JPH041440A - Air-fuel ratio controller of internal combustion engine - Google Patents

Air-fuel ratio controller of internal combustion engine

Info

Publication number
JPH041440A
JPH041440A JP9931890A JP9931890A JPH041440A JP H041440 A JPH041440 A JP H041440A JP 9931890 A JP9931890 A JP 9931890A JP 9931890 A JP9931890 A JP 9931890A JP H041440 A JPH041440 A JP H041440A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
oxygen sensor
control constant
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9931890A
Other languages
Japanese (ja)
Inventor
Masayoshi Nishizawa
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9931890A priority Critical patent/JPH041440A/en
Publication of JPH041440A publication Critical patent/JPH041440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent a controlled air-fuel ratio from shifting to its rich side so as to and improve exhaust emission and the like by compensating a control constant of air fuel ratio feedback control based on an output of an oxygen sensor located upstream by means of the air-fuel ratio feedback control by an oxygen sensor located downstream. CONSTITUTION:An air-fuel ratio feedback control constant is calculated by a means B according to an output of an oxygen sensor A located downstream with respect to a catalyst used for purification of exhaust gas interposed in the exhaust system of an internal combustion engine. And also an air-fuel ratio compensation quantity is calculated by a means D according to the output of an oxygen sensor C located upstream and the calculated air-fuel ratio feedback control constant. The grade of deterioration of the catalyst is judged by a means E based on the oxygen sensors C, A located upstream and downstream. Furthermore the control constant by a means B is varied based on a judged result by a means E. An air-fuel ratio is adjusted by a means F based on an air-fuel ratio compensation quantity calculated by the means D.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関において、排気ガス浄化用の触媒の
上流側及び下流側に酸素センサを設け、上流側の酸素セ
ンサによる空燃比フィードバック制御に加えて下流側の
酸素センサによる空燃比フィードバック制御を行う空燃
比制御装置に関し、特に、触媒及び酸素センサの劣化を
考慮して空燃比を制御する装置に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention provides an internal combustion engine with oxygen sensors upstream and downstream of a catalyst for purifying exhaust gas, and performs air-fuel ratio feedback control using the upstream oxygen sensor. The present invention relates to an air-fuel ratio control device that performs air-fuel ratio feedback control using a downstream oxygen sensor in addition to the air-fuel ratio, and particularly relates to a device that controls the air-fuel ratio in consideration of deterioration of a catalyst and an oxygen sensor.

(従来の技術) 単一の酸素センサを設けた通常の空燃比フィードバック
制御にあっては、酸素センサをできるだけ燃焼室に近い
排気系の例えば排気ガス浄化用の触媒コンバータより上
流側である排気マニホールドの集合部分に設けているが
、酸素センサの出力特性のばらつきのために空燃比の制
御精度の改善に支障を来している。かかる酸素センサの
出力特性のばらつき及び燃料噴射弁等の部品のばらつき
、経時変化を補償するために、触媒コンバータの下流に
も酸素センサを設け、上流側酸素センサによる空燃比フ
ィードバック制御に加えて下流側の酸素センサによる空
燃比フィードバック制御を行うデュアル酸素センサシス
テムが提案されている。
(Prior art) In normal air-fuel ratio feedback control using a single oxygen sensor, the oxygen sensor is installed in the exhaust system as close to the combustion chamber as possible, for example, in the exhaust manifold upstream of the catalytic converter for exhaust gas purification. However, due to variations in the output characteristics of the oxygen sensor, it is difficult to improve the accuracy of controlling the air-fuel ratio. In order to compensate for variations in output characteristics of oxygen sensors, variations in parts such as fuel injection valves, and changes over time, an oxygen sensor is also provided downstream of the catalytic converter, and in addition to air-fuel ratio feedback control by the upstream oxygen sensor, A dual oxygen sensor system has been proposed that performs air-fuel ratio feedback control using a side oxygen sensor.

このデュアル酸素センサシステムでは、触媒コンバータ
の下流側に設けられた酸素センサは、上流側に設けられ
た酸素センサに比較して、応答速度が低いものの、触媒
コンバータの下流であるため、排気温度が低く、熱的影
響が少ない点と、被毒量が少ない点と、排気ガスが充分
に混合し、かつ排気ガス中の酸素濃度が平衡状態に近い
点と、によって出力特性のばらつきが小さいという利点
を有している。
In this dual oxygen sensor system, the oxygen sensor installed downstream of the catalytic converter has a lower response speed than the oxygen sensor installed upstream, but because it is downstream of the catalytic converter, the exhaust temperature is lower. The advantage is that there is little variation in output characteristics due to low heat, low thermal effects, low poisoning, sufficient mixing of exhaust gas, and oxygen concentration in exhaust gas close to equilibrium. have.

