JPS6047837A - Lean combustion controlling system for internal- combustion engine - Google Patents

Lean combustion controlling system for internal- combustion engine

Info

Publication number
JPS6047837A
JPS6047837A JP58154364A JP15436483A JPS6047837A JP S6047837 A JPS6047837 A JP S6047837A JP 58154364 A JP58154364 A JP 58154364A JP 15436483 A JP15436483 A JP 15436483A JP S6047837 A JPS6047837 A JP S6047837A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
lean
learning
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58154364A
Other languages
Japanese (ja)
Other versions
JPH0147614B2 (en
Inventor
Hirotoshi Tonou
宏敏 斗納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP58154364A priority Critical patent/JPS6047837A/en
Publication of JPS6047837A publication Critical patent/JPS6047837A/en
Publication of JPH0147614B2 publication Critical patent/JPH0147614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable to execute lean combustion control taking inconsistency of the engine characteristics into consideration, by making the state that learning of the air-fuel ratio is already completed as a part of conditions for shifting to the stage of lean combustion control, and executing the lean combustion control on the basis of a base injection quantity of fuel after learning of the air-fuel ratio is completed. CONSTITUTION:In operation of an engine, whether learning of the air-fuel ratio is already completed or not is judged by an ECU on the basis of the fact whether or not the mean value of an air-fuel ratio correcting factor with time lies within the prescribed range larger than a reference value alpha1 that is slightly smaller than 1 and smaller than a reference value alpha2 that is slightly larger than 1. In case of YES, whether feedback conditions are satisfied or not is judged on the basis of a condition signal STS of an internal combustion engine EG. Further, in case of YES, whether the conditions for lean combustion are satisfied or not is judged when the frequency of inversion of rich/lean signals is higher than a prescribed value after completion of learning of the air-fuel ratio. When the conditions for lean combustion are thus satisfied, lean combustion control is executed on the basis of the base injection quantity of fuel after completion of the air-fuel ratio.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、空燃比の学習の段階、フィー1、−ハ・ツク
制御の段階及び希薄燃焼制御の段階を含む内燃機関の希
薄燃焼制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a lean-burn control method for an internal combustion engine, including an air-fuel ratio learning stage, a fee-1-hack control stage, and a lean-burn control stage. be.

従来技術と問題点 一般に内燃機関においては、排気ガス中の酸素濃度を酸
素センサで検出し、この検出結果に応して燃料噴射量を
制御することにより、空燃比を一定の値に保つというフ
ィートハック制御が行われている。この場合、内燃機関
の特性のバラツキを考慮し、酸素センサが非活性の状態
にあってフィートハック制御を行えない状態等に備えて
、空燃比の学習が併用されることが多い。この空燃比の
学習は、上記フィードバック制御におりる燃料噴射量の
制御が空燃比の補正という形で行われるのに対し、基本
噴射量自体の補正と云う形で行われる。この空燃比の学
習量(基本噴射量の補正■)をパンクアンプ電源の使用
によりRAM内に記1息しておき、内燃機関の始動時等
酸素センサが非活性状態にあってフィードパ・ツク制御
を行えない時に、前回記憶した空燃比の学習量を使用し
て噴射量の制御を行うことにより、内燃機関の特性のバ
ラツキを補正するごとが出来る。 一方、内燃機関が安
定しておりかつ低負荷である場合等に。
Conventional Technology and Problems In general, internal combustion engines use an oxygen sensor to detect the oxygen concentration in exhaust gas, and control the fuel injection amount according to this detection result to maintain the air-fuel ratio at a constant value. Hack control is in place. In this case, in consideration of variations in the characteristics of the internal combustion engine, air-fuel ratio learning is often used in preparation for situations such as when the oxygen sensor is inactive and foot hack control cannot be performed. This learning of the air-fuel ratio is performed by correcting the basic injection amount itself, whereas the control of the fuel injection amount in the feedback control described above is performed by correcting the air-fuel ratio. This air-fuel ratio learning amount (basic injection amount correction ■) is stored in the RAM using the puncture amplifier power supply, and feed pack control is performed when the oxygen sensor is in an inactive state, such as when starting the internal combustion engine. When this is not possible, by controlling the injection amount using the previously stored learning amount of the air-fuel ratio, it is possible to correct variations in the characteristics of the internal combustion engine. On the other hand, when the internal combustion engine is stable and under low load.

