報な
どにみることができる。
In internal combustion engines such as automobile gasoline engines,
A method is used in which the output air-fuel ratio of the engine, that is, the actual air-fuel ratio, is determined by detecting a specific component in the exhaust gas, and the air-fuel ratio is controlled based on the feedback. This can be found in Japanese Patent Publication No. 5G-9262.

ところで、このような方法で使用される排気ガスセンサ
としては、例えば03センサなど、排気ガス中の特定成
分の濃度をリッチ側(所定値よシ濃い領域)での極大値
とリーン側(所定値よシも薄い領域)での極小値との2
値信号として出力するものが従来から便用されているが
、この従来から使用されているセンサは、第3図に示す
ように、その出力に得られる2値信号の極大値や極小値
がセンサの温度によって変化し、また、センサごとにバ
ラツキかありi時変化なども考えられるので、その2[
信号の識別に必要な基準値を、出力信号の極大値に応じ
て変化させる方法が有効な方法であるとして広く採用さ
れている。
Incidentally, an exhaust gas sensor used in such a method is, for example, the 03 sensor, which measures the concentration of a specific component in the exhaust gas between the maximum value on the rich side (a region darker than a predetermined value) and the maximum value on the lean side (a region darker than a predetermined value). 2 with the local minimum value in the thin region)
A sensor that outputs a value signal has conventionally been used, but as shown in Figure 3, the sensor that outputs the binary signal outputs the local maximum or minimum value. It changes depending on the temperature of the
A method in which a reference value necessary for signal identification is changed in accordance with the maximum value of an output signal is widely adopted as an effective method.

しかしながら、この結果、従来の空燃比制御装置では、
排気ガスセンサの温度が低い不活性領域では、第3図の
領域大で示すように、基準値のレベルがセンナ出力の極
小値よシも低くなってしまうため、フィードバック制御
に誤動作を生じるようKなってしまう。
However, as a result, in the conventional air-fuel ratio control device,
In the inactive region where the temperature of the exhaust gas sensor is low, as shown by the large region in Figure 3, the level of the reference value is lower than the minimum value of the sensor output. It ends up.

そこで、従来は、上記公報にも示されているように、こ
の第3図の領域大ではフィードバック制御を停止させる
ようにしていた。
Therefore, conventionally, as shown in the above-mentioned publication, feedback control has been stopped in the large area of FIG. 3.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、排気ガスセンサの温度が所定の値にまで
達せず、センサの活性化が充分に得られていない領域で
も正しいフィードバック制御が可能で、良好な空燃比特
性を保つことができる空燃比制御装置を提供するにある
The present invention has been made in view of the above circumstances, and its purpose is to perform correct feedback control even in a region where the temperature of the exhaust gas sensor does not reach a predetermined value and the sensor is not sufficiently activated. An object of the present invention is to provide an air-fuel ratio control device that can maintain good air-fuel ratio characteristics.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、排気ガスセンサの
出力である2値信号識別用の基準値を、とのセンサが充
分に活性化されている領域では2値信号の極大値に応じ
て変化させるが、活性化が不充分な領域では、この基準
値を所定の一定値に固定するようにした点を特徴とする
To achieve this objective, the present invention changes a reference value for binary signal identification, which is the output of an exhaust gas sensor, in accordance with the maximum value of the binary signal in a region where the sensor is sufficiently activated. However, in regions where activation is insufficient, this reference value is fixed to a predetermined constant value.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による空燃比制御装置について、図示の実
施例によシ詳細に説明するつ 第1図は本発明の一実施例で、1はエンジン、2は排気
ガスセンサ、3は比較回路、4は燃料量制御装置、5は
極大値検出回路、6は振れ幅検出回路、7は基準値決定
回路、8は排気管である。
Hereinafter, the air-fuel ratio control device according to the present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 shows an embodiment of the present invention, in which 1 is an engine, 2 is an exhaust gas sensor, 3 is a comparison circuit, and 5 is a fuel amount control device, 5 is a maximum value detection circuit, 6 is an amplitude detection circuit, 7 is a reference value determination circuit, and 8 is an exhaust pipe.