従って、2つの酸素センサの出力に基づく空燃比フィー
ドバック制御により、上流側酸素センサの出力特性のば
らつきを下流側酸素センサにより吸収できる。例えば、
単一の酸素センサを設けただものでは、酸素センサ出力
特性が悪化した場合、排気エミッション特性に直接影響
するのに対して、デュアル酸素センサシステムでは、上
流側酸素センサの出力特性が悪化しても、排気エミッシ
ョン特性は悪化しない。
Therefore, by performing air-fuel ratio feedback control based on the outputs of the two oxygen sensors, variations in the output characteristics of the upstream oxygen sensor can be absorbed by the downstream oxygen sensor. for example,
With a system equipped with a single oxygen sensor, if the oxygen sensor output characteristics deteriorate, it will directly affect the exhaust emission characteristics, but with a dual oxygen sensor system, even if the output characteristics of the upstream oxygen sensor deteriorate, it will directly affect the exhaust emission characteristics. , the exhaust emission characteristics do not deteriorate.

そこで、従来、特開昭63−205441号公報に示す
ように、下流側酸素センサの出力によって上流側酸素セ
ンサの劣化を補正制御するようにしたものがある。
Therefore, as shown in Japanese Unexamined Patent Publication No. 63-205441, there is a conventional device in which the deterioration of the upstream oxygen sensor is corrected and controlled based on the output of the downstream oxygen sensor.

〈発明が解決しようとする課題〉 しかしながら、このような従来のデュアル酸素センサシ
ステムにあっては、次のような問題点を有していた。
<Problems to be Solved by the Invention> However, such a conventional dual oxygen sensor system has the following problems.

即ち、触媒の劣化が大きくなった場合、種々の毒がトラ
ップされなくなり、下流側の酸素センサの被毒量も多く
なって、更に下流側酸素センサも劣化する。
That is, when the deterioration of the catalyst increases, various poisons are no longer trapped, the amount of poisoning of the downstream oxygen sensor increases, and the downstream oxygen sensor also deteriorates further.

この場合、この下流側酸素センサの出力は第6図に示す
ようになる。
In this case, the output of this downstream oxygen sensor will be as shown in FIG.

この結果、下流側酸素センサの出力によって上流側酸素
センサの劣化を補正制御しても、制御される空燃比はリ
ッチ側にずれてしまい、排気エミッションの悪化等を来
す。
As a result, even if the deterioration of the upstream oxygen sensor is corrected and controlled using the output of the downstream oxygen sensor, the controlled air-fuel ratio shifts to the rich side, resulting in deterioration of exhaust emissions.

そこで、本発明は以上のような従来の問題点に鑑み、触
媒及び酸素センサの劣化時に、制御される空燃比がリッ
チ側にずれることがないようにして、排気エミッション
の向上環を図れる内燃機間の空燃比制御装置を提供する
ことを目的とする。
In view of the above-mentioned conventional problems, the present invention has been developed to improve exhaust emissions in an internal combustion engine by preventing the controlled air-fuel ratio from shifting toward the rich side when the catalyst and oxygen sensor deteriorate. The purpose of the present invention is to provide an air-fuel ratio control device.

く課題を解決するための手段〉 このため、本発明の内燃機関の空燃比制御装置は、第1
図に示すように、内燃機関の排気系に介装された排気ガ
ス浄化用の触媒の上流側及び下流側に夫々排気ガス中の
酸素濃度を検出する酸素センサを備え、下流側酸素セン
サの出力に応じて空燃比フィードバック制御定数を演算
する制御定数演算手段と、前記上流側酸素センサの出力
及び前記制御定数演算手段により演算された空燃比フィ
ードバック制御定数に応じて空燃比補正量を演算する空
燃比補正量演算手段と、上流側及び下流側の酸素センサ
夫々の出力に基づいて触媒の劣化程度を判定する劣化程
度判定手段と、該劣化程度判定手段による判定結果に基
づいて前記制御定数演算手段による制御定数を変化させ
る制御定数変化手段と、前記空燃比補正量演算手段によ
って演算された空燃比補正量に基づいて空燃比を調整す
る空燃比調整手段と、を備えて構成した。
Means for Solving the Problems> Therefore, the air-fuel ratio control device for an internal combustion engine of the present invention has the following features:
As shown in the figure, oxygen sensors are installed on the upstream and downstream sides of a catalyst for exhaust gas purification installed in the exhaust system of an internal combustion engine to detect the oxygen concentration in the exhaust gas, and the downstream oxygen sensors output control constant calculation means for calculating an air-fuel ratio feedback control constant according to the output of the upstream oxygen sensor and an air-fuel ratio correction amount according to the output of the upstream oxygen sensor and the air-fuel ratio feedback control constant calculated by the control constant calculation means; a fuel ratio correction amount calculation means, a deterioration degree determination means for determining the degree of deterioration of the catalyst based on the outputs of the upstream and downstream oxygen sensors, and the control constant calculation means based on the determination result by the deterioration degree determination means. and an air-fuel ratio adjustment means that adjusts the air-fuel ratio based on the air-fuel ratio correction amount calculated by the air-fuel ratio correction amount calculation means.

