JPH11336600A - Spark ignition type internal combustion engine - Google Patents

Spark ignition type internal combustion engine

Info

Publication number
JPH11336600A
JPH11336600A JP10141657A JP14165798A JPH11336600A JP H11336600 A JPH11336600 A JP H11336600A JP 10141657 A JP10141657 A JP 10141657A JP 14165798 A JP14165798 A JP 14165798A JP H11336600 A JPH11336600 A JP H11336600A
Authority
JP
Japan
Prior art keywords
ignition
self
operating condition
operation state
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10141657A
Other languages
Japanese (ja)
Inventor
Yasunori Iwakiri
保憲 岩切
Koji Hiratani
康治 平谷
Toru Noda
徹 野田
Tomonori Urushibara
友則 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10141657A priority Critical patent/JPH11336600A/en
Publication of JPH11336600A publication Critical patent/JPH11336600A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spark ignition type combustion engine capable of conducting stable self ignition operation by monitoring an NOx concentration in exhaust gas. SOLUTION: An operating condition judging section 2 judges, on the basis of signals from various sensors, which one of self ignition or spark ignition is suited for an operating condition, and informs an operating condition setting section 4 of a result of the judgement. A self ignition judging section 3 judges, on the basis of an NOx concentration before exhaust cleaning detected by an NOx sensor, whether a self ignition actually occurs, and informs the operating condition setting section 4 of a result of the judgement. The operating condition setting section 4 has a setting section for spark ignition 5, a setting section for self ignition 6 and a setting section for condition transition 7, and in the setting for condition transition, when the self ignition judging section 3 judges that a combustion condition to which the operating condition is transited would not occur, the original operating condition is restored.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火花点火式内燃機
関に係り、特に、運転条件が許せば圧縮自己着火運転を
行って、排気中の窒素酸化物の低減及び燃費の向上がで
きる火花点火式内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spark ignition type internal combustion engine, and more particularly, to a spark ignition engine capable of performing a compression self-ignition operation if the operating conditions permit, thereby reducing nitrogen oxides in exhaust gas and improving fuel efficiency. The present invention relates to an internal combustion engine.

【0002】[0002]

【従来の技術】近年、社会の環境意識が高まり、埋蔵燃
料の有効利用、地球温暖化防止のためのCO2 排出量の
抑制等の市場要求が増大しており、これに対処するため
に内燃機関のさらなる燃費向上が必要となってきた。
2. Description of the Related Art In recent years, social awareness of the environment has increased, and market demands for effective use of buried fuel and suppression of CO2 emissions for preventing global warming have been increasing. It is necessary to further improve fuel efficiency.

【0003】ガソリンエンジンにおける燃費の向上は、
理論空燃比(A/F=14.7)より空燃比が大である
リーンバーン領域で稼働割合を増加させることにより実
現されるが、リーンバーン領域では、一般的に濃混合比
に比べ排気中にNO、NO2等の窒素酸化物(以下、N
Ox と略す)が増加する。
[0003] The improvement of fuel efficiency in gasoline engines is
This is realized by increasing the operating ratio in the lean burn region where the air-fuel ratio is larger than the stoichiometric air-fuel ratio (A / F = 14.7). Nitrogen oxides such as NO and NO2 (hereinafter referred to as N
Ox).

【0004】排気中のNOx の低減と燃費の向上を両立
させる技術として、排気の一部を燃焼室に戻す排気還流
(以下、EGRと略す)技術が知られている。このEG
RによるNOx 低減の原理は、不活性なガスである排気
を新気に混合することにより、最高燃焼温度を低下さ
せ、窒素の酸化を低減するものである。
An exhaust gas recirculation (hereinafter abbreviated as EGR) technique for returning a part of exhaust gas to a combustion chamber is known as a technique for achieving both reduction of NOx in exhaust gas and improvement of fuel efficiency. This EG
The principle of NOx reduction by R is to mix exhaust gas, which is an inert gas, with fresh air, thereby lowering the maximum combustion temperature and reducing nitrogen oxidation.

【0005】また、通常のガソリンエンジンにおいて
は、点火プラグによる火花が燃焼を開始させるが、EG
Rを行うエンジンでは、排気中の化学活性に富む遊離基
(ラジカル)がガソリンの分解・酸化を促進すること、
及び排気の持つ熱量が新気に加えられるので圧縮端温度
が上昇することにより自己着火燃焼が生じる運転領域が
ある。
[0005] In a normal gasoline engine, a spark generated by a spark plug starts combustion.
In the engine that performs R, the radicals (radicals) rich in the chemical activity in the exhaust promote the decomposition and oxidation of gasoline,
In addition, there is an operation region in which self-ignition combustion occurs due to an increase in the compression end temperature because the amount of heat of the exhaust gas is added to fresh air.

【0006】このようなEGRを利用して自己着火を行
う内燃機関として、例えば特開平6−193447号公
報記載の技術が知られている。この従来技術によれば、
エンジンの運転条件が中低負荷であることを判定して、
排気還流路の流量調整バルブを開き、排気の一部を燃焼
室に導いて自己着火条件を整えるものである。
As an internal combustion engine that performs self-ignition using such EGR, for example, a technique described in Japanese Patent Application Laid-Open No. HEI 6-193449 is known. According to this prior art,
It is determined that the operating condition of the engine is medium to low load,
The flow control valve of the exhaust gas recirculation path is opened, and a part of the exhaust gas is guided to the combustion chamber to adjust the self-ignition condition.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来技術によれば、機関回転数やスロットル開度等のエン
ジン運転条件に従って、点火時期、燃料噴射量、EGR
量等の運転状態設定を切換えた後は、自己着火運転の開
始は自然発生に任せることになっていた。このため、個
々の製品のばらつきや、経年変化、環境条件等の変化に
より自己着火が起こらない場合には、大量のEGRによ
り燃焼が不安定になったり、最悪の場合にはエンジンの
運転自体が継続できないことが起きるという問題点があ
った。
However, according to the above prior art, the ignition timing, fuel injection amount, EGR, etc. are determined according to engine operating conditions such as engine speed and throttle opening.
After switching the operation state setting such as the amount, the start of the self-ignition operation is to be left to spontaneous generation. Therefore, if self-ignition does not occur due to variations in individual products, aging, changes in environmental conditions, etc., combustion will become unstable due to a large amount of EGR, and in the worst case, the operation of the engine itself will be stopped. There was a problem that something that could not be continued occurred.

【0008】本発明は、上記問題点に鑑みてなされたも
ので、その目的とするところは、運転状態設定の火花点
火用設定と自己着火用設定との相互の切換において、火
花点火しているか自己着火しているかを監視し、安定し
た運転状態を実現できる火花点火式内燃機関を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to determine whether spark ignition is performed when switching between the spark ignition setting and the self-ignition setting of the operation state setting. An object of the present invention is to provide a spark ignition type internal combustion engine capable of monitoring whether self-ignition has occurred and realizing a stable operation state.

【0009】[0009]

【課題を解決するための手段】(特許請求の範囲に対応
した修正)上記目的を達成するため、請求項1記載の発
明は、運転条件に基づいて自己着火条件が成立するか否
かを判定する運転条件判定手段と、排気処理される前の
機関から排出された直後の排気中の窒素酸化物濃度を検
出するNOx センサと、前記運転条件判定手段による判
定及び前記NOx センサが検出した窒素酸化物濃度に基
づいて、火花点火用運転状態と自己着火用運転状態と遷
移用運転状態との間で機関の運転状態を相互に切り換え
る運転状態設定手段と、を備えたことを要旨とする火花
点火式内燃機関である。
Means for Solving the Problems (Correction Corresponding to Claims) In order to achieve the above object, the invention according to claim 1 determines whether or not a self-ignition condition is satisfied based on operating conditions. Operating condition judging means, a NOx sensor for detecting the concentration of nitrogen oxides in the exhaust gas immediately after being exhausted from the engine before the exhaust treatment, a judgment made by the operating condition judging means, and a nitrogen oxide detected by the NOx sensor. Operating state setting means for mutually switching the operating state of the engine between the operating state for spark ignition, the operating state for self-ignition, and the operating state for transition based on the substance concentration. An internal combustion engine.

