JPH0533632A - Deterioration judging method of three way catalyst - Google Patents

Deterioration judging method of three way catalyst

Info

Publication number
JPH0533632A
JPH0533632A JP3186517A JP18651791A JPH0533632A JP H0533632 A JPH0533632 A JP H0533632A JP 3186517 A JP3186517 A JP 3186517A JP 18651791 A JP18651791 A JP 18651791A JP H0533632 A JPH0533632 A JP H0533632A
Authority
JP
Japan
Prior art keywords
way catalyst
deterioration
fuel ratio
amplitude
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3186517A
Other languages
Japanese (ja)
Other versions
JP2643038B2 (en
Inventor
Yuichi Hishinuma
祐一 菱沼
Akio Fujiwara
章男 藤原
Masayuki Motobe
雅之 本部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3186517A priority Critical patent/JP2643038B2/en
Publication of JPH0533632A publication Critical patent/JPH0533632A/en
Application granted granted Critical
Publication of JP2643038B2 publication Critical patent/JP2643038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To perform a judgment so accurate enough by adopting an amplitude of vibration in and around a threshold level, at the lower limit of output amplitude in the case where any deterioration of a three way catalyst is judged by this output amplitude in an oxygen content sensor. CONSTITUTION:A three way catalyst 11 is installed in an exhaust passage 10 of a gas engine E, and a main oxygen sensor 12 is installed at the upstream side and a sub oxygen sensor 13 at the downstream side, respectively. Each detection signal out of these main and sub oxygen sensors 12, 13, a pressure sensor 6, an engine speed sensor 9 and a temperature measuring sensor 14 is inputted into an engine control unit 15 and thereby a control signal is outputted to an air-fuel ratio control valve 8. The engine control unit 15 is provided with a catalyst deterioration judging means 19, since output amplitude becomes minimized when an output amplitude value of the sub oxygen sensor 13 exists in a threshold level, it judges any deterioration of the catalyst through this minimum amplitude. Therefore the deterioration is accurately judged by the extent of the amplitude.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三元触媒の上流側と下
流側のそれぞれに酸素濃度センサを配設し、該酸素濃度
センサの出力信号に応答して空燃比を制御するガスエン
ジンの空燃比制御装置における三元触媒の劣化判定法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas engine in which an oxygen concentration sensor is provided on each of an upstream side and a downstream side of a three-way catalyst, and an air-fuel ratio is controlled in response to an output signal of the oxygen concentration sensor. The present invention relates to a method for determining deterioration of a three-way catalyst in an air-fuel ratio control device.

【0002】[0002]

【従来の技術】三元触媒の上流に設けた酸素濃度センサ
の出力信号に応答してガスエンジンの空燃比を理論空燃
比近傍に制御することにより、三元触媒の浄化率を高め
るような装置は、従来にも提案されている。
2. Description of the Related Art A device for increasing the purification rate of a three-way catalyst by controlling the air-fuel ratio of a gas engine in the vicinity of the theoretical air-fuel ratio in response to an output signal of an oxygen concentration sensor provided upstream of the three-way catalyst. Has been proposed in the past.

【0003】また、例えば特開昭61−286550号
公報に示されている様に、三元触媒の上流側と下流側の
それぞれに酸素濃度センサを設け、三元触媒の上流側に
設けた第1の酸素濃度センサの出力を三元触媒下流に設
けた第2の酸素濃度センサの出力信号に応じて補正する
(例えば第1の酸素濃度センサによる空燃比制御の遅れ
時間を制御する)ことにより、第1の酸素濃度センサの
特性変化や特性のばらつき等による制御性の低下を防止
する技術が提案されている。
Further, as disclosed in, for example, Japanese Patent Application Laid-Open No. 61-286550, an oxygen concentration sensor is provided on each of the upstream side and the downstream side of the three-way catalyst, and the oxygen concentration sensors are provided on the upstream side of the three-way catalyst. By correcting the output of the first oxygen concentration sensor according to the output signal of the second oxygen concentration sensor provided downstream of the three-way catalyst (for example, controlling the delay time of the air-fuel ratio control by the first oxygen concentration sensor). There has been proposed a technique for preventing the controllability from being deteriorated due to a change in characteristics of the first oxygen concentration sensor or a variation in characteristics.