燃料消費量の低減を図るため、基本噴射量を一定の比率
で減少させることにより空燃比を理論値よりも所定量高
い値に保持するという希薄燃焼制御(バージキルリーン
制御)が一般に行われでいる。
In order to reduce fuel consumption, lean burn control (barge kill lean control) is generally performed, which maintains the air-fuel ratio at a predetermined amount higher than the theoretical value by reducing the basic injection amount at a fixed rate. There is.

しかしながら、上記従来の希薄燃焼制御方式では、内燃
機関の特性のバラツキを考慮することなく学習前の基本
噴射量を画一的な比率で減少させる構成であるから、内
燃機関の特性によっては。
However, in the conventional lean burn control method described above, the basic injection amount before learning is reduced at a uniform rate without considering variations in the characteristics of the internal combustion engine, so depending on the characteristics of the internal combustion engine.

希薄燃焼制御によって空燃比が高くなり過ぎて。The air-fuel ratio becomes too high due to lean burn control.

運転性能が劣化したり、内燃機関が停止したり。Driving performance may deteriorate or the internal combustion engine may stop.

あるいは触媒が過熱したりするという不都合が生じる場
合があった。
Alternatively, there may be a problem that the catalyst becomes overheated.

発明の目的 本発明は上記従来の問題点に鑑みてなされたものであり
、その目的は、内燃機関の特性のバラツキを考慮した希
薄燃焼制御方式を提供することにある。
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a lean burn control system that takes into account variations in the characteristics of internal combustion engines.

発明の構成 上記目的を達成する本発明は、空燃比の学習が既に完了
していることを希薄燃焼制御の段階への移行の条件の一
部とし且つ該移行した希薄燃焼制御の段階において学習
完了後の基本噴射量を基準として希薄燃焼制御を行うよ
うに構成されている以下1本発明の更に詳細を実施例に
よって説明する。
Structure of the Invention The present invention achieves the above object by making it part of the condition for transitioning to the lean burn control stage that learning of the air-fuel ratio has already been completed, and completing the learning at the transitioned lean burn control stage. Further details of the present invention, which is configured to perform lean burn control based on the subsequent basic injection amount, will be explained below using examples.

発明の実施例 第1図は1本発明の一実施例が)所用される内燃機関の
燃料噴射制御システムの構成ブロック図である。EGは
内燃機関、ECUば内MA +2.lj関制御ユニット
であり、この内燃機関制御ユニソI−E CUはマイク
ロプロセソザCPU、比較回路COMP及びバッファB
UFから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a fuel injection control system for an internal combustion engine to which an embodiment of the present invention is applied. EG is internal combustion engine, ECU internal MA +2. lj related control unit, and this internal combustion engine control unit I-E CU includes a microprocessor CPU, a comparator circuit COMP, and a buffer B.
It is composed of UF.

比較回路COMPは、内燃機関EC内に設置された酸素
センサから酸素濃度を表示する信号Vsを受け、これと
基準値V refとを比較して空燃比(A/F)がリン
チであるかリーンであるかをハイ又はローで表示する2
値信号をマイクロプロセッサCPUに出力する。マイク
ロプロセッサCPUは、上記比較回路C’OMPの出力
と内燃機関から受けた内燃機関の状態を示す信号STS
に基づきバッファBUFを介して内燃機関CGに燃料噴
射1TAUの指令信号を供給する。
The comparison circuit COMP receives a signal Vs indicating the oxygen concentration from an oxygen sensor installed in the internal combustion engine EC, and compares this signal with a reference value V ref to determine whether the air-fuel ratio (A/F) is lean or lean. Display whether it is high or low 2
Output the value signal to the microprocessor CPU. The microprocessor CPU receives the output of the comparison circuit C'OMP and a signal STS indicating the state of the internal combustion engine received from the internal combustion engine.
Based on this, a command signal for fuel injection of 1 TAU is supplied to the internal combustion engine CG via the buffer BUF.

第2図は、上記マイクロプロセッサCPUの動作を説明
するフローチャートである。
FIG. 2 is a flowchart illustrating the operation of the microprocessor CPU.