【0010】請求項2記載の発明は、請求項1記載の発
明において、前記運転状態が前記火花点火用運転状態に
おいて、前記運転条件判定手段により前記自己着火条件
が成立すると判定されたとき、前記運転状態を前記遷移
用運転状態に変更すると共に前記NOx センサが検出す
る窒素酸化物濃度に所定の変化が生じるか否かを監視
し、該窒素酸化物濃度に所定の濃度変化が生じた場合に
は、前記運転状態を前記遷移用運転状態から前記自己着
火用運転状態に変更し、該窒素酸化物濃度に所定の濃度
変化が生じない場合には、前記運転状態を前記遷移用運
転状態から前記火花点火用運転状態に戻すことを要旨と
する。
According to a second aspect of the present invention, in the first aspect of the present invention, when the operating condition determining means determines that the self-ignition condition is satisfied in the spark ignition operating condition, The operating state is changed to the transition operating state, and at the same time, it is monitored whether a predetermined change occurs in the nitrogen oxide concentration detected by the NOx sensor, and when a predetermined change occurs in the nitrogen oxide concentration, Changes the operating state from the transitional operating state to the self-ignition operating state, and when a predetermined concentration change does not occur in the nitrogen oxide concentration, changes the operating state from the transitional operating state to the operating state. The gist is to return to the spark ignition operation state.

【0011】請求項3記載の発明は、請求項1記載の発
明において、前記運転状態が前記自己着火用運転状態に
おいて、前記運転条件判定手段により前記自己着火条件
が成立しないと判定されたとき、前記運転状態を前記遷
移用運転状態に変更すると共に前記NOx センサが検出
する窒素酸化物濃度に所定の変化が生じるか否かを監視
し、該窒素酸化物濃度に所定の濃度変化が生じた場合に
は、前記運転状態を前記遷移用運転状態から前記火花点
火用運転状態に変更し、該窒素酸化物濃度に所定の濃度
変化が生じない場合には、前記運転状態を前記遷移用運
転状態から前記自己着火用運転状態に戻すことを要旨と
する。
According to a third aspect of the present invention, in the first aspect of the present invention, when the operating condition determining means determines that the self-ignition condition is not satisfied in the self-ignition operating state, Changing the operation state to the transition operation state and monitoring whether a predetermined change occurs in the nitrogen oxide concentration detected by the NOx sensor; and when a predetermined change occurs in the nitrogen oxide concentration. The operating state is changed from the operating state for transition to the operating state for spark ignition, and when a predetermined concentration change does not occur in the nitrogen oxide concentration, the operating state is changed from the operating state for transition. The gist is to return to the self-ignition operation state.

【0012】請求項4記載の発明は、請求項1記載の発
明において、前記運転状態が前記自己着火用運転状態に
おいて、前記運転条件判定手段により前記自己着火条件
が成立しないと判定されたとき、前記運転状態を前記遷
移用運転状態に変更すると共に前記NOx センサが検出
する窒素酸化物濃度に所定の変化が生じるか否かを監視
し、該窒素酸化物濃度に所定の濃度変化が生じた場合に
は、前記運転状態を前記遷移用運転状態から前記火花点
火用運転状態に変更し、該窒素酸化物濃度に所定の濃度
変化が生じない場合には、自己着火の解除条件不足と判
定して、さらに火花点火誘発側へ運転状態設定を変化さ
せることを要旨とする。
According to a fourth aspect of the present invention, in the first aspect of the present invention, when the operating condition determining means determines that the self-ignition condition is not satisfied in the self-ignition operating state, Changing the operation state to the transition operation state and monitoring whether a predetermined change occurs in the nitrogen oxide concentration detected by the NOx sensor; and when a predetermined change occurs in the nitrogen oxide concentration. The operating state is changed from the operating state for transition to the operating state for spark ignition, and when a predetermined concentration change does not occur in the nitrogen oxide concentration, it is determined that the self-ignition release condition is insufficient. The gist of the present invention is to further change the operation state setting to the spark ignition inducing side.

【0013】請求項5記載の発明は、請求項2ないし請
求項4のいずれか1項記載の発明において、前記窒素酸
化物濃度の所定の濃度変化とは、濃度変化量または濃度
変化割合または濃度の時間変化率であることを要旨とす
る。
According to a fifth aspect of the present invention, in the second aspect of the present invention, the predetermined concentration change of the nitrogen oxide concentration is a concentration change amount, a concentration change ratio, or a concentration change ratio. Is the time change rate of

【0014】請求項6記載の発明は、前記窒素酸化物濃
度の濃度変化量または濃度変化割合または濃度の時間変
化率の判定基準を運転条件毎に備えたことを要旨とす
る。
According to a sixth aspect of the present invention, a criterion for determining the amount of change in the concentration of nitrogen oxide, the rate of change of the concentration, or the rate of change of the concentration over time is provided for each operating condition.

【0015】請求項7記載の発明は、請求項1ないし請
求項6のいずれか1項記載の発明において、前記運転条
件判定手段における自己着火条件の判定基準を前記窒素
酸化物濃度の監視結果に基づいて更新することを要旨と
する。
According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the criterion for the self-ignition condition in the operating condition determining means is based on the monitoring result of the nitrogen oxide concentration. The point is to update based on this.

【0016】請求項8記載の発明は、請求項1ないし請
求項7のいずれか1項記載の発明において、前記火花点
火用運転状態と前記自己着火用運転状態と前記状態遷移
用運転状態との各運転状態の相違によりそれぞれ異なる
値に制御される運転状態パラメータとして、点火時期、
EGR量、燃料噴射量のいずれか、又はこれらの少なく
とも2者の組合せであることを要旨とする。
According to an eighth aspect of the present invention, in the first aspect of the present invention, the operation state for the spark ignition, the operation state for the self-ignition, and the operation state for the state transition are changed. As operation state parameters controlled to different values according to the difference in each operation state, ignition timing,
The gist is that either the EGR amount or the fuel injection amount, or a combination of at least two of them.

【0017】[0017]

【発明の効果】請求項1に記載の本発明によれば、火花
点火用運転状態と自己着火用運転状態との2つの運転状
態に加えて、過渡的な遷移用運転状態を設け、運転条件
判定手段の判定に基づいて火花点火用運転状態と自己着
火用運転状態との相互の運転状態を切り換えるに際し、
一旦運転状態を遷移用運転状態に変更するとともに、N
Ox センサが検出した排気中の窒素酸化物濃度を監視
し、実際に自己着火運転が実現できる領域においてのみ
自己着火用運転状態を設定することができるので、燃焼
が不安定になることを防止し、安定した運転状態を継続
することができるという効果を奏する。
According to the present invention, a transient transition operating state is provided in addition to the spark operating state and the self-ignition operating state. Upon switching the mutual operation state between the spark ignition operation state and the self-ignition operation state based on the determination of the determination means,
Once the operation state is changed to the transition operation state, N
The nitrogen oxide concentration in the exhaust gas detected by the Ox sensor is monitored, and the self-ignition operation state can be set only in a region where the self-ignition operation can be actually performed, thereby preventing combustion from becoming unstable. This has the effect that a stable operating state can be maintained.

【0018】請求項2に記載の本発明によれば、請求項
1記載の発明の効果の加えて、火花点火用運転状態から
自己着火用運転状態に移る際の遷移用運転状態におい
て、NOx センサにより監視される排気中の窒素酸化物
濃度に所定の濃度変化が生じた場合に、自己着火が成功
したと判定して遷移用運転状態から自己着火用運転状態
に運転状態を変更し、所定の濃度変化が生じない場合
に、自己着火失敗と判定して遷移用運転状態から火花点
火用運転状態に復帰することにより、外部環境変化等に
より自己着火が実際に起こらない場合に迅速に火花点火
用運転状態に復帰することができるので、更に安定した
運転状態を継続することができる。
According to the second aspect of the present invention, in addition to the effect of the first aspect, the NOx sensor is provided in the transitional operation state when the operation mode is shifted from the spark ignition operation state to the self-ignition operation state. When a predetermined concentration change occurs in the nitrogen oxide concentration in the exhaust gas monitored by the above, it is determined that the self-ignition has succeeded, and the operation state is changed from the transition operation state to the self-ignition operation state, and the predetermined operation is performed. If no concentration change occurs, self-ignition failure is determined and the operation state for transition is returned to the operation state for spark ignition, so that if self-ignition does not actually occur due to changes in the external environment, etc. Since it is possible to return to the operating state, a more stable operating state can be continued.