く作用〉 かかる装置においては、下流側酸素センサによる空燃比
フィードバック制御により、上流側酸素センサの出力に
基づく空燃比フィードバック制御の制御定数としての微
分量や積分定数、空燃比判定のデイレイ時間或いは上流
側酸素センサと比較するスライスレベル等が補正される
。即ち、下流側酸素センサの出力に応して前記制御定数
が補正されるので、上流側酸素センサの出力特性のばら
つきが下流側酸素センサにより吸収される。しかも、触
媒の劣化程度に応じて上記微分量や積分定数等の補正量
が変化させられるので、触媒の劣化が大きくなって、下
流側酸素センサも劣化した場合に、制御される空燃比が
リッチ側にずれるのが防止され、排気エミッションの悪
化等を来すのが防止される。
In such a device, the air-fuel ratio feedback control by the downstream oxygen sensor controls the differential amount and integral constant as control constants for the air-fuel ratio feedback control based on the output of the upstream oxygen sensor, the delay time for air-fuel ratio determination, or the upstream The slice level etc. compared with the side oxygen sensor are corrected. That is, since the control constant is corrected according to the output of the downstream oxygen sensor, variations in the output characteristics of the upstream oxygen sensor are absorbed by the downstream oxygen sensor. Moreover, since the above-mentioned correction amounts such as the differential amount and the integral constant are changed according to the degree of deterioration of the catalyst, if the deterioration of the catalyst becomes large and the downstream oxygen sensor also deteriorates, the controlled air-fuel ratio will become richer. This prevents the engine from shifting to the side, thereby preventing deterioration of exhaust emissions.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図において、エンジン1の排気管2には、排気ガス
中の有害成分HC,Co、NOxを同時に浄化する三元
触媒を収納する触媒コンバータ3が設けられている。
In FIG. 2, an exhaust pipe 2 of an engine 1 is provided with a catalytic converter 3 that houses a three-way catalyst that simultaneously purifies harmful components HC, Co, and NOx in exhaust gas.

この触媒コンバータ3の上流側と下流側の排気管2には
、夫々酸素センサ4,5が設けられている。
Oxygen sensors 4 and 5 are provided in the exhaust pipes 2 on the upstream and downstream sides of the catalytic converter 3, respectively.

これら酸素センサ4,5は排気ガス中の酸素成分濃度に
応じた電気信号を夫々発生し、この信号をエンジン制御
装置、6の入力回路7.8を介してA/D変換器9に夫
々出力する。即ち、両酸素センサ4,5は空燃比が理論
空燃比に対してリーン側かリンチ側かに応じて異なる出
力電圧を前記A/D変換器9に発生する。
These oxygen sensors 4 and 5 each generate an electric signal according to the oxygen component concentration in the exhaust gas, and output this signal to the A/D converter 9 through the input circuit 7.8 of the engine control device 6. do. That is, both oxygen sensors 4 and 5 generate different output voltages to the A/D converter 9 depending on whether the air-fuel ratio is on the lean side or the lean side with respect to the stoichiometric air-fuel ratio.

エンジン制御装置6の入出力回路10には、吸気管11
のスロットル弁12の上流側に取り付けられたエアフロ
ーメータ13からの吸入空気量検出信号、クランク角セ
ンサ14からの機関回転数検出信号及び水温センサ15
からの機関冷却水温度検出信号の他に種々の機関運転条
件検出センサからの検出信号が入力され、燃料噴射弁1
6による燃料噴射量を制御する信号(空燃比フィードバ
ック信号を含む)を前記燃料噴射弁】6に出力するよう
になっている。
The input/output circuit 10 of the engine control device 6 includes an intake pipe 11
An intake air amount detection signal from an air flow meter 13 installed upstream of the throttle valve 12, an engine rotation speed detection signal from a crank angle sensor 14, and a water temperature sensor 15.
In addition to the engine cooling water temperature detection signal from the engine cooling water temperature detection signal, detection signals from various engine operating condition detection sensors are input.
A signal (including an air-fuel ratio feedback signal) for controlling the fuel injection amount by the fuel injection valve 6 is output to the fuel injection valve 6.

尚、上記エンジン制御装置6は、例えばマイクロコンピ
ュータとして構成され、上述した入力回路7,8、A/
D変換器9、入出力回路10の他に、CPU17、RO
M1B、RAM19等が設けられている。
The engine control device 6 is configured as a microcomputer, for example, and includes the input circuits 7, 8, A/
In addition to the D converter 9 and the input/output circuit 10, the CPU 17 and the RO
M1B, RAM19, etc. are provided.

次に、上記のハードウェア構造に基づく本発明に係る空
燃比制御の一例を、第3図〜第5図に示したフローチャ
ートに基づいて説明する。
Next, an example of air-fuel ratio control according to the present invention based on the above hardware structure will be explained based on the flowcharts shown in FIGS. 3 to 5.

第3図は空燃比補正係数αを演算する空燃比フィードバ
ック制御ルーチンを示すフローチャートである。
FIG. 3 is a flowchart showing an air-fuel ratio feedback control routine for calculating the air-fuel ratio correction coefficient α.

ステップ1においては、上流側酸素センサ4による空燃
比の閉ループ(フィードバック)条件が成立しているか
否かを判別する。
In step 1, it is determined whether a closed loop (feedback) condition for the air-fuel ratio by the upstream oxygen sensor 4 is satisfied.