燃料噴射量の制御が開始されると、プロ・7り10にお
いて空燃比の学習が行われる。即ち、まずステップ11
において、空燃比の学習が既に終了しているか否かが判
定される。この判定は、空燃比補正係数FAFの時間平
均値FAFAVが1より僅かに小さい所定値α1よりも
大きくかつ1より僅かに大きい所定値α2よりも小さい
所定範囲にあるか否かを判定することによって行われる
When control of the fuel injection amount is started, learning of the air-fuel ratio is performed in Pro 7 Ri 10. That is, first step 11
At , it is determined whether or not learning of the air-fuel ratio has already been completed. This determination is made by determining whether the time average value FAFAV of the air-fuel ratio correction coefficient FAF is within a predetermined range that is larger than a predetermined value α1 that is slightly smaller than 1 and smaller than a predetermined value α2 that is slightly larger than 1. It will be done.

この空燃比補正係数FAFは、後述するフィードバック
(F/B)制御ブロック60において、比較回路CCI
MPからのリッチ/リーン信号に応じて増減せしめられ
時間に対して鋸歯状波的に変化する量であり、基本噴射
量をTPとずれば。
This air-fuel ratio correction coefficient FAF is determined by a comparison circuit CCI in a feedback (F/B) control block 60, which will be described later.
It is an amount that is increased or decreased according to the rich/lean signal from MP and changes in a sawtooth waveform over time, and if the basic injection amount is different from TP.

TAU=TP*’FAF として定義される。TAU=TP*’FAF is defined as

F A F A Vが上記所定範囲内になければ、即ら
空燃比の学習が未だ終了していなi−1れば、ステップ
12において、これが1より大きいか否かがI」l定さ
れる。FΔFAVが1より小さげれば、ステップ13に
おいて基本噴射iTPが所定ステップ減少せしめられ、
逆に1より大きげれば、ステ。
If F A F A V is not within the above-mentioned predetermined range, that is, if the learning of the air-fuel ratio has not yet been completed, it is determined in step 12 whether or not this is greater than 1. . If FΔFAV is smaller than 1, the basic injection iTP is decreased by a predetermined step in step 13;
On the other hand, if it is greater than 1, it is Ste.

プ14において基本噴射(iTPが所定ステップ増加せ
しめられる。即ち、空燃比の学習は、F’AFAVを1
の近傍に収束せしめる方向に行われる。
In Step 14, the basic injection (iTP) is increased by a predetermined step.
This is done in the direction of convergence near .

一方、ステップ11において、空燃比の学習が既に終了
していることが判定された場合には、それ以上の学習が
行われることなく2次の判定ステップ20に進む。
On the other hand, if it is determined in step 11 that learning of the air-fuel ratio has already been completed, the process proceeds to the second determination step 20 without performing any further learning.

ステップ20において、内燃機関の状態信号STSに基
づき、フィードバンク(F/B)条件が成立しているか
否かが判定される。フィードハック条件が成立しておれ
ば、空燃比の学習が既に終了しているか否か等を判定す
るブロック図30に移行する。即ら、ステップ31にお
いて学習の終了が判定され、終了しておれば、比較回路
COMPからのりフチ/リーン信号(COMPの比較出
力)が所定回数(例えば3回)以上反転されているか否
かが判定される。所定回数以上反転しておれば、パーシ
ャルリーン(P/L)制御の条件が成立しているか否か
を判定するステップ50に移行する。上記空燃比の学習
又は所定回数の反転のいずれかが終了していなければ2
判定ステップ50はスキップされる。
In step 20, it is determined whether a feed bank (F/B) condition is satisfied based on the internal combustion engine status signal STS. If the feed hack condition is satisfied, the process moves to block diagram 30 in which it is determined whether or not learning of the air-fuel ratio has already been completed. That is, in step 31, it is determined that learning is completed, and if it is completed, it is determined whether the edge/lean signal from the comparator circuit COMP (comparison output of COMP) has been inverted a predetermined number of times (for example, three times) or more. It will be judged. If the rotation has been reversed a predetermined number of times or more, the process moves to step 50 in which it is determined whether the conditions for partial lean (P/L) control are satisfied. 2 if either the above air-fuel ratio learning or the specified number of reversals has not been completed.
Decision step 50 is skipped.

一方、ステップ20においてフィードバック制御の条件
が成立していないと判定された場合には、ステップ40
において、FAFを1に固定するオープン制御が行われ
る。
On the other hand, if it is determined in step 20 that the conditions for feedback control are not satisfied, step 40
At this point, open control is performed to fix FAF to 1.