【0019】請求項3に記載の本発明によれば、請求項
1記載の発明の効果の加えて、自己着火用運転状態から
火花点火用運転状態に移る際の遷移用運転状態におい
て、NOx センサにより監視される排気中の窒素酸化物
濃度に所定の濃度変化が生じた場合に、自己着火からの
離脱が成功したと判定して遷移用運転状態から火花点火
用運転状態に運転状態を変更し、所定の濃度変化が生じ
ない場合に、自己着火離脱失敗と判定して遷移用運転状
態から自己着火用運転状態に運転状態を復帰することに
より、自己着火運転が実際に継続する限り自己着火運転
を続けることができるので、排気中の窒素酸化物の低減
及び燃費の低減を更に行うことができる。
According to the third aspect of the present invention, in addition to the effect of the first aspect, the NOx sensor is provided in the transition operation state when the operation state is shifted from the self-ignition operation state to the spark ignition operation state. When a predetermined concentration change occurs in the nitrogen oxide concentration in the exhaust gas monitored by the above, it is determined that the departure from the self-ignition has succeeded, and the operation state is changed from the transition operation state to the spark ignition operation state. When the predetermined concentration change does not occur, the self-ignition operation is determined to be unsuccessful, and the operation state is returned from the transition operation state to the self-ignition operation state so that the self-ignition operation is continued as long as the self-ignition operation actually continues. Therefore, the reduction of nitrogen oxides in the exhaust gas and the reduction of fuel consumption can be further performed.

【0020】請求項4に記載の本発明によれば、請求項
1記載の発明の効果の加えて、自己着火用運転状態から
火花点火用運転状態に移る際の遷移用運転状態におい
て、NOx センサにより監視される排気中の窒素酸化物
濃度に所定の濃度変化が生じた場合に、自己着火からの
離脱が成功したと判定して遷移用運転状態から火花点火
用運転状態に運転状態を変更し、所定の濃度変化が生じ
ない場合に、自己着火の解除条件不足と判定して、さら
に火花点火誘発側へ運転状態設定を変化させることによ
り、確実な自己着火離脱を実現することができる。
According to the fourth aspect of the present invention, in addition to the effect of the first aspect, the NOx sensor is provided in the transition operation state when the operation mode is shifted from the self-ignition operation state to the spark ignition operation state. When a predetermined concentration change occurs in the nitrogen oxide concentration in the exhaust gas monitored by the above, it is determined that the departure from the self-ignition has succeeded, and the operation state is changed from the transition operation state to the spark ignition operation state. If the predetermined concentration change does not occur, the self-ignition release condition is determined to be insufficient, and the operating state setting is further changed to the spark ignition inducing side, whereby reliable self-ignition release can be realized.

【0021】請求項5に記載の本発明によれば、窒素酸
化物濃度の所定の濃度変化とは、濃度変化量または濃度
変化割合または濃度の時間変化率とすることにより、よ
り精密に自己着火の確認を行うことができる。
According to the fifth aspect of the present invention, the predetermined concentration change of the nitrogen oxide concentration is defined as the concentration change amount, the concentration change ratio, or the time change ratio of the concentration, so that the self-ignition can be performed more precisely. Can be confirmed.

【0022】請求項6に記載の本発明によれば、窒素酸
化物濃度の濃度変化量または濃度変化割合または濃度の
時間変化率の判定基準を運転条件毎に備えたことによ
り、運転条件の変動があっても正確な自己着火を判定を
行うことができる。
According to the sixth aspect of the present invention, the criterion for determining the amount of change in the concentration of nitrogen oxide, the rate of change in the concentration, or the rate of change in the concentration over time is provided for each of the operating conditions. Even if there is, an accurate self-ignition can be determined.

【0023】請求項7に記載の本発明によれば、前記運
転条件判定手段の判定基準を前記窒素酸化物濃度の監視
結果に基づいて更新することにより、個々の内燃機関の
特性のばらつきや経年変化、使用燃料の特性変化、その
他運転環境の変化に適応した自己着火運転領域の設定を
行うことができる。
According to the present invention, the criterion of the operating condition determining means is updated based on the monitoring result of the nitrogen oxide concentration, so that variations in characteristics of individual internal combustion engines and aging of the engine can be achieved. It is possible to set the self-ignition operation area adapted to the change, the characteristic change of the fuel used, and other changes in the operating environment.

【0024】請求項8に記載の本発明によれば、運転状
態制御パラメータとして、点火時期、EGR量、燃料噴
射量のいずれか、又はこれらの少なくとも2者の組合せ
とすることにより、従来の火花点火式内燃機関の制御プ
ログラムを変更することで容易に自己着火運転可能とす
ることができる。
According to the present invention, a conventional spark is provided by setting any one of an ignition timing, an EGR amount, and a fuel injection amount or a combination of at least two of them as an operation state control parameter. The self-ignition operation can be easily performed by changing the control program of the ignition type internal combustion engine.

【0025】[0025]

【発明の実施の形態】次に図面を参照して、本発明の実
施の形態を詳細に説明する。図1は、本発明に係る火花
点火式内燃機関を乗用車用ガソリンエンジン(以下、エ
ンジンと略す)に適用した実施形態の構成を示すシステ
ム構成図である。なお、本発明の説明のために必要な構
成要素以外の通常のエンジンに含まれる構成要素は、説
明を簡単化するために図示を省略するか或いは図示して
も符号の付与を省略している。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a system configuration diagram showing a configuration of an embodiment in which a spark ignition type internal combustion engine according to the present invention is applied to a gasoline engine for a passenger car (hereinafter, abbreviated as engine). The components included in the normal engine other than the components necessary for the description of the present invention are omitted from the drawings for simplification of the description, or the reference numerals are omitted from the drawings. .

【0026】図1に示すように、エンジンは、マイクロ
コンピュータ等を備えたエンジン制御ユニット1と、吸
入空気量を測定するエアフローメータ8、スロットル開
度を測定するスロットルセンサ9、気筒毎に設けられた
燃料噴射バルブ10、冷却水温度を測定する水温センサ
11、異常燃焼によるシリンダ振動に基づいてノッキン
グを検出するノックセンサ12、気筒毎に設けられた点
火プラグ13、EGR経路を開閉するEGRバルブ1
4、排気中の酸素濃度を測定するO2 センサ15、排気
浄化処理前の排気中のNOx 濃度を測定するNOx セン
サ16、O2 センサ15及びNOx センサ16の下流に
設けられた排気浄化用の三元触媒17、ディストリビュ
ータ18とを備えている。
As shown in FIG. 1, the engine is provided with an engine control unit 1 having a microcomputer and the like, an air flow meter 8 for measuring an intake air amount, a throttle sensor 9 for measuring a throttle opening, and a cylinder. Fuel injection valve 10, a coolant temperature sensor 11 for measuring a coolant temperature, a knock sensor 12 for detecting knocking based on cylinder vibration caused by abnormal combustion, a spark plug 13 provided for each cylinder, an EGR valve 1 for opening and closing an EGR path.
4. An O2 sensor 15 for measuring the oxygen concentration in the exhaust gas, a NOx sensor 16 for measuring the NOx concentration in the exhaust gas before the exhaust gas purification processing, and a three-way exhaust gas purification device provided downstream of the O2 sensor 15 and the NOx sensor 16. A catalyst 17 and a distributor 18 are provided.

【0027】NOx センサ16には、例えば、β型Nb
2O5(酸化ニオブ)を主成分として薄膜に成形した薄膜
状半導体NOx センサや、ZrO2 (ジルコニア)等の
酸素イオン伝導性固体電解質を用いたNOx センサを利
用することができる。
The NOx sensor 16 includes, for example, β-type Nb
A thin-film semiconductor NOx sensor formed into a thin film mainly containing 2O5 (niobium oxide) or a NOx sensor using an oxygen ion conductive solid electrolyte such as ZrO2 (zirconia) can be used.

【0028】エンジン制御ユニット1は、後述されるエ
ンジン回転数や負荷等の各種センサ出力信号を読み込み
運転条件を判定する運転条件判定部2と、NOx センサ
16の測定信号に基づいて自己着火を判定する自己着火
判定部3と、運転条件判定部2及び自己着火判定部3の
判定結果に基づいて、運転条件に応じた運転状態設定を
行う運転状態設定部4を備えている。
An engine control unit 1 reads an output signal of various sensors such as an engine speed and a load, which will be described later, and determines an operating condition. An operating condition determining unit 2 determines self-ignition based on a measurement signal of a NOx sensor 16. A self-ignition determination unit 3 that performs the operation, and an operation state setting unit 4 that sets an operation state according to the operation conditions based on the determination results of the operation condition determination unit 2 and the self-ignition determination unit 3.