閉ループ(フィードバック)条件成立の時は、ステップ
2に進んで空燃比補正係数αを1.0とする。又、閉ル
ープ(フィードバック)条件が不成立の時は、ステップ
3に進む。このステップ3では、上流側酸素センサ4の
出力O3R’lをA/D変換して読み込み、ステップ4
において03RIがスライスレベル電圧SLF以下か否
かを判別する。つまり、空燃比がリッチかリーンかを判
別する。リッチが判別されたならば、ステップ5に進ん
で空燃比フラグF1を1(リッチ)とする。リーンが判
別されたならば、ステップ6に進んで空燃比フラグF1
をO(リーン)とする。ステップ7においては、前記空
燃比フラグFlの符号が反転したか否かを判別する。即
ち、空燃比が反転したか否かを判別する。空燃比が反転
していれば、ステップ8に進んで、反転回数N1に1を
加える演算を実行し、ステップ9に進む。尚、この演算
は後述する触媒の劣化程度を判別するのに必要なもので
ある。
When the closed loop (feedback) condition is satisfied, the process proceeds to step 2 and the air-fuel ratio correction coefficient α is set to 1.0. Further, when the closed loop (feedback) condition is not satisfied, the process proceeds to step 3. In step 3, the output O3R'l of the upstream oxygen sensor 4 is A/D converted and read.
It is determined whether or not 03RI is equal to or lower than the slice level voltage SLF. In other words, it determines whether the air-fuel ratio is rich or lean. If rich is determined, the process proceeds to step 5 and the air-fuel ratio flag F1 is set to 1 (rich). If lean is determined, proceed to step 6 and set the air-fuel ratio flag F1.
is O (lean). In step 7, it is determined whether the sign of the air-fuel ratio flag Fl has been inverted. That is, it is determined whether the air-fuel ratio has been reversed. If the air-fuel ratio is reversed, the process proceeds to step 8, where an operation is performed to add 1 to the number of inversions N1, and the process proceeds to step 9. Note that this calculation is necessary for determining the degree of deterioration of the catalyst, which will be described later.

前記ステップ9では、前記空燃比フラグF1の値により
、リッチからリーンへの反転か、リーンからリッチへの
反転かを判別する。リッチからリーンへの反転であれば
、ステップ10に進んで後に説明するサブルーチンによ
り空燃比フィードバック制御定数としてのリッチ微分量
PLの補正量PH05を演算した後にステップ11に進
んで、α=α+PL+PH03とスキップ的に増大させ
、逆にリーンからリッチへの反転であれば、ステップ1
2に進んでやはりサブルーチンにより空燃比フィードバ
ック制御定数としてのリーン微分1iPRの補正量PH
03を演算した後にステップ13に進んで、α=α−P
R+PH05とスキップ的に減少させる。つまり、微分
処理を行う。
In step 9, it is determined based on the value of the air-fuel ratio flag F1 whether the reversal is from rich to lean or from lean to rich. If it is a reversal from rich to lean, proceed to step 10 and calculate the correction amount PH05 of the rich differential amount PL as an air-fuel ratio feedback control constant using a subroutine to be explained later, then proceed to step 11 and skip to α=α+PL+PH03. If you want to increase the amount of money and reverse from lean to rich, step 1
Proceeding to step 2, the subroutine also determines the correction amount PH of the lean differential 1iPR as the air-fuel ratio feedback control constant.
After calculating 03, proceed to step 13 and calculate α=α−P
Decrease R+PH05 in a skip manner. In other words, differential processing is performed.

ステップ7において、空燃比フラグF1の符号が反転し
ていなければ、ステップ14,15.16にて積分処理
を行う。つまり、ステップ14において、F1=0か否
かの判定を行う。F1=0(リーン)であれば、ステッ
プ15において、α=α±IL(リッチ積分定数)とし
、F1=1(リッチ)であれば、ステップ16において
、α=α−IR(リーン積分定数)とする。
If the sign of the air-fuel ratio flag F1 is not inverted in step 7, integration processing is performed in steps 14, 15, and 16. That is, in step 14, it is determined whether F1=0. If F1=0 (lean), set α=α±IL (rich integral constant) in step 15, and if F1=1 (rich), set α=α−IR (lean integral constant) in step 16. shall be.

ここで、上記の積分定数IL、IRは、前記微分量PL
、PRに比して充分に小さく設定しである。
Here, the above integral constants IL and IR are the differential amount PL
, is set sufficiently small compared to PR.

従って、ステップ15はリーン状L!(F1=0)で燃
料噴射量を徐々に増大させ、ステップ16はリッチ状m
1(F1=1)で燃料噴射量を徐々に減少させる。
Therefore, step 15 is a lean L! (F1=0), the fuel injection amount is gradually increased, and step 16 is a rich m
1 (F1=1), the fuel injection amount is gradually decreased.

上述のようにして演算された空燃比補正係数αを第2図
のRAM19に格納し、このルーチンは終了する。
The air-fuel ratio correction coefficient α calculated as described above is stored in the RAM 19 shown in FIG. 2, and this routine ends.

次に、第4図に基づいて第3図のフローチャートのステ
ップ10.12におけるサブルーチンの作用を説明する
Next, the operation of the subroutine in step 10.12 of the flowchart of FIG. 3 will be explained based on FIG.

このサブルーチンは、上述したようにPH03の演算ル
ーチンである。
This subroutine is the calculation routine of PH03 as described above.