【0004】[0004]

【発明が解決しようとする課題】一般に、上記の三元触
媒の劣化を上記第2の酸素濃度センサの出力振幅により
判定する際に、出力振幅は、電位レベルすなわち空燃比
と、フィードバック周期により影響を受ける。すなわ
ち、第2の酸素濃度センサの出力振幅は電位レベルによ
り異なる。そして、フィードバック周期が速い場合は振
幅が小さくなり、逆に、フィードバック周期が遅い場合
は、振幅が大きくなる傾向がある。したがって、正確に
劣化を判定することは困難であった。
Generally, when determining the deterioration of the three-way catalyst by the output amplitude of the second oxygen concentration sensor, the output amplitude is affected by the potential level, that is, the air-fuel ratio and the feedback cycle. Receive. That is, the output amplitude of the second oxygen concentration sensor differs depending on the potential level. The amplitude tends to decrease when the feedback cycle is fast, and conversely, the amplitude tends to increase when the feedback cycle is slow. Therefore, it is difficult to accurately determine the deterioration.

【0005】本発明は、上記した従来技術の問題点に鑑
みて提案されたもので、三元触媒が劣化したことを正確
に判定することが出来る三元触媒の劣化判定方法を提供
することを目的としている。
The present invention has been proposed in view of the above-mentioned problems of the prior art, and it is an object of the present invention to provide a deterioration determination method for a three-way catalyst that can accurately determine that the three-way catalyst has deteriorated. Has an aim.

【0006】[0006]

【課題を解決するための手段】本発明の三元触媒の劣化
判定方法は、ガスエンジンの排気通路に配列されて排気
ガスを浄化する三元触媒と、前記三元触媒の上流側に配
設された第1の酸素濃度センサと、前記三元触媒の下流
側に配設された第2の酸素濃度センサと、前記第1及び
第2の酸素濃度センサの出力に応答して、排気ガス中の
酸素濃度から前記ガスエンジンの空燃比が理論空燃比に
対してリッチ状態にあるかリーン状態にあるかを検出
し、その結果に基づいて前記ガスエンジンの空燃比を制
御する空燃比制御装置、とを含むガスエンジンで用いら
れる三元触媒の劣化を判定する三元触媒の劣化判定方法
において、前記第2の酸素濃度センサの出力振幅により
前記三元触媒の劣化を判定する際に、判定のレベルとし
て前記出力振幅の下限がスレショールドレベル付近の振
幅を採用することを特徴としている。
A method for determining deterioration of a three-way catalyst according to the present invention comprises a three-way catalyst arranged in an exhaust passage of a gas engine to purify exhaust gas, and an upstream side of the three-way catalyst. In the exhaust gas in response to the output of the first oxygen concentration sensor, the second oxygen concentration sensor disposed downstream of the three-way catalyst, and the first and second oxygen concentration sensors. An air-fuel ratio control device that detects whether the air-fuel ratio of the gas engine is rich or lean with respect to the stoichiometric air-fuel ratio from the oxygen concentration of the gas engine, and controls the air-fuel ratio of the gas engine based on the result. In a method of determining deterioration of a three-way catalyst for determining deterioration of a three-way catalyst used in a gas engine, the determination of the deterioration of the three-way catalyst based on the output amplitude of the second oxygen concentration sensor is performed. Below the output amplitude as a level There is characterized by employing the amplitude near threshold level.

【0007】また、本発明の三元触媒の劣化判定方法
は、ガスエンジンの排気通路に配列されて排気ガスを浄
化する三元触媒と、前記三元触媒の上流側に配設された
第1の酸素濃度センサと、前記三元触媒の下流側に配設
された第2の酸素濃度センサと、前記第1及び第2の酸
素濃度センサの出力に応答して、排気ガス中の酸素濃度
から前記ガスエンジンの空燃比が理論空燃比に対してリ
ッチ状態にあるかリーン状態にあるかを検出し、その結
果に基づいて前記ガスエンジンの空燃比を制御する空燃
比制御装置、とを含むガスエンジンで用いられる三元触
媒の劣化を判定する三元触媒の劣化判定方法において、
前記第2の酸素濃度センサの出力振幅により前記三元触
媒の劣化を判定する際に、フィードバック周期に基づい
て補正することを特徴としている。
The three-way catalyst deterioration determination method of the present invention is a three-way catalyst arranged in the exhaust passage of a gas engine to purify exhaust gas, and a first three-way catalyst disposed upstream of the three-way catalyst. Of the oxygen concentration in the exhaust gas in response to the outputs of the oxygen concentration sensor, the second oxygen concentration sensor disposed downstream of the three-way catalyst, and the first and second oxygen concentration sensors. An air-fuel ratio control device that detects whether the air-fuel ratio of the gas engine is in a rich state or a lean state with respect to the stoichiometric air-fuel ratio, and controls the air-fuel ratio of the gas engine based on the result, In the deterioration determination method of the three-way catalyst for determining the deterioration of the three-way catalyst used in the engine,
When determining the deterioration of the three-way catalyst based on the output amplitude of the second oxygen concentration sensor, the correction is performed based on the feedback cycle.