【0029】運転条件判定部2は、エアフローメータ8
からの吸入空気量信号、スロットルセンサ9からのスロ
ットル開度信号、水温センサ11からの水温信号、ノッ
クセンサ12からのノックセンサ信号、O2 センサ15
からのO2 センサ信号、ディストリビュータ18からの
回転信号等の運転条件を示す信号をそれぞれ入力し、こ
れらの入力信号に基づいて、エンジンの運転条件が自己
着火条件を満足しているか否かを判定し、判定結果を運
転状態設定部4に通知する。
The operating condition determination unit 2 includes an air flow meter 8
Signal from the throttle sensor 9, a water temperature signal from the water temperature sensor 11, a knock sensor signal from the knock sensor 12, an O2 sensor 15
, An operating signal such as a rotation signal from the distributor 18 is input, and it is determined whether or not the operating condition of the engine satisfies the self-ignition condition based on these input signals. Then, the determination result is notified to the operation state setting unit 4.

【0030】自己着火判定部3は、NOx センサ16か
らのNOx センサ信号に基づいて、エンジンの実際の燃
焼状態が火花点火燃焼か或いは自己着火燃焼かを判定
し、この判定結果を運転状態設定部4に通知する。
The self-ignition judging section 3 judges whether the actual combustion state of the engine is spark ignition combustion or self-ignition combustion based on the NOx sensor signal from the NOx sensor 16, and determines the operation result by the operation state setting section. Notify 4.

【0031】運転状態設定部4は、運転条件判定部2及
び自己着火判定部3の判定結果に基づいて、選択的に制
御が移される火花点火用設定部5、自己着火用設定部
6、状態遷移用設定部7を備えていて、これらの各設定
部5、6、7からの出力によりEGRバルブ14の開
閉、燃料噴射バルブ10から噴射される燃料の量、ディ
ストリビュータ18へ供給される点火時期制御信号をそ
れぞれ制御する。
The operation state setting unit 4 is a spark ignition setting unit 5, a self ignition setting unit 6, to which control is selectively transferred, based on the judgment results of the operation condition judgment unit 2 and the self ignition judgment unit 3. A transition setting unit 7 is provided. The output from each of these setting units 5, 6, 7 opens and closes the EGR valve 14, the amount of fuel injected from the fuel injection valve 10, and the ignition timing supplied to the distributor 18. Control each control signal.

【0032】図2は、図1のエンジンの各運転状態設定
における特性を説明するタイムチャートであり、(a)
運転状態設定、(b)自己着火現象、(c)NOx 濃
度、(d)点火時期、(e)EGRバルブの開閉、
(f)燃料噴射量、それぞれの時間的変化の例を示すも
のである。
FIG. 2 is a time chart for explaining the characteristics of the engine shown in FIG. 1 in each operating state setting.
Operating state setting, (b) self-ignition phenomenon, (c) NOx concentration, (d) ignition timing, (e) opening and closing of EGR valve,
(F) shows an example of a fuel injection amount and a change with time thereof.

【0033】まず最初は、運転状態設定部4の火花点火
用設定部5の制御により、火花点火用設定に応じた制御
が行われているものとする。火花点火用設定において
は、点火時期は回転数と負荷とに応じた一般的制御法で
ある点火進角とする標準点火時期であり、EGRバルブ
14は閉じられ排気還流を行わない状態、燃料噴射量は
標準噴射量である。
First, it is assumed that the control according to the spark ignition setting is performed by the control of the spark ignition setting unit 5 of the operation state setting unit 4. In the spark ignition setting, the ignition timing is a standard ignition timing that sets the ignition advance as a general control method according to the rotational speed and the load, the EGR valve 14 is closed, the exhaust gas is not recirculated, and the fuel injection is performed. The volume is a standard injection volume.

【0034】次いで、運転条件判定部2が自己着火条件
が満足される運転条件であると判定したとき、この判定
が運転状態設定部4に通知され、火花点火用設定部5か
ら状態遷移用設定部7に制御を移行させ、ある時刻ta
で火花点火用設定から自己着火用設定への状態遷移のた
めの状態遷移A用設定(以下、遷移A設定と省略)に運
転状態設定を変更したとする。
Next, when the operating condition determining unit 2 determines that the operating condition is such that the self-ignition condition is satisfied, the operating condition setting unit 4 is notified of the determination, and the spark ignition setting unit 5 sets the state transition. The control is transferred to the unit 7 and a certain time ta
It is assumed that the operating state setting is changed to a state transition A setting (hereinafter abbreviated as transition A setting) for a state transition from the spark ignition setting to the self-ignition setting.

【0035】この遷移A設定では、点火時期は火花点火
用設定より進角とし、EGRバルブを開いて排気還流を
行い、燃料噴射量は標準噴射量を維持する。この遷移A
の状態で、電磁機械的アクチュエータによる制御遅れと
排気還流路の通過遅れ時間があるもののEGR量の増加
に伴って、火花点火動作を行いながら少しNOx が増加
しつつ、エンジンは点火時期の進角によりノッキングを
起こすようになる。
In the transition A setting, the ignition timing is advanced from the setting for spark ignition, the EGR valve is opened to perform exhaust gas recirculation, and the fuel injection amount is maintained at the standard injection amount. This transition A
In the state described above, although the control delay by the electromagnetic mechanical actuator and the passage delay time of the exhaust gas recirculation path are present, the engine advances the ignition timing while slightly increasing NOx while performing the spark ignition operation with the increase of the EGR amount. Causes knocking.

【0036】そしてノッキングが生じると、これを引き
金として図2(b)に示すように、自己着火現象が発生
する。この自己着火現象の発生とともに、図2(c)に
示すように、NOx 濃度は急激に低下する。一般に、こ
のNOx 濃度の低下量は数百ppm程度、あるいは火花
点火燃焼時のNOx 濃度に対して90%以上低下した値
となる。
When knocking occurs, the self-ignition phenomenon occurs as shown in FIG. With the occurrence of the self-ignition phenomenon, as shown in FIG. 2 (c), the NOx concentration rapidly decreases. Generally, the amount of decrease in the NOx concentration is about several hundred ppm, or a value which is 90% or more lower than the NOx concentration during spark ignition combustion.

【0037】自己着火判定部3は、NOx センサ16か
らの測定信号をA/D変換した信号と、例えば図示しな
い内蔵ROMに記憶された自己着火判定用のNOx 濃度
変化基準とを比較して、所定の濃度低下量(例えば30
0ppm)、または所定の濃度低下割合(濃度低下率、
例えば90%)、または所定の濃度の時間変化率(例え
ば、100ppm/0.1sec)が達成されたとき
に、自己着火現象が発生したと判定し、運転状態設定部
4に自己着火成功の通知をする。
The self-ignition judging section 3 compares the signal obtained by A / D conversion of the measurement signal from the NOx sensor 16 with a NOx concentration change reference for self-ignition judgment stored in, for example, an internal ROM (not shown). A predetermined density reduction amount (for example, 30
0 ppm) or a predetermined concentration reduction rate (concentration reduction rate,
When the time change rate of a predetermined concentration (for example, 100 ppm / 0.1 sec) is achieved, it is determined that the self-ignition phenomenon has occurred, and the operation state setting unit 4 is notified of the self-ignition success. do.

【0038】自己着火成功の通知を受けた運転状態設定
部4は、状態遷移用設定部7から自己着火用設定部6に
制御を移行し、自己着火用の運転状態設定を出力する
(時刻tb)。この自己着火用設定では、点火時期を標
準に戻し、EGRバルブ開の状態を維持し、燃料噴射量
は標準噴射量から例えばその90%に低下させる。
The operating state setting unit 4 having received the notification of the success of the self-ignition shifts the control from the state transition setting unit 7 to the self-ignition setting unit 6, and outputs the operating state setting for the self-ignition (time tb). ). In the self-ignition setting, the ignition timing is returned to the standard, the EGR valve is kept open, and the fuel injection amount is reduced from the standard injection amount to, for example, 90% thereof.