即ち、ステップ21においては、下流側酸素センサ5の
出力03R2をA/D変換して読み込み、ステップ22
において03R2がスライスレヘル電圧SLR以下か否
かを判別する。つまり、空燃比がリッチかリーンかを判
別する。リッチが判別されたならば、ステップ23に進
んで空燃比フラグF2を1(リッチ)とする。リーンが
判別されたならば、ステップ24に進んで空燃比フラグ
F2をO(リーン)とする。ステップ25においては、
前記空燃比フラグF2の符号が反転したか否か、つまり
、空燃比が反転したか否かを判別する。
That is, in step 21, the output 03R2 of the downstream oxygen sensor 5 is A/D converted and read, and in step 22
It is determined whether or not 03R2 is equal to or lower than the slice level voltage SLR. In other words, it determines whether the air-fuel ratio is rich or lean. If rich is determined, the process proceeds to step 23 and the air-fuel ratio flag F2 is set to 1 (rich). If lean is determined, the process proceeds to step 24 and the air-fuel ratio flag F2 is set to O (lean). In step 25,
It is determined whether the sign of the air-fuel ratio flag F2 has been inverted, that is, whether the air-fuel ratio has been inverted.

空燃比が反転していれば、ステップ26に進んで、反転
回数N2に1を加える演算を実行し、ステップ27に進
む。尚、この演算は後述する酸素センサの劣化程度を判
別するのに必要なものである。
If the air-fuel ratio is reversed, the process proceeds to step 26, where an operation is performed to add 1 to the number of inversions N2, and the process proceeds to step 27. Note that this calculation is necessary to determine the degree of deterioration of the oxygen sensor, which will be described later.

前記ステップ27では、前記空燃比フラグF2の値によ
り、リッチからリーンへの反転か、リーンからリッチへ
の反転かを判別する。リッチからリーンへの反転であれ
ば、ステップ28に進んでPH03=PHO3+ΔPH
03Lを演算してPH03を増大させ、逆にリーンから
リッチへの反転であれば、ステップ29に進んでPH0
3=PHO5−ΔPH03Rを演算してPH03を減少
させる。
In step 27, it is determined based on the value of the air-fuel ratio flag F2 whether the reversal is from rich to lean or from lean to rich. If it is a reversal from rich to lean, proceed to step 28 and set PH03=PHO3+ΔPH
03L is calculated to increase PH03. Conversely, if it is a reversal from lean to rich, proceed to step 29 and increase PH03.
3=PHO5-ΔPH03R is calculated to decrease PH03.

次に、第5図に示した本発明制御のベースフローに基づ
いて、上記のサブルーチンにおけるΔPH03L及びΔ
PH03Rの設定方法について説明する。
Next, based on the base flow of the control of the present invention shown in FIG. 5, ΔPH03L and ΔPH03L in the above subroutine
The setting method for PH03R will be explained.

ステップ31においては、PH05=O,N1=O,N
2=0とおいて、これらの初期値設定を実行する。ステ
ップ32においては、タイマを0にセットして、一定の
経過時間のカウントをスタートさせる。
In step 31, PH05=O, N1=O, N
2=0, and execute these initial value settings. In step 32, a timer is set to 0 and starts counting a certain elapsed time.

ステップ33においては、第3図に基づいて説明したル
ーチンによる空燃比補正係数αの演算を行い、ステップ
34で燃料噴射量の演算、ステップ35で第2図の燃料
噴射弁16の駆動、を夫々実行する。
In step 33, the air-fuel ratio correction coefficient α is calculated by the routine explained based on FIG. 3, in step 34 the fuel injection amount is calculated, and in step 35, the fuel injection valve 16 shown in FIG. 2 is driven. Execute.

次のステップ36においては、前記タイマにより所定時
間(例えば、20 s e c)がカウントされたか否
かを判定し、カウントされれば、ステップ37に進み、
カウントされなければ、ステップ33〜ステツプ35ス
テツプを繰り返す。
In the next step 36, it is determined whether a predetermined time (for example, 20 seconds) has been counted by the timer, and if it has been counted, the process proceeds to step 37,
If not counted, repeat steps 33 to 35.

ステップ37及びステップ38においては、触媒の劣化
程度DCATを前記反転回数Nl、N2により判定する
。つまり、下流側酸素センサ5出力のリーン、リッチの
切り換わり回数が下流側酸素センサ5出力のリーン、リ
ッチの切り換わり回数と比較して大であるか小であるか
を判定して、つまり、ステップ37でN2/Nlの比を
算出し、ステップ38でこの比の値から触媒の劣化程度
を判定する。この場合、下流側酸素センサ5出力の切り
換わり回数が大で、上記の比が大であれば、劣化程度が
大きく、下流側酸素センサ5出力の切り換わり回数が小
で、上記の比が小であれば、劣化程度が小さい。
In steps 37 and 38, the degree of deterioration DCAT of the catalyst is determined based on the number of inversions Nl and N2. In other words, it is determined whether the number of times the output of the downstream oxygen sensor 5 changes between lean and rich is larger or smaller than the number of times the output of the downstream oxygen sensor 5 changes between lean and rich. In step 37, the ratio of N2/Nl is calculated, and in step 38, the degree of deterioration of the catalyst is determined from the value of this ratio. In this case, if the number of switching times of the downstream oxygen sensor 5 output is large and the above ratio is large, the degree of deterioration is large, and if the number of switching times of the downstream oxygen sensor 5 output is small and the above ratio is small. If so, the degree of deterioration is small.