エンジン1が運転を行なっていると排気管8中に排気ガ
スが流れ、その成分はエンジンlが吸入した空気量と、
この空気中に供給され混入された燃料量との比、いわゆ
る空燃比によって定まシ、例えば、排ガス中の03成分
は空燃比が14.7の理論空燃比よりもリーン(空燃比
>14.7)になるとゼロになシ、リッチ(空燃比>1
4.7)にな     會′ると有限な値となる。
When the engine 1 is operating, exhaust gas flows into the exhaust pipe 8, and its components are the amount of air taken in by the engine 1,
It is determined by the ratio to the amount of fuel supplied and mixed into the air, the so-called air-fuel ratio.For example, the 03 component in the exhaust gas is leaner than the stoichiometric air-fuel ratio of 14.7 (air-fuel ratio>14. 7), it becomes zero, rich (air-fuel ratio > 1)
4.7), it becomes a finite value.

排気ガスセンサ2は排気管8中の排気ガス中に曝される
ように設けられたOxセンサからなシ、従って、その検
出出力0はエンジンlの空燃比がリーン状態のときKは
極小値を示し、リッチ状態のときには極大値を示す2値
信号となる。
The exhaust gas sensor 2 is an Ox sensor installed so as to be exposed to the exhaust gas in the exhaust pipe 8. Therefore, its detection output of 0 indicates that K is a minimum value when the air-fuel ratio of the engine 1 is in a lean state. , when the signal is in a rich state, it becomes a binary signal indicating a local maximum value.

比較回路3はセンサ2からの検出出力0と基準値決定回
路7から与えられる基準値Sとを比較し、0>8(リッ
チ状!りのときには減量信号を、そして0くS(リーン
状態)のときには増量信号をそれぞれ出力する。
The comparison circuit 3 compares the detection output 0 from the sensor 2 with the reference value S given from the reference value determination circuit 7, and outputs a weight loss signal when 0>8 (rich state!), and 0>S (lean state). When , an increase signal is output respectively.

燃料量制御装置t4は比較回路3から減量信号が力され
ているときKは徐々に増加させてゆく働きをする。
The fuel amount control device t4 functions to gradually increase K when a reduction signal is applied from the comparator circuit 3.

極大値検出回路5は排気ガスセンサ2の出力0を調べ、
第2図に示すリッチ側の極大値を検出する働きをする。
The maximum value detection circuit 5 checks the output 0 of the exhaust gas sensor 2,
It functions to detect the maximum value on the rich side shown in FIG.

振れ幅検出回路6は同じく排気ガスセンサ2の出力0を
調べ、第2図に示すような、リッチ側極大値とリーン側
極小値との差分からなる振れ幅Bを検出する働きをする
The amplitude detection circuit 6 similarly checks the output 0 of the exhaust gas sensor 2, and functions to detect an amplitude B consisting of the difference between the maximum value on the rich side and the minimum value on the lean side, as shown in FIG.

基準値決定回路7は極大値検出回路5から入力されるセ
ンナ出力0の極大値と、振れ幅検出回路6から入力され
るセンナ出力0の極大値と極小値との差を表わす振れ幅
Bとを調べ、第2図に示すように、この振れ幅Bが所定
値以上に達している領域YKあるときには極大値に対し
て所定の関係をもって追従変化する基準値Sを発生させ
、振れ幅Bが上記所定値に達していない領域Nにあると
きKは、所定の一定値に固定された基準値Sを発生させ
るように動作する。
The reference value determination circuit 7 determines a swing amplitude B representing the difference between the maximum value of the senna output 0 input from the maximum value detection circuit 5 and the maximum value and minimum value of the senna output 0 input from the vibration amplitude detection circuit 6. As shown in Fig. 2, when there is a region YK where the amplitude B reaches a predetermined value or more, a reference value S is generated that follows and changes in a predetermined relationship with the maximum value, and the amplitude B is When in the region N where the predetermined value has not been reached, K operates to generate a reference value S fixed to a predetermined constant value.

次に、この実施例全体としての動作について説明する。Next, the operation of this embodiment as a whole will be explained.