【0039】もし、遷移A設定において、所定のNOx
濃度低下が所定時間(例えば、t1=0.2〜0.3
秒)以内に生じなければ、自己着火失敗と判定して、火
花点火用設定へ復帰させるべく、状態遷移用設定部7か
ら火花点火用設定部5に制御を移行させる。
In the transition A setting, a predetermined NOx
The concentration reduction takes a predetermined time (for example, t1 = 0.2 to 0.3).
If it does not occur within seconds), it is determined that the self-ignition has failed, and control is transferred from the state transition setting unit 7 to the spark ignition setting unit 5 to return to the spark ignition setting.

【0040】次に、自己着火用設定において、運転条件
判定部2が自己着火条件を満足しない運転条件になった
ことを判定したとき、その旨が運転状態設定部4に通知
され、運転状態設定部4は、自己着火用設定部6から状
態遷移用設定部7に制御を移行し、状態遷移B用設定
(以下、遷移B設定と省略)を出力する(時刻tc)。
Next, in the self-ignition setting, when the operating condition determining unit 2 determines that the operating condition does not satisfy the self-igniting condition, the operating condition setting unit 4 is notified to that effect, The unit 4 transfers control from the self-ignition setting unit 6 to the state transition setting unit 7, and outputs a state transition B setting (hereinafter, abbreviated as transition B setting) (time tc).

【0041】遷移B設定では、標準の点火時期を維持す
るとともに、EGRバルブは閉じてEGRを停止させ、
燃料噴射量は標準噴射量に復帰させる。この遷移B設定
において、自己着火判定部3は、NOx センサ16から
の測定信号をA/D変換した信号と、例えば図示しない
内蔵ROMに記憶された自己着火離脱判定用のNOx 濃
度変化基準とを比較して、所定の濃度上昇量、または所
定の濃度上昇割合(濃度上昇率)、または所定の濃度の
時間変化率が達成されたときに、自己着火離脱成功と判
定し、運転状態設定部4に自己着火離脱成功の通知をす
る。
In the transition B setting, the standard ignition timing is maintained, the EGR valve is closed to stop the EGR,
The fuel injection amount is returned to the standard injection amount. In the setting of the transition B, the self-ignition determination section 3 compares the signal obtained by A / D conversion of the measurement signal from the NOx sensor 16 with the NOx concentration change reference for self-ignition departure determination stored in, for example, an internal ROM (not shown). In comparison, when a predetermined concentration increase amount, a predetermined concentration increase ratio (concentration increase ratio), or a predetermined concentration time change rate is achieved, it is determined that the self-ignition departure is successful, and the operation state setting unit 4 To self-ignition release success.

【0042】自己着火離脱成功の通知を受けた運転状態
設定部4は、状態遷移用設定部7から火花点火用設定部
5に制御を移行し、火花点火用の運転状態設定を出力す
る(時刻td)。
The operating state setting unit 4 which has received the notification of the successful self-ignition release shifts the control from the state transition setting unit 7 to the spark ignition setting unit 5 and outputs the operating state setting for spark ignition (time td).

【0043】もし、遷移A設定において、所定のNOx
濃度上昇が所定時間(例えば、t2=0.1秒)以内に
生じなければ、自己着火離脱失敗と判定して、自己着火
用設定へ復帰させるべく、状態遷移用設定部7から自己
着火用設定部6に制御を移行する。
If a predetermined NOx is set in the transition A setting
If the concentration increase does not occur within a predetermined time (for example, t2 = 0.1 seconds), it is determined that the self-ignition has failed, and the state transition setting unit 7 sets the self-ignition setting to return to the self-ignition setting. The control is transferred to the unit 6.

【0044】尚、遷移A設定において、所定のNOx 濃
度上昇が所定時間以内に生じなければ、より積極的に自
己着火運転から離脱するため、制御パラメータをさらに
火花点火誘発側へ変化させるように制御してもよい。こ
の場合、例えば空燃比が更に濃くなるように燃料噴射量
を増加させればよい。
In the transition A setting, if the predetermined NOx concentration rise does not occur within the predetermined time, the control parameter is further changed to the spark ignition inducing side in order to more positively depart from the self-ignition operation. May be. In this case, for example, the fuel injection amount may be increased so as to further increase the air-fuel ratio.

【0045】以上、運転条件判定部2、自己着火判定部
3、及び運転状態設定部4の連携した動作を説明した
が、これら各部を区別することなく統一的に制御するこ
とも本発明の範囲内である。
In the above, the cooperative operation of the operating condition determining unit 2, the self-ignition determining unit 3, and the operating state setting unit 4 has been described. However, it is also within the scope of the present invention to perform unified control without distinguishing these units. Is within.

【0046】次に示す図3及び図4のフローチャート
は、エンジン制御ユニットの内部を統合してソフトウェ
アによる制御を行った場合の動作を説明するものであ
る。
The following flowcharts in FIGS. 3 and 4 explain the operation in the case where the inside of the engine control unit is integrated and controlled by software.

【0047】まず、図3、4にフローチャートを示した
エンジン制御ユニットは、火花点火、自己着火、遷移
A、遷移Bからなる4つの制御モードを持つものとす
る。そして、4つの制御モードに共通な制御サイクルと
して、運転条件読込、各種条件判断、条件判断に応じて
必要な場合のモード変更、各モードに応じた運転状態設
定出力、を繰り返すことにより、時事刻々変化する運転
条件に対応するものとする。
First, the engine control unit shown in the flowcharts of FIGS. 3 and 4 has four control modes including spark ignition, self-ignition, transition A, and transition B. Then, as a control cycle common to the four control modes, by repeatedly reading the operating conditions, determining various conditions, changing the mode when necessary according to the condition determination, and outputting the operation state setting according to each mode, the time is moment by moment. It shall correspond to changing operating conditions.

【0048】さて、図3において、イグニッション・キ
ーがONとなったとき、モードフラグに火花点火を設定
し(ステップS10)、運転条件の読み込みを行う(ス
テップS12)。この運転条件の読み込みは、例えば回
転数及びエンジン負荷を含む各種センサの出力を読み込
む動作であり、図1に示したようなセンサ類の出力信号
を読み込んでもよいし、本発明を適用しようとするエン
ジンの火花点火に適した運転領域と、自己着火に適した
運転領域とを区別する条件を判定できるものなら特に限
定されることはない。
In FIG. 3, when the ignition key is turned on, spark ignition is set in the mode flag (step S10), and operation conditions are read (step S12). The reading of the operating conditions is an operation of reading the outputs of various sensors including, for example, the rotational speed and the engine load, and may read the output signals of the sensors as shown in FIG. 1 or intend to apply the present invention. There is no particular limitation as long as it can determine a condition for distinguishing between an operation region suitable for spark ignition of the engine and an operation region suitable for self-ignition.

【0049】次いで、NOx センサの出力を読み込み
(ステップS14)、NOx 濃度変化を検出し、後の判
定のために記憶する(ステップS16)。次いで、低水
温フラグCOLDを判定し(ステップS18)、COL
D=1なら暖機中であるので、燃焼室温度が低く自己着
火運転に適さないので、火花点火用設定を出力し(ステ
ップS36)、次いでエラーが有るか否かを判定し(ス
テップS62)、エラーが無ければイグニッションOF
Fか否かを判定し(ステップS64)、OFFでなけれ
ば、ステップS12へ戻って次のサイクルを繰り返す。
Next, the output of the NOx sensor is read (step S14), and a change in the NOx concentration is detected and stored for later determination (step S16). Next, the low water temperature flag COL is determined (step S18), and COL is determined.
If D = 1, the engine is warming up, and the combustion chamber temperature is low and is not suitable for self-ignition operation. Therefore, the spark ignition setting is output (step S36), and then it is determined whether or not there is an error (step S62). If there is no error, ignition OF
It is determined whether it is F or not (step S64). If it is not OFF, the process returns to step S12 to repeat the next cycle.

【0050】ステップS36の火花点火用設定出力は、
例えば、点火時期を標準とし、EGRバルブを閉じ、燃
料噴射量を標準とするものである。
The setting output for spark ignition in step S36 is
For example, the ignition timing is standardized, the EGR valve is closed, and the fuel injection amount is standardized.

【0051】ステップS18の判定において、COLD
=1でなければ、暖機終了であるので、モードを判定し
(ステップS20)、モードが火花点火であれば、ステ
ップS12で読み込んだ運転条件が自己着火条件を満た
すものかどうか判定する(ステップS22)。自己着火
条件が成立していなければ、ステップS36へ移る。
In the determination of step S18, COLD
If = 1, the warm-up is over, and the mode is determined (step S20). If the mode is spark ignition, it is determined whether the operating condition read in step S12 satisfies the self-ignition condition (step S20). S22). If the self-ignition condition is not satisfied, the process proceeds to step S36.