ステップ38の判定では、DCATが所定の基準値(例
えば、0.5〜0.7)を越えるか否かを判定し、DC
ATが所定の基′eJ、値を越えたならば(劣化程度大
)であれば、ステップ39に進み、DCATが所定の基
準値以下(劣化程度小)であれば、ステップ40に進む
In the determination at step 38, it is determined whether DCAT exceeds a predetermined reference value (for example, 0.5 to 0.7), and
If AT exceeds the predetermined base value (high degree of deterioration), the process proceeds to step 39, and if DCAT is below the predetermined reference value (small degree of deterioration), the process proceeds to step 40.

そして、ステップ39及びステップ40においては、夫
々ΔPH03R及びΔPH0SLの設定を行う。
Then, in steps 39 and 40, ΔPH03R and ΔPH0SL are set, respectively.

ここで、劣化程度の大きい時、ステップ39で、例えば
ΔPH03R=7X10”’ 、ΔPH03L−7X1
0− とし、劣化程度の小さい時、ステップ40で、例
えばΔPH03R=7X10ΔPH03L=15X10
−’  とする。
Here, when the degree of deterioration is large, in step 39, for example, ΔPH03R=7X10"', ΔPH03L-7X1
0-, and when the degree of deterioration is small, in step 40, for example, ΔPH03R=7X10ΔPH03L=15X10
-'.

つまり、劣化程度の大きい時は、劣化程度の小さい時よ
りもΔPH03Lを小さくして、リーン微分量PLを小
さくし、制御空燃比をリーン側にシフトするようにして
いる。
That is, when the degree of deterioration is large, ΔPH03L is made smaller than when the degree of deterioration is small, the lean differential amount PL is made smaller, and the control air-fuel ratio is shifted to the lean side.

この場合、劣化程度の大きい時は、劣化程度の小さい時
よりも八PH03Rを大きくして、リーン微分量PRを
大きくし、制御空燃比をリーン側にシフトするようにし
ても良い。
In this case, when the degree of deterioration is large, 8PH03R may be made larger than when the degree of deterioration is small, the lean differential amount PR may be increased, and the control air-fuel ratio may be shifted to the lean side.

以上の説明から明らかなように、触媒の劣化程度を判定
して、劣化程度の大きい時、つまり下流側酸素センサ5
の劣化も生じている時に、空燃比をリーン側にシフトす
る結果、下流側酸素センサ5の出力によって上流側酸素
センサ4の劣化を補正制御した場合に、制御される空燃
比がリッチ側にずれるのを防止することができ、エミッ
ションの悪化等を防止することができる。
As is clear from the above explanation, the degree of deterioration of the catalyst is determined, and when the degree of deterioration is large, that is, the downstream oxygen sensor 5
As a result of shifting the air-fuel ratio to the lean side when deterioration has also occurred, when the output of the downstream oxygen sensor 5 is used to correct the deterioration of the upstream oxygen sensor 4, the controlled air-fuel ratio shifts to the rich side. It is possible to prevent this, and it is possible to prevent deterioration of emissions.

尚、上記実施例において、第4図のフローチャートの各
ステップは、下流側酸素センサ5の出力に応じて空燃比
フィードバック制御定数を演算する本発明の制御定数演
算手段に相当する。
In the above embodiment, each step of the flowchart in FIG. 4 corresponds to the control constant calculation means of the present invention that calculates the air-fuel ratio feedback control constant according to the output of the downstream oxygen sensor 5.

又、第3図のフローチャートの各ステップは、上流側酸
素センサの出力及び制御定数演算手段により演算された
空燃比フィードバック制御定数に応じて空燃比補正量を
演算する本発明の空燃比補正量演算手段に相当する。
Further, each step of the flowchart in FIG. 3 is an air-fuel ratio correction amount calculation according to the present invention, which calculates an air-fuel ratio correction amount according to the output of the upstream oxygen sensor and the air-fuel ratio feedback control constant calculated by the control constant calculation means. It corresponds to the means.

更に、第5図のフローチャートのステップ37゜38は
、上流側及び下流側の酸素センサ4,5夫々の出カムこ
基づいて触媒の劣化程度を判定する本発明の劣化程度判
定手段に相当する。
Furthermore, steps 37 and 38 in the flowchart of FIG. 5 correspond to the deterioration degree determining means of the present invention which determines the deterioration degree of the catalyst based on the output cams of the upstream and downstream oxygen sensors 4 and 5, respectively.

又、同上のフローチャートのステップ39.40は、劣
化程度判定手段による判定結果に基づいて制御定数演算
手段による制御定数を変化させる本発明の制御定数変化
手段に相当する。
Further, steps 39 and 40 in the same flowchart correspond to the control constant changing means of the present invention which changes the control constant by the control constant calculating means based on the determination result by the deterioration degree determining means.