【0008】上記判定に際し、制御装置に設けた触媒劣
化判定部において、振幅下限がスレショールドレベル付
近の振幅と、フィードバック周期の逆数との積が、所定
範囲内にあるときに触媒が正常、範囲外にあるときに、
触媒劣化と判定するのが好ましい。
In the above determination, the catalyst deterioration determination unit provided in the control device determines that the catalyst is normal when the product of the amplitude whose lower limit of amplitude is near the threshold level and the reciprocal of the feedback period is within the predetermined range. When out of range,
It is preferable to determine that the catalyst has deteriorated.

【0009】[0009]

【作用】上記の方法においては、触媒劣化判定部は、サ
ブ酸素濃度センサからの出力信号に基づき、振幅下限が
スレショールドレベル付近の振幅と、フィードバック周
期の逆数との積が所定範囲内にあるか否かを判定する。
そこで、所定範囲内にあれば、触媒正常と判定し、所定
範囲外であれば、触媒劣化と判定する。
In the above method, the catalyst deterioration determining unit determines, based on the output signal from the sub oxygen concentration sensor, that the product of the amplitude whose lower limit of amplitude is near the threshold level and the reciprocal of the feedback period is within the predetermined range. Determine if there is.
Therefore, if it is within the predetermined range, it is determined that the catalyst is normal, and if it is outside the predetermined range, it is determined that the catalyst is deteriorated.

【0010】[0010]

【実施例】以下図面を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1において、符号Eで示すガスエンジン
の吸気通路1には、燃料通路2からの燃料(例えば都市
ガス13A)及び空気取入口3からの空気を混合するミ
キサ4と、スロットルバルブ5と、吸気圧を検出する圧
力センサ6とが設けられている。また、ミキサ4をバイ
パスして、吸気通路1のスロットルバルブ5の上流側と
燃料通路2とを接続するバイパス通路7が設けられ、該
バイパス通路には、バイパス流量を調節するためのバル
ブすなわち空燃比制御バルブ8が介装されている。
In an intake passage 1 of a gas engine shown in FIG. 1, a mixer 4 for mixing fuel (for example, city gas 13A) from a fuel passage 2 and air from an air intake 3 and a throttle valve 5 are provided in an intake passage 1. And a pressure sensor 6 for detecting the intake pressure. Further, a bypass passage 7 that connects the upstream side of the throttle valve 5 of the intake passage 1 and the fuel passage 2 by bypassing the mixer 4 is provided, and a valve for adjusting the bypass flow rate, that is, an empty passage, is provided in the bypass passage. A fuel ratio control valve 8 is provided.

【0012】ここで、ガスエンジンEには、エンジン回
転数を検出するための回転数センサ9が設けられてい
る。
Here, the gas engine E is provided with a rotation speed sensor 9 for detecting the engine rotation speed.

【0013】一方、ガスエンジン4の排気通路10には
三元触媒11が介装され、該触媒11の上流側には第1
の酸素濃度センサ(以下メイン酸素センサという)12
が設けられ、触媒11の下流側には第2の酸素濃度セン
サ(以下サブ酸素センサという)13が設けられてい
る。なお、図示の実施例では、触媒11の下流側に測温
センサ14も設けられている。
On the other hand, a three-way catalyst 11 is interposed in the exhaust passage 10 of the gas engine 4, and a first catalyst is provided upstream of the catalyst 11.
Oxygen concentration sensor (hereinafter referred to as the main oxygen sensor) 12
And a second oxygen concentration sensor (hereinafter referred to as a sub oxygen sensor) 13 is provided on the downstream side of the catalyst 11. In the illustrated embodiment, the temperature measuring sensor 14 is also provided on the downstream side of the catalyst 11.

【0014】前記圧力センサ6、回転数センサ9、メイ
ン及びサブ酸素センサ12、13、測温センサ14から
の検出信号は電子制御装置(ECU)15に入力され、
該制御装置15で所定の処理が為された後に制御信号と
して空燃比制御バルブ8へ出力される。
Detection signals from the pressure sensor 6, the rotation speed sensor 9, the main and sub oxygen sensors 12, 13 and the temperature measuring sensor 14 are input to an electronic control unit (ECU) 15.
After a predetermined process is performed by the control device 15, it is output to the air-fuel ratio control valve 8 as a control signal.

【0015】制御装置15において、圧力センサ6及び
回転数センサ9の出力信号は全ガス消費量演算手段16
に入力されて、そこで演算された全ガス消費量TGはバ
イパスガス量演算手段17へ送出される。バイパスガス
量演算手段17は、バイパス比率テーブル18の中か
ら、エンジンを理論空燃比付近で運転するのに必要なバ
イパス比率BRを割り出す。
In the control device 15, the output signals of the pressure sensor 6 and the rotation speed sensor 9 are the total gas consumption amount calculating means 16.
The total gas consumption amount TG that is input to and calculated there is sent to the bypass gas amount calculation means 17. The bypass gas amount calculation means 17 determines from the bypass ratio table 18 the bypass ratio BR required for operating the engine near the stoichiometric air-fuel ratio.

【0016】サブ酸素センサ13の出力V2は、触媒劣
化判定手段19及び制御定数演算手段20に入力され
る。そして制御定数演算手段20は、サブ酸素センサ1
3の出力V2に応答して、例えば遅れ時間TDL、TD
R(立上り及び立下り遅れ時間)等のメインフィードバ
ック定数を演算して、空燃比補正量演算手段21へ送出
する。ここで、空燃比補正量演算手段21は、制御定数
演算手段20で演算された遅れ時間TDL、TDR及び
メイン酸素センサ12からの出力V1に基づいて空燃比
補正量FAFを演算し、該補正量FAFをバイパスガス
量演算手段17へ送出する。
The output V2 of the sub oxygen sensor 13 is input to the catalyst deterioration determining means 19 and the control constant calculating means 20. Then, the control constant calculation means 20 uses the sub oxygen sensor 1
3 in response to the output V2 of the delay time TDL, TD
The main feedback constants such as R (rise and fall delay time) are calculated and sent to the air-fuel ratio correction amount calculation means 21. Here, the air-fuel ratio correction amount calculation means 21 calculates the air-fuel ratio correction amount FAF based on the delay times TDL and TDR calculated by the control constant calculation means 20 and the output V1 from the main oxygen sensor 12, and the correction amount. The FAF is sent to the bypass gas amount calculation means 17.

【0017】バイパスガス量演算手段17は、全ガス消
費量演算手段16で演算された全ガス消費量TG、バイ
パス比率テーブル18の中から割り出されたバイパス比
率BR、空燃比補正量演算手段21で演算された空燃比
補正量FAFに基づいて、次式(1)によりバイパスガ
ス量BGを算出する。
The bypass gas amount calculation means 17 includes a total gas consumption amount TG calculated by the total gas consumption amount calculation means 16, a bypass ratio BR calculated from the bypass ratio table 18, and an air-fuel ratio correction amount calculation means 21. The bypass gas amount BG is calculated by the following equation (1) on the basis of the air-fuel ratio correction amount FAF calculated in.

【0018】 BG=TG×(BR+FAF)・・・・・(1) ここで、空燃比補正量FAFはゼロを中心に+或いは−
に振動するべき変数である。そのため、空燃比補正量F
AFがオフセット値を有し+或いは−の領域で振動して
いる場合には、ゼロを中心に振動する様に、バイパス比
率演算手段22によりバイパス比率BRを変更し、バイ
パス比率テーブル18を更新する。
BG = TG × (BR + FAF) (1) Here, the air-fuel ratio adjustment amount FAF is + or − with zero as the center.
Is a variable that should vibrate to. Therefore, the air-fuel ratio correction amount F
When the AF has an offset value and vibrates in the + or-region, the bypass ratio calculation unit 22 changes the bypass ratio BR and updates the bypass ratio table 18 so as to vibrate around zero. .

【0019】バイパスガス量演算手段17で演算された
バイパスガス量BGは、空燃比調整手段23へ送出され
る。そして空燃比調整手段23は、バイパスガス量BG
の演算結果に基づいて空燃比制御バルブ8の開度を設定
し、該バルブ8の開度を制御するのである。
The bypass gas amount BG calculated by the bypass gas amount calculating means 17 is sent to the air-fuel ratio adjusting means 23. Then, the air-fuel ratio adjusting means 23 controls the bypass gas amount BG.
The opening degree of the air-fuel ratio control valve 8 is set on the basis of the calculation result of, and the opening degree of the valve 8 is controlled.

【0020】サブ酸素センサ13の出力V2が入力され
た触媒劣化判定手段19では、該出力V2がそのレベル
以下になると窒素酸化物NOxの浄化率が悪化する電位
レベル、すなわち閾値(スレショールドレベル)が予め
設定されている。このスレショールドレベルは例えば
0.6Vが設定される。
In the catalyst deterioration determining means 19 to which the output V2 of the sub oxygen sensor 13 is input, a potential level at which the purification rate of nitrogen oxide NOx deteriorates when the output V2 becomes lower than that level, that is, a threshold value (threshold level). ) Is preset. The threshold level is set to, for example, 0.6V.

【0021】次に、図2を参照して判定の態様を説明す
る。なお、図においては振幅は符号A0、A1で示され
ているが、以下の説明においては、一般的な意味での振
幅を符号A(図示せず)で表現してある。
Next, the mode of determination will be described with reference to FIG. In the drawings, the amplitudes are indicated by reference signs A0 and A1, but in the following description, the amplitude in a general sense is expressed by reference sign A (not shown).

【0022】触媒劣化判定手段19は、サブ酸素センサ
13からの出力信号に基づき、出力波形の振幅Aと周期
Tとを検出する(ステップS1)。次いで、振幅Aのう
ち、振幅の下限がスレショールドレベルS(図6)付近
の振幅A1を選択し(ステップS2)、値(A1×1/
T)が所定範囲内にあるか否かを判定する(ステップS
3)。ここで、判定用の値(A1×1/T)としては、
例えばA1=160(mV)、T=1.6(s)が採用
され、A1×1/T=100(mV/s)が用いられ
る。
The catalyst deterioration determining means 19 detects the amplitude A and the cycle T of the output waveform based on the output signal from the sub oxygen sensor 13 (step S1). Next, of the amplitudes A, the amplitude A1 whose lower limit of the amplitude is near the threshold level S (FIG. 6) is selected (step S2), and the value (A1 × 1 /
It is determined whether T) is within a predetermined range (step S
3). Here, as the determination value (A1 × 1 / T),
For example, A1 = 160 (mV) and T = 1.6 (s) are adopted, and A1 × 1 / T = 100 (mV / s) is used.

【0023】ステップS3がYESの場合、すなわち判
定用の値(A1×1/T)が所定範囲内にあれば、三元
触媒11は正常と判定する(ステップS4)。一方、ス
テップS3がNOの場合、すなわち値(A1×1/T)
が所定範囲でない場合には、三元触媒11は劣化してい
ると判定する(ステップS5)。そして、ステップS4
或いはS5が終了した後、リターンする。
If step S3 is YES, that is, if the determination value (A1 × 1 / T) is within the predetermined range, the three-way catalyst 11 is determined to be normal (step S4). On the other hand, if step S3 is NO, that is, the value (A1 × 1 / T)
Is not within the predetermined range, it is determined that the three-way catalyst 11 has deteriorated (step S5). And step S4
Alternatively, after S5 ends, the process returns.

【0024】振幅Aは空燃比が異なると変化し、三元触
媒11が新品であり高活性状態にある場合には、図3に
示すように振幅A0は小さく、理論空燃比付近では略々
ゼロとなり最小である。一方、三元触媒11が劣化する
と、図4に示すように理論空燃比付近で極大値を持つ。
換言すると、触媒の劣化程度を振幅で判定するためには
振幅を測定する空燃比を限定する必要がある。
The amplitude A changes when the air-fuel ratio differs, and when the three-way catalyst 11 is new and in a highly active state, the amplitude A0 is small as shown in FIG. 3, and it is almost zero near the stoichiometric air-fuel ratio. Is the smallest. On the other hand, when the three-way catalyst 11 deteriorates, it has a maximum value near the stoichiometric air-fuel ratio as shown in FIG.
In other words, in order to determine the degree of deterioration of the catalyst by the amplitude, it is necessary to limit the air-fuel ratio for measuring the amplitude.

【0025】一方、図3、4から明らかな様に、サブ酸
素センサ13の出力振幅下限値と、出力振幅との関係に
おいては、出力振幅下限値がスレショールドレベルにあ
る時には、触媒が新品であるか劣化品であるかに関わら
ず、出力振幅は最小となる。従って、この最小振幅を用
いて触媒の劣化の程度を判定するのである。
On the other hand, as is clear from FIGS. 3 and 4, in the relationship between the output amplitude lower limit value of the sub oxygen sensor 13 and the output amplitude, when the output amplitude lower limit value is at the threshold level, the catalyst is new. The output amplitude is the smallest regardless of whether the product is a deteriorated product or a deteriorated product. Therefore, the degree of catalyst deterioration is determined using this minimum amplitude.

【0026】実際の空燃比制御を行ったときのサブ酸素
センサ13の出力信号を例に挙げ、図5、6を参照して
説明する。
The output signal of the sub oxygen sensor 13 when the actual air-fuel ratio control is performed will be described as an example with reference to FIGS.

【0027】三元触媒11が新品の場合には、図5で示
す様に振幅A0はスレショールドレベルS付近で略々ゼ
ロとなり、スレショールドレベルから離隔した領域にお
いては80mV程度の振幅を持つ。一方、三元触媒11
が劣化した場合(図6)、振幅下限がスレショールドレ
ベルSに接すると(図5の場合と同様に)振幅A1は最
小となり、スレショールドレベルSから離隔するに連れ
て振幅が増加する。従って、スレショールドレベルSに
接する時の振幅A0或いはA1を用いて触媒の劣化判定
を行えば、振幅に対する空燃比の影響を除去することが
出来る。
When the three-way catalyst 11 is new, the amplitude A0 becomes substantially zero near the threshold level S as shown in FIG. 5, and the amplitude A0 is about 80 mV in the region apart from the threshold level S. To have. On the other hand, three-way catalyst 11
When the lower limit of the amplitude is in contact with the threshold level S (as in the case of FIG. 5), the amplitude A1 becomes the minimum and the amplitude increases as the distance from the threshold level S increases. . Therefore, if the deterioration determination of the catalyst is performed using the amplitude A0 or A1 at the time of contacting the threshold level S, the influence of the air-fuel ratio on the amplitude can be removed.

【0028】ここで、フィードバック周期Tが大きい
(長い)場合には振幅Aも大きくなるが、一方、フィー
ドバック周期Tが小さいと振幅Aは小さくなる。そのた
め、図7で示されている様に、NOxと振幅Aとの間に
は明確な相関関係が得られず、振幅Aによる触媒の劣化
判定を正確に行うことが出来ない。
Here, when the feedback cycle T is large (long), the amplitude A also becomes large, while on the other hand, when the feedback cycle T is small, the amplitude A becomes small. Therefore, as shown in FIG. 7, a clear correlation cannot be obtained between NOx and the amplitude A, and the catalyst deterioration determination based on the amplitude A cannot be accurately performed.

【0029】これに対して、周期Tを用いて補正をし
て、NOxと(A×1/T)の関係を求めれば、図8で
示すように良好な相関が得られる。従って、(A×1/
T)という値により触媒の劣化判定を正確に行えること
が理解出来る。
On the other hand, if correction is performed using the period T and the relationship between NOx and (A × 1 / T) is obtained, good correlation can be obtained as shown in FIG. Therefore, (A × 1 /
It can be understood that the value of T) can accurately determine the deterioration of the catalyst.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、振
幅下限がスレショールドレベル付近の振幅を採用し、更
に、フィードバック周期を基に補正することにより、振
幅によって触媒劣化を正確に判定することができる。
As described above, according to the present invention, the lower limit of the amplitude is set to an amplitude in the vicinity of the threshold level, and the correction is performed based on the feedback cycle, so that the catalyst deterioration can be accurately determined by the amplitude. can do.

【0031】そのため、触媒劣化の判定作業が容易とな
り、且つその判定精度が向上するのである。
Therefore, the catalyst deterioration determination work is facilitated and the determination accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する制御装置の一例を示す全体構
成図。
FIG. 1 is an overall configuration diagram showing an example of a control device for implementing the present invention.

【図2】制御フローチャート図。FIG. 2 is a control flowchart.

【図3】新品触媒のサブ酸素センサ出力振幅、空燃比、
サブ酸素センサ出力振幅下限の相互の関係を示す特性
図。
[Fig. 3] Sub-oxygen sensor output amplitude, air-fuel ratio of a new catalyst,
The characteristic view which shows the mutual relationship of a sub oxygen sensor output amplitude lower limit.

【図4】劣化触媒のサブ酸素センサ出力振幅、空燃比、
サブ酸素センサ出力振幅下限の相互の関係を示す特性
図。
FIG. 4 is a sub-oxygen sensor output amplitude of the deteriorated catalyst, an air-fuel ratio,
The characteristic view which shows the mutual relationship of a sub oxygen sensor output amplitude lower limit.

【図5】新品触媒のサブ酸素センサの出力を示す特性
図。
FIG. 5 is a characteristic diagram showing the output of a sub oxygen sensor of a new catalyst.

【図6】劣化触媒のサブ酸素センサの出力を示す特性
図。
FIG. 6 is a characteristic diagram showing an output of a sub oxygen sensor of a deteriorated catalyst.

【図7】NOxとサブ酸素センサの出力振幅との相関を
示す特性図。
FIG. 7 is a characteristic diagram showing the correlation between NOx and the output amplitude of the sub oxygen sensor.

【図8】周期Tを考慮して補正を行った場合におけるN
Oxとサブ酸素センサの出力振幅との相関を示す特性
図。
FIG. 8 shows N when correction is performed in consideration of a cycle T.
The characteristic view which shows the correlation of Ox and the output amplitude of a sub oxygen sensor.