【0052】ステップS22で自己着火条件が成立して
いれば、モードを遷移Aに変更し(ステップS24)、
時間監視用のタイマをt1に設定して時間監視を始め
(ステップS26)、遷移A用設定を出力し(ステップ
S28)、ステップS62へ移る。
If the self-ignition condition is satisfied in step S22, the mode is changed to transition A (step S24),
The timer for time monitoring is set to t1 to start time monitoring (step S26), the setting for transition A is output (step S28), and the process proceeds to step S62.

【0053】ステップS28の遷移A用設定出力は、例
えば、点火時期を標準より進め、EGRバルブを開き、
燃料噴射量を標準とするものである。
The setting output for transition A in step S28 is, for example, to advance the ignition timing from the standard, open the EGR valve,
The fuel injection amount is used as a standard.

【0054】ステップS20のモード判定において、遷
移AであればステップS30へ制御を移し、NOx 濃度
と予め記憶した規定値とを比較する(ステップS3
0)。この比較でNOx 濃度が規定値以下であれば、自
己着火成功と判定して、モードを自己着火に変更し(ス
テップS38)、タイマを停止させて(ステップS4
0)、自己着火用設定を出力し(ステップS42)、次
いでステップS62へ移る。ステップS42の自己着火
用設定出力は、例えば、点火時期を標準に復帰し、EG
Rバルブの開状態を保持し、燃料噴射量を標準の例えば
0.9倍とするものである。
If the mode is determined to be transition A in step S20, control is passed to step S30, and the NOx concentration is compared with a predetermined value stored in advance (step S3).
0). If the NOx concentration is equal to or less than the specified value in this comparison, it is determined that self-ignition has succeeded, the mode is changed to self-ignition (step S38), and the timer is stopped (step S4).
0), the self-ignition setting is output (step S42), and then the process proceeds to step S62. The setting output for self-ignition in step S42 is, for example, the ignition timing is returned to the standard,
The R valve is kept open and the fuel injection amount is set to, for example, 0.9 times the standard value.

【0055】ステップS30の比較でNOx 濃度が規定
値を超えていれば、タイマを参照して監視開始からt1
経過したかどうかを判定し(ステップS32)、まだt
1経過してなければ、ステップS28へ移る。
If the NOx concentration exceeds the specified value in the comparison in step S30, the timer is referred to t1 from the start of monitoring with reference to the timer.
It is determined whether the time has elapsed (step S32), and t
If one has not elapsed, the process proceeds to step S28.

【0056】ステップS32の判定で、すでにt1経過
していれば、監視時間中に所定のNOx 濃度変化が生じ
なかったので、自己着火失敗と判定し、モードを火花点
火に変更し(ステップS34)、ステップS36へ移
る。
If it is determined in step S32 that t1 has already elapsed, since a predetermined change in NOx concentration has not occurred during the monitoring time, it is determined that self-ignition has failed, and the mode is changed to spark ignition (step S34). The process moves to step S36.

【0057】ステップS20の判定でモードが自己着火
であれば、ステップS12で読み込んだ運転条件が自己
着火離脱条件を満たすものかどうか判定する(ステップ
S44)。自己着火離脱条件が成立していなければ、ス
テップS42へ移る。
If the mode is self-ignition in step S20, it is determined whether the operating conditions read in step S12 satisfy the self-ignition departure condition (step S44). If the self-ignition release condition is not satisfied, the process proceeds to step S42.

【0058】ステップS44で自己着火離脱条件が成立
していれば、モードを遷移Bに変更し(ステップS4
6)、時間監視用のタイマをt2に設定して時間監視を
始め(ステップS48)、遷移B用設定を出力し(ステ
ップS50)、次いでステップS62へ移る。
If the self-ignition departure condition is satisfied in step S44, the mode is changed to transition B (step S4).
6) The timer for time monitoring is set to t2 to start time monitoring (step S48), the setting for transition B is output (step S50), and then the process proceeds to step S62.

【0059】ステップS50の遷移A用設定出力は、例
えば、点火時期の標準を保持し、EGRバルブを閉じ、
燃料噴射量を標準に復帰させるものである。
The setting output for transition A in step S50 holds, for example, the standard ignition timing, closes the EGR valve,
This is to return the fuel injection amount to the standard.

【0060】ステップS20のモード判定において、遷
移BであればステップS52へ制御を移し、NOx 濃度
と予め記憶した規定値とを比較する(ステップS5
2)。この比較でNOx 濃度が規定値を超えていれば、
自己着火離脱成功と判定して、モードを火花点火に変更
し(ステップS58)、タイマを停止させて(ステップ
S60)、ステップS36へ移る。
If the mode is determined to be transition B in step S20, control is passed to step S52, and the NOx concentration is compared with a predetermined value stored in advance (step S5).
2). If the NOx concentration exceeds the specified value in this comparison,
It is determined that the self-ignition release has succeeded, the mode is changed to spark ignition (step S58), the timer is stopped (step S60), and the process proceeds to step S36.

【0061】ステップS52の比較でNOx 濃度が規定
値以下であれば、タイマを参照して監視開始からt2経
過したかどうかを判定し(ステップS54)、まだt2
経過してなければ、ステップS50へ移る。
If the NOx concentration is equal to or less than the specified value in the comparison in step S52, it is determined whether or not t2 has elapsed from the start of monitoring with reference to the timer (step S54), and t2 is still determined.
If not, the process proceeds to step S50.

【0062】ステップS54の判定で、すでにt2経過
していれば、監視時間中に所定のNOx 濃度変化が生じ
なかったので、さらに燃料噴射量を増加させて火花点火
誘発側に制御パラメータを変化させ(ステップS5
6)、ステップS52へ移る。
If it is determined in step S54 that t2 has already elapsed, the predetermined NOx concentration change has not occurred during the monitoring time. Therefore, the fuel injection amount is further increased to change the control parameter to the spark ignition inducing side. (Step S5
6), proceed to step S52.

【0063】以上のようにして、エンジンの運転状態設
定を火花点火用設定と自己着火用設定との間で相互に切
り換える際に、一旦状態遷移用設定に移行し、この状態
遷移用設定中にNOx センサが検出する排気浄化前のN
Ox 濃度を監視し、所定の濃度変化が生じた場合、状態
遷移用設定から目的の設定に移行し、所定の濃度変化が
生じない場合、状態遷移用設定から元の設定に復帰する
ので、確実な運転状態設定の切換が行われ、不安定な運
転状態に陥ることを回避し、安定な運転状態を継続する
ことができる。
As described above, when the operation state setting of the engine is switched between the setting for spark ignition and the setting for self-ignition, the mode is temporarily shifted to the setting for state transition, and during the setting for state transition, NO before exhaust gas purification detected by NOx sensor
The Ox concentration is monitored, and if a predetermined concentration change occurs, the state transition setting is shifted to the target setting. If the predetermined concentration change does not occur, the state transition setting returns to the original setting. It is possible to avoid a situation in which the operation state setting is switched to an unstable operation state, and to maintain a stable operation state.

【0064】図5は、自己着火が成功したか否かを判定
するためのNOx 濃度変化量の基準値を運転状態毎に設
ける場合の例を示すグラフである。同図において横軸は
エンジン回転数であり、縦軸は負荷である。低回転かつ
低負荷の領域21は、NOx濃度低下量300ppm、
中回転・中負荷の領域22は、NOx 濃度低下量400
ppm、である。高回転または高負荷の領域23は、エ
ンジンのトルク及びパワーが要求されるので、自己着火
対象外としている。
FIG. 5 is a graph showing an example in which a reference value of the amount of change in NOx concentration for determining whether or not self-ignition has succeeded is provided for each operating state. In the figure, the horizontal axis is the engine speed, and the vertical axis is the load. The low-rotation and low-load region 21 has a NOx concentration reduction amount of 300 ppm,
The region 22 of the middle rotation / medium load has the NOx concentration reduction amount 400
ppm. Since the high torque or power of the engine is required in the high-speed or high-load region 23, the region 23 is excluded from the self-ignition target.