上記実施例においては、下流側酸素センサ5の出力に応
じて空燃比フィードバック制御定数を演算する制御定数
演算手段における制御定数として、微分量を採用し、こ
れを劣化程度に応じて変化させる構成としたが、制御定
数として、積分定数や遅延時間や下流側酸素センサ5の
出力の比較電圧としてのスライスレベルを採用し、これ
らを劣化程度に応じて変化させる構成としても良い。
In the above embodiment, a differential amount is adopted as a control constant in the control constant calculation means for calculating an air-fuel ratio feedback control constant according to the output of the downstream oxygen sensor 5, and this is changed according to the degree of deterioration. However, a configuration may also be adopted in which an integral constant, a delay time, and a slice level as a comparison voltage of the output of the downstream oxygen sensor 5 are employed as control constants, and these are changed according to the degree of deterioration.

例えば、積分定数を補正する場合は、劣化程度の大きい
時は、劣化程度の小さい時よりもリーン積分定数を小さ
くするように変化させるか、リーン積分定数 を大きく
するように変化させ、制御空燃比をリーン側にシフトす
れば良い。
For example, when correcting the integral constant, when the degree of deterioration is large, the lean integral constant is changed to be smaller than when the degree of deterioration is small, or the lean integral constant is changed to be increased, and the control air-fuel ratio is All you have to do is shift it to the lean side.

又、リッチからリーンの変化があってもリッチ状態であ
るとの判断を保持するためのり−ン遅延時間と逆の判断
を保持するためのリッチ遅延時間との関係(リーン遅延
時間〉リッチ遅延時間)を劣化程度に応じて変化させ、
制御空燃比をリーン側にシフトするようにしても良い。
Also, the relationship between the lean delay time to maintain the judgment that the state is rich even when there is a change from rich to lean and the rich delay time to maintain the opposite judgment (lean delay time > rich delay time) ) according to the degree of deterioration,
The control air-fuel ratio may be shifted to the lean side.

更に、下流側酸素センサ5の出力の比較電圧を劣化程度
に応じて変化させ、制御空燃比をリーン側にシフトする
ようにしても良い。
Furthermore, the control air-fuel ratio may be shifted to the lean side by changing the comparison voltage of the output of the downstream oxygen sensor 5 depending on the degree of deterioration.

又、空燃比判定のデイレイ時間或いは上流側酸素センサ
の出力の比較電圧を変化させても良い。
Further, the delay time for determining the air-fuel ratio or the comparison voltage of the output of the upstream oxygen sensor may be changed.

〈発明の効果〉 以上説明したように、本発明に係る内燃機関の空燃比制
御装置によると、内燃機関の排気系に介装された排気ガ
ス浄化用の触媒の上流側及び下流側に夫々排気ガス中の
酸素濃度を検出する酸素センサを備え、下流側酸素セン
サによる空燃比フィードバンク制御として、上流側酸素
センサの出力に基づく空燃比フィードバック制御の制御
定数としての微分量や積分定数等を補正する、即ち、下
流側酸素センサの出力に応じて前記制御定数を補正する
制御を行うものにおいて、触媒の劣化程度に応じて上記
微分量や積分定数等の補正量を変化させるようにしたか
ら、2つの酸素センサの出力に基づく空燃比フィードバ
ック制御により、上流側酸素センサの出力特性のばらつ
きを下流側酸素センサにより吸収でき、しかも、触媒の
劣化が大きくなって、下流側酸素センサも劣化した場合
に、制御される空燃比がリッチ側にずれるのを防止でき
、排気エミッションの悪化等を来すのを防止できる有用
性大なるものである。
<Effects of the Invention> As explained above, according to the air-fuel ratio control device for an internal combustion engine according to the present invention, the exhaust gas is connected to the upstream side and the downstream side of the exhaust gas purifying catalyst installed in the exhaust system of the internal combustion engine. Equipped with an oxygen sensor that detects the oxygen concentration in gas, and as air-fuel ratio feedbank control using the downstream oxygen sensor, corrects the differential amount, integral constant, etc. as control constants for air-fuel ratio feedback control based on the output of the upstream oxygen sensor. That is, in a device that performs control to correct the control constant according to the output of the downstream oxygen sensor, the correction amount of the differential amount, integral constant, etc. is changed depending on the degree of deterioration of the catalyst. With air-fuel ratio feedback control based on the outputs of the two oxygen sensors, variations in the output characteristics of the upstream oxygen sensor can be absorbed by the downstream oxygen sensor, and if the catalyst deteriorates significantly and the downstream oxygen sensor also deteriorates. In addition, it is highly useful in that it can prevent the controlled air-fuel ratio from shifting toward the rich side, thereby preventing deterioration of exhaust emissions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関の空燃比制御装置のクレ
ーム対応図、第2図は本発明を実施するための装置のシ
ステム図、第3図〜第5図は夫々本発明の制御内容を説
明するフローチャート、第6図は従来のシステムの問題
点を説明する下流側酸素センサ出力特性図である。 1・・・エンジン  2・・・排気管  3・・・触媒
コンバータ  4,5・・・酸素センサ  6・・・エ
ンジン制御装置  16・・・燃料噴射弁
Fig. 1 is a diagram corresponding to claims of an air-fuel ratio control device for an internal combustion engine according to the present invention, Fig. 2 is a system diagram of a device for carrying out the present invention, and Figs. 3 to 5 are control contents of the present invention, respectively. FIG. 6 is a downstream oxygen sensor output characteristic diagram explaining the problems of the conventional system. 1... Engine 2... Exhaust pipe 3... Catalytic converter 4, 5... Oxygen sensor 6... Engine control device 16... Fuel injection valve