ステップ50において、内燃機関の状態信号STSに基
づき1回転数が所定値以上であるか、スロットル開度が
所定値以上であるか、加減速状態でないか、冷却水温が
所定範囲内であるか等の希薄燃焼(パーシャルリーン)
条件の成立の有無が判定される。このパーシャルリーン
条件が成立していなけれは、フロック60に移行してこ
こでフィードバンク(F/B)制御が行われ、一方パー
シャルリーン条件が成立しておれば、ブロック70に移
行してここでパーシャルリーン制御が行われる。
In step 50, based on the status signal STS of the internal combustion engine, it is determined whether the number of revolutions is greater than a predetermined value, whether the throttle opening is greater than a predetermined value, whether the acceleration/deceleration is not in progress, whether the cooling water temperature is within a predetermined range, etc. lean combustion (partial lean)
It is determined whether the condition is met. If this partial lean condition is not satisfied, the process moves to block 60, where feedbank (F/B) control is performed; on the other hand, if the partial lean condition is satisfied, the process moves to block 70, where feedbank (F/B) control is performed. Partial lean control is performed.

フィードバック制御においては、まずステップ61にお
いて排気ガス中の酸素濃度がリンチであるかリーンであ
るか(比較回路COMPの出力のハイ/ロー)が判定さ
れる。リーンであれば、ステップ63において空燃比補
正係数FAFが所定ステップだけ増加され、リンチであ
れば、ステップ62において空燃比補正係数FAFが所
定ステップだけ減少される。
In the feedback control, first, in step 61, it is determined whether the oxygen concentration in the exhaust gas is lynch or lean (high/low output of the comparison circuit COMP). If lean, the air-fuel ratio correction coefficient FAF is increased by a predetermined step in step 63, and if lean, the air-fuel ratio correction coefficient FAF is decreased by a predetermined step in step 62.

パーシャルリーン制御においては、まずステップ71に
おいて、空燃比補正係数FAFがパーシャルリーン制御
による設定値KOに達しているか否かが判定され、未だ
達していなげれば、ステップ72においてFAFが所定
ステップだけ減少される。既に設定値に達しこれを下廻
っておれば。
In partial lean control, first, in step 71, it is determined whether the air-fuel ratio correction coefficient FAF has reached the set value KO by partial lean control. If it has not reached it yet, in step 72, FAF is decreased by a predetermined step. be done. If it has already reached the set value and is below it.

ステップ73において設定値Koにクランプされる。In step 73, it is clamped to the set value Ko.

最後にステップ80において、学習中の又は学習が終了
した基本噴射iTPに上述のようにしてめた空燃比補正
係数FAFを乗算することにより、噴射量TAUがめら
れる。
Finally, in step 80, the injection amount TAU is determined by multiplying the basic injection iTP that is being learned or has been learned by the air-fuel ratio correction coefficient FAF determined as described above.

本発明では、パーシャルリーン制御を開始するだめの条
件としてブロック30が設りられているので、上記パー
シャルリーンにおりる設定値K。
In the present invention, since block 30 is provided as a condition for starting partial lean control, the set value K is set to reach the above partial lean.

は、空燃比の学習済みの基本噴射量に対する空燃比補正
係数となる。このように、パーシャルリーン制御は空燃
比の学習が終了した基本噴射量に基づいて行われる。
is an air-fuel ratio correction coefficient for the basic injection amount whose air-fuel ratio has been learned. In this way, partial lean control is performed based on the basic injection amount for which learning of the air-fuel ratio has been completed.

本発明の一好通実施例においては、パーシャルリーン制
御開始のための条件中に、フィードハック制御に移行し
てから酸素濃度の検出結果(比較口’1lfr COM
 Pの出力のハイ/ロー)が所定回数以上反転している
ことが含まれているが、その理由は次のようなものであ
る。
In a preferred embodiment of the present invention, during the conditions for starting partial lean control, the oxygen concentration detection result (comparison port '1lfr COM
This includes that the output (high/low) of P is inverted a predetermined number of times or more, and the reason for this is as follows.

一般に、フィードハック制御の応答性を高めるため、第
3図に示すように、酸素センサの反転時には、F A 
Fの値をスキップさせて変化させている。FAFAVは
、FAFがスキップする時点で前回のスキップ時のFA
Fと今回のFAFとのj[i均を取ることにより定めら
11.る。このため、フィードパンク制御に移行した時
点では、FΔrSの値は次のスキップまでは1.0の値
に保持される。このとき基本噴射量がずれていると、第
3図示のように最初のスキップまで長い時間が必要とな
り。
Generally, in order to improve the responsiveness of feed hack control, as shown in Fig. 3, when the oxygen sensor is reversed, F A
The value of F is changed by skipping. FAFAV is the FA at the time of the previous skip at the time the FAF skips.
Determined by taking the average of j[i between F and the current FAF11. Ru. Therefore, at the time of transition to feed puncture control, the value of FΔrS is held at a value of 1.0 until the next skip. If the basic injection amount deviates at this time, it will take a long time to reach the first skip as shown in the third diagram.