【0065】また同様に、自己着火判定用のNOx 濃度
低下率を一律の値ではなく、例えば、90%、85%、
80%というように、運転状態毎に判定用NOx 濃度低
下率を変えて、自己着火の判定に利用してもよい。
Similarly, the rate of decrease in NOx concentration for determining self-ignition is not a uniform value, but may be, for example, 90%, 85%,
The rate of decrease in the NOx concentration for determination may be changed for each operating state, such as 80%, and used for the determination of self-ignition.

【0066】図5のようなグラフをマップまたはそれぞ
れの境界値として、書換可能な不揮発性メモリに記憶
し、実際に自己着火運転が成功したときの運転状態によ
り、このメモリを書き換えるようにすれば、エンジン特
性の変化や外的な条件の変化に応じて、自己着火運転を
適当と判断する運転領域を動的に変更する学習を実現で
き、学習効果により自己着火失敗することが少なくな
り、運転特性の安定化、燃費の向上、排気の浄化等に対
して更に効果がある。
If a graph as shown in FIG. 5 is stored as a map or respective boundary values in a rewritable nonvolatile memory, and this memory can be rewritten according to the operation state when the self-ignition operation has actually succeeded. According to changes in engine characteristics and changes in external conditions, it is possible to implement learning that dynamically changes the operation area in which self-ignition operation is determined to be appropriate. It is more effective for stabilizing characteristics, improving fuel efficiency, purifying exhaust gas, and the like.

【0067】尚、排気還流については、外部EGR制御
方式を実施形態としたが、無論これに限定されず、可変
動弁装置を適用した吸気弁/排気弁の各バルブタイミン
グを制御することによってEGR量を制御する、いわゆ
る内部EGR制御方式を適用しても同様の効果が得られ
るものである。
Although the external EGR control method has been described as an embodiment of the exhaust gas recirculation, it is needless to say that the present invention is not limited to this. By controlling each valve timing of the intake valve / exhaust valve to which the variable valve apparatus is applied, the EGR is controlled. The same effect can be obtained by applying a so-called internal EGR control method for controlling the amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る火花点火式内燃機関の実施形態の
システム構成を示す図である。
FIG. 1 is a diagram showing a system configuration of an embodiment of a spark ignition type internal combustion engine according to the present invention.

【図2】本発明に係る火花点火式内燃機関の動作を説明
するタイムチャートである。
FIG. 2 is a time chart illustrating the operation of the spark ignition type internal combustion engine according to the present invention.

【図3】本発明に係る火花点火式内燃機関の動作を説明
するフローチャートである。
FIG. 3 is a flowchart illustrating an operation of the spark ignition type internal combustion engine according to the present invention.

【図4】本発明に係る火花点火式内燃機関の動作を説明
するフローチャートである。
FIG. 4 is a flowchart illustrating the operation of the spark ignition type internal combustion engine according to the present invention.

【図5】火花点火状態か自己着火状態かの判定基準をエ
ンジンの運転条件毎に備える場合の例を示すグラフであ
る。
FIG. 5 is a graph showing an example in which a criterion for determining whether a spark ignition state or a self-ignition state is provided for each engine operating condition.

【符号の説明】[Explanation of symbols]

1 エンジン制御ユニット 2 運転条件判定部 3 自己着火判定部 4 運転状態設定部 5 火花点火用設定部 6 自己着火用設定部 7 状態遷移用設定部 10 燃料噴射バルブ 14 EGRバルブ 16 NOx センサ 18 ディストリビュータ REFERENCE SIGNS LIST 1 engine control unit 2 operating condition determining unit 3 self-ignition determining unit 4 operating state setting unit 5 spark ignition setting unit 6 self-ignition setting unit 7 state transition setting unit 10 fuel injection valve 14 EGR valve 16 NOx sensor 18 distributor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 漆原 友則 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomonori Urushihara Nissan Motor Co., Ltd. 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 運転条件に基づいて自己着火条件が成立
するか否かを判定する運転条件判定手段と、 排気処理される前の機関から排出された直後の排気中の
窒素酸化物濃度を検出するNOx センサと、 前記運転条件判定手段による判定及び前記NOx センサ
が検出した窒素酸化物濃度に基づいて、火花点火用運転
状態と自己着火用運転状態と遷移用運転状態との間で機
関の運転状態を相互に切り換える運転状態設定手段と、 を備えたことを特徴とする火花点火式内燃機関。
An operating condition determining means for determining whether or not a self-ignition condition is satisfied based on an operating condition, and detecting a concentration of nitrogen oxides in exhaust immediately after exhaust from an engine before exhaust processing. The engine operation between the spark ignition operation state, the self-ignition operation state, and the transition operation state based on the determination by the operating condition determination means and the nitrogen oxide concentration detected by the NOx sensor. Operating state setting means for switching between states; and a spark ignition type internal combustion engine.
【請求項2】 前記運転状態が前記火花点火用運転状態
において、 前記運転条件判定手段により前記自己着火条件が成立す
ると判定されたとき、前記運転状態を前記遷移用運転状
態に変更すると共に前記NOx センサが検出する窒素酸
化物濃度に所定の変化が生じるか否かを監視し、 該窒素酸化物濃度に所定の濃度変化が生じた場合には、
前記運転状態を前記遷移用運転状態から前記自己着火用
運転状態に変更し、 該窒素酸化物濃度に所定の濃度変化が生じない場合に
は、前記運転状態を前記遷移用運転状態から前記火花点
火用運転状態に戻すことを特徴とする請求項1記載の火
花点火式内燃機関。
2. When the operating condition determining means determines that the self-ignition condition is satisfied while the operating condition is the spark ignition operating condition, the operating condition is changed to the transition operating condition and the NOx is changed. It monitors whether a predetermined change occurs in the nitrogen oxide concentration detected by the sensor, and when a predetermined change occurs in the nitrogen oxide concentration,
Changing the operation state from the transition operation state to the self-ignition operation state; and when the predetermined concentration change does not occur in the nitrogen oxide concentration, the operation state is changed from the transition operation state to the spark ignition. 2. The spark ignition type internal combustion engine according to claim 1, wherein the internal combustion engine is returned to a normal operation state.
【請求項3】 前記運転状態が前記自己着火用運転状態
において、 前記運転条件判定手段により前記自己着火条件が成立し
ないと判定されたとき、前記運転状態を前記遷移用運転
状態に変更すると共に前記NOx センサが検出する窒素
酸化物濃度に所定の変化が生じるか否かを監視し、 該窒素酸化物濃度に所定の濃度変化が生じた場合には、
前記運転状態を前記遷移用運転状態から前記火花点火用
運転状態に変更し、 該窒素酸化物濃度に所定の濃度変化が生じない場合に
は、前記運転状態を前記遷移用運転状態から前記自己着
火用運転状態に戻すことを特徴とする請求項1記載の火
花点火式内燃機関。
3. When the operating condition is determined to be not satisfied by the operating condition determining means in the operating condition, the operating condition is changed to the transition operating condition. It monitors whether a predetermined change occurs in the nitrogen oxide concentration detected by the NOx sensor, and when a predetermined change occurs in the nitrogen oxide concentration,
The operating state is changed from the transition operating state to the spark ignition operating state, and when a predetermined concentration change does not occur in the nitrogen oxide concentration, the operating state is changed from the transition operating state to the self-ignition. 2. The spark ignition type internal combustion engine according to claim 1, wherein the internal combustion engine is returned to a normal operation state.
【請求項4】 前記運転状態が前記自己着火用運転状態
において、 前記運転条件判定手段により前記自己着火条件が成立し
ないと判定されたとき、前記運転状態を前記遷移用運転
状態に変更すると共に前記NOx センサが検出する窒素
酸化物濃度に所定の変化が生じるか否かを監視し、 該窒素酸化物濃度に所定の濃度変化が生じた場合には、
前記運転状態を前記遷移用運転状態から前記火花点火用
運転状態に変更し、 該窒素酸化物濃度に所定の濃度変化が生じない場合に
は、自己着火の解除条件不足と判定して、さらに火花点
火誘発側へ運転状態設定を変化させることを特徴とする
請求項1記載の火花点火式内燃機関。
4. When the operating condition is determined to be not satisfied by the operating condition determining means in the operating condition, the operating condition is changed to the operating condition for transition. It monitors whether a predetermined change occurs in the nitrogen oxide concentration detected by the NOx sensor, and when a predetermined change occurs in the nitrogen oxide concentration,
The operating state is changed from the operating state for transition to the operating state for spark ignition. If a predetermined concentration change does not occur in the nitrogen oxide concentration, it is determined that the self-ignition release condition is insufficient, and the spark is further determined. The spark ignition type internal combustion engine according to claim 1, wherein the operation state setting is changed to an ignition inducing side.
【請求項5】 前記窒素酸化物濃度の所定の濃度変化と
は、濃度変化量または濃度変化割合または濃度の時間変
化率であることを特徴とする請求項2ないし請求項4の
いずれか1項記載の火花点火式内燃機関。
5. The method according to claim 2, wherein the predetermined concentration change of the nitrogen oxide concentration is a concentration change amount, a concentration change ratio, or a time change ratio of the concentration. A spark-ignition internal combustion engine as described.
【請求項6】 前記窒素酸化物濃度の濃度変化量または
濃度変化割合または濃度の時間変化率の判定基準を運転
条件毎に備えたことを特徴とする請求項5記載の火花点
火式内燃機関。
6. The spark ignition type internal combustion engine according to claim 5, wherein a criterion for determining a concentration change amount, a concentration change ratio, or a concentration time change ratio of the nitrogen oxide concentration is provided for each operating condition.
【請求項7】 前記運転条件判定手段における自己着火
条件の判定基準を前記窒素酸化物濃度の監視結果に基づ
いて更新することを特徴とする請求項1ないし請求項6
のいずれか1項記載の火花点火式内燃機関。
7. The criterion for determining the self-ignition condition in the operating condition determining means is updated based on the monitoring result of the nitrogen oxide concentration.
A spark ignition type internal combustion engine according to any one of the preceding claims.
【請求項8】 前記火花点火用運転状態と前記自己着火
用運転状態と前記状態遷移用運転状態との各運転状態の
相違によりそれぞれ異なる値に制御される運転状態パラ
メータとして、点火時期、EGR量、燃料噴射量のいず
れか、又はこれらの少なくとも2者の組合せであること
を特徴とする請求項1ないし請求項7のいずれか1項記
載の火花点火式内燃機関。
8. An ignition timing and an EGR amount as operation state parameters which are controlled to different values depending on a difference in each operation state between the spark ignition operation state, the self-ignition operation state, and the state transition operation state. The spark ignition type internal combustion engine according to any one of claims 1 to 7, wherein the internal combustion engine is any one of a fuel injection amount and a combination of at least two of them.
JP10141657A 1998-05-22 1998-05-22 Spark ignition type internal combustion engine Pending JPH11336600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10141657A JPH11336600A (en) 1998-05-22 1998-05-22 Spark ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10141657A JPH11336600A (en) 1998-05-22 1998-05-22 Spark ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH11336600A true JPH11336600A (en) 1999-12-07