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の排気系に介装された排気ガス浄化用の触媒の
上流側及び下流側に夫々排気ガス中の酸素濃度を検出す
る酸素センサを備え、下流側酸素センサの出力に応じて
空燃比フィードバック制御定数を演算する制御定数演算
手段と、前記上流側酸素センサの出力及び前記制御定数
演算手段により演算された空燃比フィードバック制御定
数に応じて空燃比補正量を演算する空燃比補正量演算手
段と、上流側及び下流側の酸素センサ夫々の出力に基づ
いて触媒の劣化程度を判定する劣化程度判定手段と、該
劣化程度判定手段による判定結果に基づいて前記制御定
数演算手段による制御定数を変化させる制御定数変化手
段と、前記空燃比補正量演算手段によって演算された空
燃比補正量に基づいて空燃比を調整する空燃比調整手段
と、を備えて構成されることを特徴とする内燃機関の空
燃比制御装置。
Oxygen sensors that detect the oxygen concentration in exhaust gas are installed on the upstream and downstream sides of a catalyst for purifying exhaust gas that is installed in the exhaust system of an internal combustion engine, and air-fuel ratio feedback is provided according to the output of the downstream oxygen sensor. control constant calculation means for calculating a control constant; and air-fuel ratio correction amount calculation means for calculating an air-fuel ratio correction amount according to the output of the upstream oxygen sensor and the air-fuel ratio feedback control constant calculated by the control constant calculation means. , a deterioration degree determination means for determining the degree of deterioration of the catalyst based on the outputs of the upstream and downstream oxygen sensors, and a control constant by the control constant calculation means based on the determination result by the deterioration degree determination means. An air-fuel ratio adjusting means for an internal combustion engine, comprising: a control constant changing means; and an air-fuel ratio adjusting means for adjusting the air-fuel ratio based on the air-fuel ratio correction amount calculated by the air-fuel ratio correction amount calculating means. Fuel ratio control device.
JP9931890A 1990-04-17 1990-04-17 Air-fuel ratio controller of internal combustion engine Pending JPH041440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9931890A JPH041440A (en) 1990-04-17 1990-04-17 Air-fuel ratio controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9931890A JPH041440A (en) 1990-04-17 1990-04-17 Air-fuel ratio controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH041440A true JPH041440A (en) 1992-01-06

Family

ID=14244291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9931890A Pending JPH041440A (en) 1990-04-17 1990-04-17 Air-fuel ratio controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH041440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131788A (en) * 1996-10-29 1998-05-19 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2012007580A (en) * 2010-06-28 2012-01-12 Honda Motor Co Ltd Air-fuel ratio control apparatus for internal combustion engine
US9624811B2 (en) 2013-10-02 2017-04-18 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192548A (en) * 1987-10-01 1989-04-11 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192548A (en) * 1987-10-01 1989-04-11 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131788A (en) * 1996-10-29 1998-05-19 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2012007580A (en) * 2010-06-28 2012-01-12 Honda Motor Co Ltd Air-fuel ratio control apparatus for internal combustion engine
US9624811B2 (en) 2013-10-02 2017-04-18 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JPH086624B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6397851A (en) Air-fuel ratio control device for internal combustion engine
JPH0357862A (en) Catalyst deterioration discriminator for internal combustion engine
JP2518247B2 (en) Air-fuel ratio control device for internal combustion engine
JPH066913B2 (en) Air-fuel ratio controller for internal combustion engine
JPS63120835A (en) Air-fuel ratio control device for internal combustion engine
JPS61237850A (en) Control device for air-fuel ratio in internal-combustion engine
JPH041440A (en) Air-fuel ratio controller of internal combustion engine
JP2001304018A (en) Air/fuel ratio control device for internal combustion engine
JPH01106936A (en) Control device for air-fuel ratio of internal combustion engine
JPH03275954A (en) Control device for air-fuel ratio of internal combustion engine using fuel of different kind
JP2518254B2 (en) Air-fuel ratio control device for internal combustion engine
JP2692430B2 (en) Air-fuel ratio control device for internal combustion engine
JP2518252B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0617660B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0533632A (en) Deterioration judging method of three way catalyst
JP2518243B2 (en) Air-fuel ratio control device for internal combustion engine
JP2518260B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63195350A (en) Air-fuel ratio control device for internal combustion engine
JPS63134835A (en) Air-fuel ratio control device for internal combustion engine
JPS6397845A (en) Air-fuel ratio control device for internal combustion engine
JPS6229737A (en) Air-fuel ratio controller for internal-combustion engine
JP2560303B2 (en) Air-fuel ratio control device for internal combustion engine
JP2596009B2 (en) Air-fuel ratio control device for internal combustion engine
JP2503956B2 (en) Air-fuel ratio control device for internal combustion engine