【符号の説明】[Explanation of symbols]

1・・・吸気通路 2・・・燃料通路 3・・・空気取入口 4・・・ミキサ 5・・・スロットルバルブ 6・・・圧力センサ 7・・・バイパス通路 8・・・空燃比制御バルブ 9・・・回転数センサ 10・・・排気通路 11・・・三元触媒 12・・・メイン酸素濃度センサ 13・・・サブ酸素濃度センサ 14・・・測温センサ 15・・・制御装置 16・・・全ガス消費量演算手段 17・・・バイパスガス量演算手段 18・・・バイパス比率テーブル 19・・・触媒劣化判定手段 20・・・制御定数判定手段 21・・・空燃比補正量演算手段 22・・・バイパスガス量演算手段 23・・・空燃比調整手段 V1・・・メイン酸素濃度センサ V2・・・サブ酸素濃度センサ TG・・・全ガス消費量 TDR、TDL・・・遅れ時間 FAF・・・空燃比補正量 BR・・・バイパス燃料比率 BG・・・バイパスガス量 1 ... Intake passage 2 ... Fuel passage 3 ... Air intake 4 ... mixer 5 ... Throttle valve 6 ... Pressure sensor 7: Bypass passage 8: Air-fuel ratio control valve 9 ... Revolution sensor 10 ... Exhaust passage 11 ... Three-way catalyst 12 ... Main oxygen concentration sensor 13 ... Sub oxygen concentration sensor 14 ... Temperature sensor 15 ... Control device 16 ... Total gas consumption calculation means 17: Bypass gas amount calculation means 18-Bypass ratio table 19: catalyst deterioration determination means 20 ... Control constant determination means 21 ... Air-fuel ratio correction amount calculation means 22 ... Bypass gas amount calculation means 23 ... Air-fuel ratio adjusting means V1 ... Main oxygen concentration sensor V2: Sub oxygen concentration sensor TG: total gas consumption TDR, TDL ... delay time FAF: Air-fuel ratio correction amount BR: Bypass fuel ratio BG: bypass gas amount

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスエンジンの排気通路に配列されて排
気ガスを浄化する三元触媒と、前記三元触媒の上流側に
配設された第1の酸素濃度センサと、前記三元触媒の下
流側に配設された第2の酸素濃度センサと、前記第1及
び第2の酸素濃度センサの出力に応答して、排気ガス中
の酸素濃度から前記ガスエンジンの空燃比が理論空燃比
に対してリッチ状態にあるかリーン状態にあるかを検出
し、その結果に基づいて前記ガスエンジンの空燃比を制
御する空燃比制御装置、とを含むガスエンジンで用いら
れる三元触媒の劣化を判定する三元触媒の劣化判定方法
において、前記第2の酸素濃度センサの出力振幅により
前記三元触媒の劣化を判定する際に、判定のレベルとし
て前記出力振幅の下限がスレショールドレベル付近の振
幅を採用することを特徴とする三元触媒の劣化判定方法
1. A three-way catalyst arranged in an exhaust passage of a gas engine to purify exhaust gas, a first oxygen concentration sensor arranged on an upstream side of the three-way catalyst, and a downstream of the three-way catalyst. In response to the outputs of the second oxygen concentration sensor disposed on the side and the first and second oxygen concentration sensors, the air-fuel ratio of the gas engine is changed from the stoichiometric air-fuel ratio from the oxygen concentration in the exhaust gas. A rich state or a lean state, and based on the result, an air-fuel ratio control device that controls the air-fuel ratio of the gas engine, and a deterioration of the three-way catalyst used in the gas engine is determined. In the method of determining the deterioration of a three-way catalyst, when determining the deterioration of the three-way catalyst based on the output amplitude of the second oxygen concentration sensor, the lower limit of the output amplitude is an amplitude near the threshold level as a determination level. To hire Characteristic three-way catalyst deterioration determination method
【請求項2】 ガスエンジンの排気通路に配列されて排
気ガスを浄化する三元触媒と、前記三元触媒の上流側に
配設された第1の酸素濃度センサと、前記三元触媒の下
流側に配設された第2の酸素濃度センサと、前記第1及
び第2の酸素濃度センサの出力に応答して、排気ガス中
の酸素濃度から前記ガスエンジンの空燃比が理論空燃比
に対してリッチ状態にあるかリーン状態にあるかを検出
し、その結果に基づいて前記ガスエンジンの空燃比を制
御する空燃比制御装置、とを含むガスエンジンで用いら
れる三元触媒の劣化を判定する三元触媒の劣化判定方法
において、前記第2の酸素濃度センサの出力振幅により
前記三元触媒の劣化を判定する際に、フィードバック周
期に基づいて補正することを特徴とする三元触媒の劣化
判定方法。
2. A three-way catalyst arranged in an exhaust passage of a gas engine to purify exhaust gas, a first oxygen concentration sensor disposed upstream of the three-way catalyst, and a downstream of the three-way catalyst. In response to the outputs of the second oxygen concentration sensor disposed on the side and the first and second oxygen concentration sensors, the air-fuel ratio of the gas engine is changed from the stoichiometric air-fuel ratio from the oxygen concentration in the exhaust gas. A rich state or a lean state, and based on the result, an air-fuel ratio control device that controls the air-fuel ratio of the gas engine, and a deterioration of the three-way catalyst used in the gas engine is determined. In a method for determining deterioration of a three-way catalyst, when determining deterioration of the three-way catalyst based on an output amplitude of the second oxygen concentration sensor, correction is made based on a feedback cycle. Method.
JP3186517A 1991-07-25 1991-07-25 Three-way catalyst deterioration determination method Expired - Lifetime JP2643038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186517A JP2643038B2 (en) 1991-07-25 1991-07-25 Three-way catalyst deterioration determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186517A JP2643038B2 (en) 1991-07-25 1991-07-25 Three-way catalyst deterioration determination method

Publications (2)

Publication Number Publication Date
JPH0533632A true JPH0533632A (en) 1993-02-09
JP2643038B2 JP2643038B2 (en) 1997-08-20

Family

ID=16189886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186517A Expired - Lifetime JP2643038B2 (en) 1991-07-25 1991-07-25 Three-way catalyst deterioration determination method

Country Status (1)

Country Link
JP (1) JP2643038B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020737A1 (en) * 1993-03-12 1994-09-15 Siemens Automotive S.A. Heated catalytic converter efficiency monitoring method
WO2010147097A1 (en) 2009-06-15 2010-12-23 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition
CN115387926A (en) * 2022-08-05 2022-11-25 上汽通用五菱汽车股份有限公司 Engine emission closed-loop control method and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020737A1 (en) * 1993-03-12 1994-09-15 Siemens Automotive S.A. Heated catalytic converter efficiency monitoring method
US5647204A (en) * 1993-03-12 1997-07-15 Siemens Automotive S.A. Method for monitoring the effectiveness of a heated catalytic converter for treating the exhaust gases of an internal combustion engine
WO2010147097A1 (en) 2009-06-15 2010-12-23 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition
US9260596B2 (en) 2009-06-15 2016-02-16 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition
CN115387926A (en) * 2022-08-05 2022-11-25 上汽通用五菱汽车股份有限公司 Engine emission closed-loop control method and system
CN115387926B (en) * 2022-08-05 2023-09-15 上汽通用五菱汽车股份有限公司 Engine emission closed-loop control method and system

Also Published As

Publication number Publication date
JP2643038B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JP2745761B2 (en) Catalyst deterioration determination device for internal combustion engine
JP3300012B2 (en) Engine exhaust purification device
US6904899B2 (en) Air-fuel ratio controller for internal-combustion engine
JP3412290B2 (en) Exhaust gas purification catalyst deterioration inspection device
JP3030040B2 (en) Lambda control method and device
JPH0718368B2 (en) Catalyst deterioration detection device for internal combustion engine
US7063081B2 (en) Deterioration determining apparatus and deterioration determining method for oxygen sensor
KR100240970B1 (en) Method for controlling mixture compositions of fuel and air for internal combustion engine
JP3195034B2 (en) Engine exhaust sensor deterioration detection device
US5383333A (en) Method for biasing a hego sensor in a feedback control system
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
JPH0533632A (en) Deterioration judging method of three way catalyst
JPH07103039A (en) Detector for degraded condition of catalyst
JP2814718B2 (en) Oxygen sensor deterioration detection device
JPH01106936A (en) Control device for air-fuel ratio of internal combustion engine
JPS6232338B2 (en)
JPH041440A (en) Air-fuel ratio controller of internal combustion engine
JP2668027B2 (en) Engine air-fuel ratio adjustment method
JPH0960544A (en) Air-fuel ratio control device for engine
JP2722767B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2936780B2 (en) Catalyst deterioration detection device
JP3304653B2 (en) Air-fuel ratio control device for internal combustion engine
JPS61250355A (en) Control device for air-fuel ratio in engine
JP2627826B2 (en) Fuel supply control device for internal combustion engine
JPH07139400A (en) Catalyst deterioration discriminating device for internal combustion engine