Family

ID=15297149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10141657A Pending JPH11336600A (en) 1998-05-22 1998-05-22 Spark ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH11336600A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242730A (en) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd Combustion control device for engine
EP1298292A2 (en) 2001-09-28 2003-04-02 Hitachi, Ltd. Controller of compression-ignition engine
EP1365134A2 (en) 2002-05-22 2003-11-26 Hitachi, Ltd. Method of controlling direct gasoline injection type internal combustion engine with turbocharger and internal combustion engine thereof
EP1389679A1 (en) * 2001-05-22 2004-02-18 Hitachi, Ltd. Compression ignition internal combustion engine
US7062902B2 (en) 2000-08-02 2006-06-20 Hitachi, Ltd. Engine control equipment
JP2007107486A (en) * 2005-10-14 2007-04-26 Yamaha Motor Co Ltd Engine system and vehicle equipped therewith
EP1936168A2 (en) * 2006-12-18 2008-06-25 Hitachi, Ltd. Controller of internal combusion engine of compression ignition combustion type
EP2058499A2 (en) 2007-11-08 2009-05-13 Hitachi Ltd. Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
WO2011131480A1 (en) * 2010-04-20 2011-10-27 Robert Bosch Gmbh Method for operating an internal combustion engine
CN102865151A (en) * 2011-07-06 2013-01-09 罗伯特·博世有限公司 Method and device for operating internal combustion engine
US9810139B2 (en) 2014-10-06 2017-11-07 Ge Jenbacher Gmbh & Co Og Method for operating a compression ignition engine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7062902B2 (en) 2000-08-02 2006-06-20 Hitachi, Ltd. Engine control equipment
JP4583626B2 (en) * 2001-02-16 2010-11-17 富士重工業株式会社 Engine combustion control device
JP2002242730A (en) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd Combustion control device for engine
US6966295B2 (en) 2001-05-22 2005-11-22 Hitachi, Ltd. Compression ignition internal combustion engine
EP1389679A1 (en) * 2001-05-22 2004-02-18 Hitachi, Ltd. Compression ignition internal combustion engine
EP1389679A4 (en) * 2001-05-22 2005-04-13 Hitachi Ltd Compression ignition internal combustion engine
US7055495B2 (en) 2001-05-22 2006-06-06 Hitachi, Ltd. Compression ignition internal combustion engine
EP1298292A3 (en) * 2001-09-28 2006-10-11 Hitachi, Ltd. Controller of compression-ignition engine
EP1298292A2 (en) 2001-09-28 2003-04-02 Hitachi, Ltd. Controller of compression-ignition engine
US6772585B2 (en) 2001-09-28 2004-08-10 Hitachi, Ltd. Controller of compression-ignition engine
EP1365134A2 (en) 2002-05-22 2003-11-26 Hitachi, Ltd. Method of controlling direct gasoline injection type internal combustion engine with turbocharger and internal combustion engine thereof
US6880518B2 (en) 2002-05-22 2005-04-19 Hitachi, Ltd. Method of controlling direct gasoline injection type internal combustion engine with turbocharger and direct gasoline injection type internal combustion engine with turbocharger
JP2007107486A (en) * 2005-10-14 2007-04-26 Yamaha Motor Co Ltd Engine system and vehicle equipped therewith
EP1936168A2 (en) * 2006-12-18 2008-06-25 Hitachi, Ltd. Controller of internal combusion engine of compression ignition combustion type
EP1936168A3 (en) * 2006-12-18 2014-07-16 Hitachi, Ltd. Controller of internal combusion engine of compression ignition combustion type
JP2009115025A (en) * 2007-11-08 2009-05-28 Hitachi Ltd Apparatus and method for controlling compression self-ignited internal combustion engine
US7769525B2 (en) 2007-11-08 2010-08-03 Hitachi, Ltd. Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
EP2058499A2 (en) 2007-11-08 2009-05-13 Hitachi Ltd. Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
WO2011131480A1 (en) * 2010-04-20 2011-10-27 Robert Bosch Gmbh Method for operating an internal combustion engine
CN102865151A (en) * 2011-07-06 2013-01-09 罗伯特·博世有限公司 Method and device for operating internal combustion engine
CN102865151B (en) * 2011-07-06 2017-07-14 罗伯特·博世有限公司 Method and apparatus for running internal combustion engine
US9810139B2 (en) 2014-10-06 2017-11-07 Ge Jenbacher Gmbh & Co Og Method for operating a compression ignition engine

Similar Documents

Publication Publication Date Title
JP3927395B2 (en) Control device for compression ignition engine
US6209515B1 (en) Internal combustion engine, controller and method
JP2004218541A (en) Control device for internal combustion engine
JPH10339215A (en) Egr control device of engine
JPH11336600A (en) Spark ignition type internal combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JPH06129288A (en) Air-fuel ratio control device of internal combustion engine
JP3557615B2 (en) Intake control device for internal combustion engine
JPH10159642A (en) Knocking judging device for internal combustion engine
JPH11315741A (en) Ignition timing controller of internal combustion engine
JPH07189797A (en) Air-fuel ratio controller of engine
JPH0465224B2 (en)
JP2526570B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09250379A (en) Intake controller for internal combustion engine
JPH10153146A (en) Step motor type egr control device
JPS61192827A (en) Air-fuel ratio controller for internal-combustion engine
JP2003083151A (en) Intake pressure detecting method for internal combustion engine
JP2591103B2 (en) Fuel injection control device for internal combustion engine with EGR device
JP2741759B2 (en) Home video game toys and similar products
JP2564846B2 (en) Air-fuel ratio controller for LPG engine
JP2932154B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0545803Y2 (en)
JP2000130157A (en) Exhaust emission control device for internal combustion engine
JPH10231746A (en) Combustion system control device for internal combustion engine
JPS61135950A (en) Air-fuel ratio feedback control method for electronically controlled engine