この間において他のパーシャルリーン条件が成立すると
、FAFAVが1であるため空燃比がずれたままパーシ
ャルリーン制御が開始されるという不都合がある。この
不都合は、所定回数基」ニスキソプが繰り返され、FA
FAVが正常に計算されるまでパーシャルリーン制御に
移行しないような構成によって除去される。
If another partial lean condition is satisfied during this time, there is a problem that partial lean control is started with the air-fuel ratio being shifted because FAFAV is 1. This inconvenience occurs when the FA is repeated a predetermined number of times.
This can be eliminated by a configuration that does not shift to partial lean control until FAV is successfully calculated.

発明の詳細 な説明したように9本発明は2空燃比の学習が既に完了
していることを希薄燃焼制御の段階への移行の条件の一
部とし且つ該移行した希薄燃焼制御の段階において学習
完了後の基本噴射量を基準として希薄燃焼制御を行・う
ように構成されているので、内fA 機関の特性のバラ
ツキを考慮した希薄燃焼制御方式を実現することができ
るという利点がある。
Detailed Description of the Invention As described above, the present invention makes it part of the condition for transitioning to the lean burn control stage that the learning of the air-fuel ratio has already been completed, and the learning is performed in the transitioned lean burn control stage. Since it is configured to perform lean burn control based on the basic injection amount after completion, there is an advantage that it is possible to realize a lean burn control method that takes into account variations in the characteristics of the internal fA engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例が適用される燃料噴射制御シ
ステムの構成ブロック図、第2図は第1図示のマイクロ
プロセッサCPUの動作を説明するためのフローチャー
(−2第3図は本発明の一実施例の原理を説明するため
の概念図である。 PC・・内燃機関、ECU・・内燃1浅関制御ユニノl
−、CPU・・マイクロプロセノ”J−、COMP・・
比較回路、BUF・・バッファ。 特許出願人 富士通テン株式会社 代 理 人 弁理士 玉蟲久五部(外1名)第 1 図 第 3 図 AF
FIG. 1 is a configuration block diagram of a fuel injection control system to which an embodiment of the present invention is applied, and FIG. 2 is a flowchart for explaining the operation of the microprocessor CPU shown in FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram for explaining the principle of one embodiment of the present invention.PC: internal combustion engine, ECU: internal combustion engine 1
-, CPU...Microproceno"J-, COMP...
Comparison circuit, BUF...buffer. Patent applicant: Fujitsu Ten Ltd. Representative: Patent attorney: Gobe Tamamushi (1 other person) Figure 1 Figure 3 Figure AF

Claims (2)

【特許請求の範囲】[Claims] (1)空燃比の学習の段階、フィードハック制御の段階
及び希薄燃焼制御の段階を含む内燃機関の燃焼制御方式
において。 空燃比の学習が既に完了しており且つフィードハック制
御に移行していることを希薄燃焼制御の段階への移行の
条件の一部とし且つ該移行した希薄燃焼制御の段階にお
いて空燃比の学習完了後の基本噴射量を基準として希薄
燃焼制御を行うことを特徴とする内燃機関の希薄燃焼制
御方式。
(1) In a combustion control method for an internal combustion engine including an air-fuel ratio learning stage, a feed hack control stage, and a lean burn control stage. Part of the conditions for transitioning to the lean burn control stage is that the learning of the air-fuel ratio has already been completed and the transition to feedhack control is completed, and the learning of the air-fuel ratio is completed at the stage of lean burn control that has been transitioned to. A lean-burn control method for an internal combustion engine characterized by performing lean-burn control based on a subsequent basic injection amount.
(2)フィートハック制御に移行してから所定回数以上
酸素濃度の比較結果が反転していることを前記希薄燃焼
制御の段階への移行の条件の一部と
(2) As part of the conditions for transitioning to the lean burn control stage, the oxygen concentration comparison results must be reversed a predetermined number of times after transitioning to foot hack control.
JP58154364A 1983-08-24 1983-08-24 Lean combustion controlling system for internal- combustion engine Granted JPS6047837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154364A JPS6047837A (en) 1983-08-24 1983-08-24 Lean combustion controlling system for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154364A JPS6047837A (en) 1983-08-24 1983-08-24 Lean combustion controlling system for internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS6047837A true JPS6047837A (en) 1985-03-15
JPH0147614B2 JPH0147614B2 (en) 1989-10-16