エンジン1が運転を開始し、排気ガスセンサ2の温度が
所定値以上に達してセンサが活性化され、第2図に示す
領域YKあるときには、センナ出力0のリッチ側極大値
に追従変化する基準値Sのもとで動作し、センサ出力0
が基準値Sに対して<O>S >になっている間はエン
ジン1に対する燃料供給量を順次減小させてゆき、これ
Kよシセンサ出力Oが基準値Sに対して(0(S )の
状態になったら、今度は燃料供給量を順次増加させてゆ
き、これによシ再びセンサ出力Oが基準値に対して(0
>3)の状態になるようにし、これを繰シ返すことによ
シ空燃比が所定値(理論空燃比)に収斂するようにする
周知の空燃比フィードバック制御を遂行する。なお、こ
のような制御には、いわゆる比例積分制御を適用するの
が一般的である。
When the engine 1 starts operating, the temperature of the exhaust gas sensor 2 reaches a predetermined value or higher, the sensor is activated, and there is a region YK shown in FIG. 2, the reference value changes to follow the rich side maximum value of the sensor output 0 Operates under S, sensor output 0
While K is <O>S > with respect to the reference value S, the amount of fuel supplied to the engine 1 is gradually decreased, and the sensor output O becomes (0 (S )) with respect to the reference value S. When the state is reached, the fuel supply amount is increased sequentially, and this causes the sensor output O to become (0) again with respect to the reference value.
> 3), and by repeating this, the well-known air-fuel ratio feedback control is performed so that the air-fuel ratio converges to a predetermined value (the stoichiometric air-fuel ratio). Note that so-called proportional-integral control is generally applied to such control.

ところで、以上の動作は従来のフィードバック方式によ
る空燃比制御装置の動作と同じであるが、この実施例で
は、第2図の領域Nにあるときの動作が従来例とは異な
っておシ、この領域N1つまジエンジン1の運転が開始
されてからあまシ時間が経過していないときなどで、排
気ガスセンサ2の温度が低く、センナの活性化が不充分
でその出力0の振れ幅が所定値Bに達していないときに
は、基準値Sはセンサ出力0のリッチ側極大値とは無関
係な一定値にされ、この一定値に保たれている基準値S
のもとでセンサ出力0が七れよシも大きいか或いは小さ
いか、つま10>8)となっているか(0<8 )にな
っているかの判断を行ない、燃料供給量の漸増又は漸減
が行なわれて空燃比のフィードバック制御が遂行されて
行くことになっている。
Incidentally, the above operation is the same as that of the conventional feedback type air-fuel ratio control device, but in this embodiment, the operation in region N of FIG. 2 is different from the conventional example. Region N1: When a short period of time has not elapsed since the engine 1 started operating, the temperature of the exhaust gas sensor 2 is low and the senna is not activated sufficiently, so that the amplitude of the output 0 is a predetermined value. When B has not been reached, the reference value S is set to a constant value that is unrelated to the rich side maximum value of sensor output 0, and the reference value S is kept at this constant value.
Based on this, it is judged whether the sensor output 0 is too large or small, and whether it is 0<8), and whether the fuel supply amount is gradually increased or decreased. feedback control of the air-fuel ratio is to be carried out.

従って、この実施例によれば、基準値Sとしてセンサ出
力Oの極大値に追従変化するものを用いた方式における
問題点、すなわち第3図の領域人で動作不能になってし
まうという問題点をなくし、はとんど全ての領域でフィ
ードバック制御を行なわせることかできる。
Therefore, according to this embodiment, the problem with the method using a reference value S that changes following the maximum value of the sensor output O, that is, the problem that the area becomes inoperable in the area shown in FIG. 3, can be solved. However, feedback control can be performed in almost all areas.

なお、第2図の領域NKおける基準値Sの所定の一定値
としては、この第2図から明らかなように、センナ出力
Oの振れ@Bがほとんどゼロのときの値に設定してやれ
ばよい。
As is clear from FIG. 2, the predetermined constant value of the reference value S in the region NK of FIG. 2 may be set to a value when the swing @B of the senna output O is almost zero.

ところで、第1図の実施例では詳しく説明しなかったが
、上記した燃料供給量の比例積分動作なども含めた全般
的な制御0ためには・”イク°”1ンビユータを用い、
それに組合わせたプログラムによ多動作を行なわせるよ
うにしてやればよい。
By the way, although it was not explained in detail in the embodiment shown in FIG. 1, in order to perform overall control including the proportional and integral operation of the fuel supply amount described above, the "Iku°" 1 viewer is used.
All you have to do is make the combined program perform multiple actions.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、排気ガスセンサ
の出力を識別するための基準値を、センナ出力の極大値
に追従変化させる方式の空燃比制御装置においても、エ
ンジンの始動直後なども含めてほとんど全ての運転領域
でフィードバック制御を行なわせることができるから、
従来技術の欠点を除き、常に正確な空燃比を保ったエン
ジンの運転が可能になシ、排ガスの浄化などに大いに効
果を発揮させることができる空燃比制御装置を容易に提
供できる。
As explained above, according to the present invention, even in an air-fuel ratio control device that changes the reference value for identifying the output of the exhaust gas sensor in accordance with the maximum value of the sensor output, it is possible to change the reference value for identifying the output of the exhaust gas sensor even immediately after starting the engine. Since feedback control can be performed in almost all operating ranges,
By eliminating the shortcomings of the prior art, it is possible to easily provide an air-fuel ratio control device that enables an engine to be operated while maintaining an accurate air-fuel ratio at all times and is highly effective in purifying exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による空燃比制御装置の一実施例を示す
ブロック図、第2図はその動作説明用の特性曲線図、第
3図は従来例における問題点を説明するための特性曲線
図である。 1・・・エンジン、2・・・排気ガスセンサ、3・・・
比較回路、4・・・燃料量制御装置、5・・・他人値検
出回路、6・・・振れ幅検出回路、7・・・基準値決定
回路、8・・・兜l幻
Fig. 1 is a block diagram showing an embodiment of the air-fuel ratio control device according to the present invention, Fig. 2 is a characteristic curve diagram for explaining its operation, and Fig. 3 is a characteristic curve diagram for explaining problems in the conventional example. It is. 1... Engine, 2... Exhaust gas sensor, 3...
Comparison circuit, 4...Fuel amount control device, 5...Other value detection circuit, 6...Wave amplitude detection circuit, 7...Reference value determination circuit, 8...Kabuto l illusion

Claims (1)

【特許請求の範囲】[Claims] 1、エンジンの排気ガス中の特定成分の濃度をリッチ側
での極大値とリーン側での極小値からなる2値信号とし
て検出する排気ガスセンサを備え、上記2値信号のレベ
ル識別を上記極大値のレベル変化に追従して変化する基
準値によって行なうことにより出力空燃比を求める方式
の空燃比制御装置において、上記基準値を所定の一定値
に固定する手段を設け、上記2値信号の極大値と極小値
との差が所定値以下にあるときだけ上記手段を動作させ
るように構成したことを特徴とする空燃比制御装置。
1. Equipped with an exhaust gas sensor that detects the concentration of a specific component in engine exhaust gas as a binary signal consisting of a local maximum value on the rich side and a local minimum value on the lean side, and the level identification of the binary signal is performed based on the local maximum value. In this air-fuel ratio control device, the output air-fuel ratio is determined by using a reference value that changes in accordance with a change in the level of the signal. An air-fuel ratio control device characterized in that the above means is operated only when the difference between the minimum value and the minimum value is equal to or less than a predetermined value.
JP1090085A 1985-01-25 1985-01-25 Air-fuel ratio control device Pending JPS61171850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090085A JPS61171850A (en) 1985-01-25 1985-01-25 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090085A JPS61171850A (en) 1985-01-25 1985-01-25 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPS61171850A true JPS61171850A (en) 1986-08-02

Family

ID=11763174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090085A Pending JPS61171850A (en) 1985-01-25 1985-01-25 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS61171850A (en)

Similar Documents

Publication Publication Date Title
JP3161539B2 (en) Method and apparatus for controlling air-fuel ratio of an internal combustion engine
JP4531597B2 (en) Control device for internal combustion engine
US5282360A (en) Post-catalyst feedback control
US4697559A (en) Method of controlling an air-fuel ratio for an internal combustion engine
JP3326811B2 (en) Lean burn control device for internal combustion engine
US4391256A (en) Air-fuel ratio control apparatus
JPS5915651A (en) Controlling apparatus for air fuel ratio
US4512313A (en) Engine control system having exhaust gas sensor
JPS61171850A (en) Air-fuel ratio control device
JPS632019B2 (en)
US4478192A (en) Air-fuel ratio control system for internal combustion engines
JP2657452B2 (en) Catalyst activity detector
US4706637A (en) Oxygen concentration sensing device for an air-fuel ratio control system of an automotive internal combustion engine
JPS6047837A (en) Lean combustion controlling system for internal- combustion engine
JPS5898631A (en) Fuel controlling device of engine
JPS58176436A (en) Control device for engine
JPS60192850A (en) Air-fuel ratio control device
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6113691Y2 (en)
JPH0533632A (en) Deterioration judging method of three way catalyst
JPH0152569B2 (en)
JP2609230B2 (en) Air-fuel ratio control method for internal combustion engine
JPS58176440A (en) Air-fuel ratio controlling method for internal-combustion engine
JPS58200059A (en) Air-fuel ratio controller of internal-combustion engine
JPS5949312A (en) Air-fuel ratio controller for internal-combustion engine