Family

ID=15582539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154364A Granted JPS6047837A (en) 1983-08-24 1983-08-24 Lean combustion controlling system for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS6047837A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544543A (en) * 1991-08-08 1993-02-23 Toyota Motor Corp Fuel injection a mount control device for internal combustion engine
EP0803646A2 (en) * 1996-04-26 1997-10-29 Ford Motor Company Limited Method and apparatus for improving vehicle fuel economy
WO2015080094A1 (en) * 2013-11-28 2015-06-04 愛三工業 株式会社 Fuel supply system for internal combustion engine and control method therefor
JP2015143495A (en) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 Control system of internal combustion engine
JP2020033933A (en) * 2018-08-29 2020-03-05 株式会社デンソー Evaporation fuel treatment device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544543A (en) * 1991-08-08 1993-02-23 Toyota Motor Corp Fuel injection a mount control device for internal combustion engine
EP0803646A2 (en) * 1996-04-26 1997-10-29 Ford Motor Company Limited Method and apparatus for improving vehicle fuel economy
EP0803646A3 (en) * 1996-04-26 1999-12-29 Ford Motor Company Limited Method and apparatus for improving vehicle fuel economy
WO2015080094A1 (en) * 2013-11-28 2015-06-04 愛三工業 株式会社 Fuel supply system for internal combustion engine and control method therefor
JP2015105582A (en) * 2013-11-28 2015-06-08 愛三工業株式会社 Fuel supply system for internal combustion engine
CN105829685A (en) * 2013-11-28 2016-08-03 爱三工业株式会社 Fuel supply system for internal combustion engine and control method therefor
JP2015143495A (en) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 Control system of internal combustion engine
CN105940206A (en) * 2014-01-31 2016-09-14 丰田自动车株式会社 Control system and control method for internal combustion engine
US9926864B2 (en) 2014-01-31 2018-03-27 Toyota Jidosha Kabushiki Kaisha Control system and control method for internal combustion engine
JP2020033933A (en) * 2018-08-29 2020-03-05 株式会社デンソー Evaporation fuel treatment device
WO2020045486A1 (en) * 2018-08-29 2020-03-05 株式会社デンソー Vaporized fuel processing device
US11326531B2 (en) 2018-08-29 2022-05-10 Denso Corporation Evaporative fuel processing device

Also Published As

Publication number Publication date
JPH0147614B2 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
JP3348434B2 (en) Air-fuel ratio control device for internal combustion engine
US6102019A (en) Advanced intelligent fuel control system
JPH08158918A (en) Air fuel ratio learning control device for internal combustion engine
JP3326811B2 (en) Lean burn control device for internal combustion engine
JPS6047837A (en) Lean combustion controlling system for internal- combustion engine
JPH1047122A (en) Fuel injection control device for internal combustion engine
JPH11336600A (en) Spark ignition type internal combustion engine
JPH10299460A (en) Exhaust gas purifying device for internal combustion engine
JP2004353598A (en) Air fuel ratio control device for internal combustion engine
JPH0979071A (en) Air-fuel ratio learning control device for internal combustion engine
JP3448931B2 (en) Catalyst deterioration determination device for internal combustion engine
JP2526570B2 (en) Air-fuel ratio control device for internal combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JP2681965B2 (en) Air-fuel ratio control device for internal combustion engine
JP3062705B2 (en) Control device for exhaust gas purification device
JPH01285635A (en) Air-fuel ratio control device for internal combustion engine
JPH0646013B2 (en) Air-fuel ratio control method for fuel supply device for internal combustion engine
JP2807528B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6342103B2 (en)
JP3397087B2 (en) Engine combustion fluctuation control device
JPS61237858A (en) Control device for air-fuel ratio in internal-combustion engine
JPH07269398A (en) Air-fuel ratio controller of internal combustion engine
JP3230387B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP2500946Y2 (en) Electronically controlled fuel supply system for internal combustion engine
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine