JPH07269398A - Air-fuel ratio controller of internal combustion engine - Google Patents

Air-fuel ratio controller of internal combustion engine

Info

Publication number
JPH07269398A
JPH07269398A JP5916594A JP5916594A JPH07269398A JP H07269398 A JPH07269398 A JP H07269398A JP 5916594 A JP5916594 A JP 5916594A JP 5916594 A JP5916594 A JP 5916594A JP H07269398 A JPH07269398 A JP H07269398A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control
fuel
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5916594A
Other languages
Japanese (ja)
Inventor
Shunichi Shiino
俊一 椎野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5916594A priority Critical patent/JPH07269398A/en
Publication of JPH07269398A publication Critical patent/JPH07269398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To restrain the vibration level of a vehicle body and prevent the resonance of air-fuel ratio change and a drive system by calculating an air-fuel ratio correction control coefficient so that the change period of an air-fuel ratio may approach a target period, preventing overlapping with a frequency zone where the change frequency of the air-fuel ratio becomes problematic. CONSTITUTION:The operation state of an engine is detected, and a fuel amount to be fed to the engine is calculated according to the detected operation state, and the air-fuel ratio of the engine is detected by feeding the calculated fuel amount, and it is decided whether the detected air-fuel ratio is rich or lean in regard to a target air-fuel ratio (a-e). By means of (j, f) devices by which on the basis of an outcome thus decided, an air-fuel ratio correction control coefficient to be made up of a proportional control portion and an integral control portion is added/subtracted to/from an air-fuel ratio correction coefficient, and on the basis of the calculated air-fuel ratio correction coefficient, the fuel amount is corrected, and the return control of the air-fuel ratio is carried out, the change period of the air-fuel ratio is detected, and compared with a target period, and means (g, h, i) to calculate the air-fuel ratio correction control coefficient so as to approach the target period are also equipped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の空燃比制御
装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an air-fuel ratio control system for an internal combustion engine.

【0002】[0002]

【従来の技術】自動車用エンジン等に備えられる空燃比
制御装置は、検出された実際の空燃比をもとに空燃比補
正係数に比例制御分と積分制御分から構成される空燃比
補正制御係数を加減算して燃料量を補正し、空燃比を目
標空燃比に近づけるようになっている。
2. Description of the Related Art An air-fuel ratio control device provided in an automobile engine or the like has an air-fuel ratio correction control coefficient composed of a proportional control component and an integral control component based on the detected actual air-fuel ratio. The amount of fuel is corrected by addition and subtraction to bring the air-fuel ratio close to the target air-fuel ratio.

【0003】ところで、こうした空燃比に対する帰還制
御は、空燃比を検出するセンサの応答速度、あるいは制
御速度等の影響により、ある時間の遅れを持つため、実
際の空燃比が周期的にリッチ側とリーン側に変わり、こ
れに伴ってエンジン出力も周期的に変動する。その変動
周波数がエンジン駆動系のギアシフト位置における固有
振動数と実質的に一致すると、車体の振動レベルが大き
くなる。
By the way, such feedback control for the air-fuel ratio has a certain time delay due to the response speed of the sensor for detecting the air-fuel ratio, the control speed, etc., so that the actual air-fuel ratio is periodically on the rich side. It changes to the lean side, and along with this, the engine output also changes periodically. When the fluctuating frequency substantially matches the natural frequency at the gear shift position of the engine drive system, the vibration level of the vehicle body increases.

【0004】この対策として、特開昭64−36941
号公報に開示されたものは、空燃比の帰還制御を行った
結果生じる空燃比の変動周波数を検出するとともに、検
出された変動周波数がエンジン駆動系のギアシフト位置
における固有振動数と実質的に一致するときには、空燃
比補正係数に加減算される制御係数を通常使用する値か
ら別の所定値に変更して、帰還制御によって生じる空燃
比の変動周波数を変え、空燃比変動と駆動系の共振を防
ぐようになっている。
As a countermeasure against this, Japanese Patent Laid-Open No. 64-36941
The one disclosed in Japanese Patent Publication detects the fluctuation frequency of the air-fuel ratio resulting from the feedback control of the air-fuel ratio, and the detected fluctuation frequency substantially matches the natural frequency at the gear shift position of the engine drive system. In this case, the control coefficient that is added to or subtracted from the air-fuel ratio correction coefficient is changed from a value that is normally used to another predetermined value, and the fluctuating frequency of the air-fuel ratio caused by feedback control is changed to prevent air-fuel ratio fluctuation and drive system resonance. It is like this.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の内燃機関の空燃比制御装置にあっては、空燃
比補正係数に加減算される制御係数を変更することによ
って生じる空燃比の変動周期の変化幅が、制御係数を変
更する前の周期や運転状態によって異なり、制御係数を
変更した後の変動周期が必要以上に長すぎて制御性を悪
化させたり、逆に変動周期が短すぎて、数Hz程度の人
間の振動に敏感な周波数帯域に入ってしまう問題点が考
えられる。
However, in such a conventional air-fuel ratio control device for an internal combustion engine, the fluctuation cycle of the air-fuel ratio generated by changing the control coefficient that is added to or subtracted from the air-fuel ratio correction coefficient is changed. The change width varies depending on the cycle before changing the control coefficient and the operating state, and the fluctuation cycle after changing the control coefficient is unnecessarily long and deteriorates the controllability, or conversely, the fluctuation cycle is too short, There is a problem that the frequency band is sensitive to human vibration of about several Hz.

【0006】本発明は上記の問題点に着目し、空燃比の
変動周期を運転状態に応じた目標値に近づける内燃機関
の空燃比制御装置を提供することを目的とする。
It is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine, which focuses on the above-mentioned problems and makes the fluctuation cycle of the air-fuel ratio close to a target value according to the operating state.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
図8に示すように、機関の運転状態を検出する手段a
と、検出された運転状態に応じて機関に供給される燃料
量を算出する手段bと、算出された燃料量を供給する手
段cと、機関の空燃比を検出する手段dと、検出された
空燃比が目標空燃比に対してリッチであるかリーンであ
るかを判定する手段eと、判定された結果をもとに空燃
比補正係数に比例制御分と積分制御分から構成される空
燃比補正制御係数を加減算する手段jと、算出された空
燃比補正係数をもとにして燃料量を補正し、空燃比の帰
還制御を行う手段fと、を備えた内燃機関の空燃比制御
装置において、空燃比の変動周期を検出する手段gと、
検出された空燃比の変動周期と目標周期とを比較する手
段hと、比較された結果をもとに空燃比の変動周期が目
標周期に近づくように空燃比補正制御係数を算出する手
段iと、を備える。
The invention according to claim 1 is
As shown in FIG. 8, means a for detecting the operating state of the engine
A means b for calculating the amount of fuel supplied to the engine in accordance with the detected operating state, a means c for supplying the calculated amount of fuel, a means d for detecting the air-fuel ratio of the engine, Means for determining whether the air-fuel ratio is rich or lean with respect to the target air-fuel ratio, and based on the result of the determination, an air-fuel ratio correction coefficient that is composed of proportional control portion and integral control portion In an air-fuel ratio control device for an internal combustion engine, which comprises means j for adding and subtracting a control coefficient, and means f for correcting the fuel amount based on the calculated air-fuel ratio correction coefficient and performing feedback control of the air-fuel ratio, Means g for detecting the fluctuation cycle of the air-fuel ratio,
Means h for comparing the detected fluctuation cycle of the air-fuel ratio with the target cycle; and means i for calculating the air-fuel ratio correction control coefficient so that the fluctuation cycle of the air-fuel ratio approaches the target cycle based on the compared results. , Is provided.

【0008】請求項2記載の内燃機関の空燃比制御装置
は、請求項1記載の発明において、前記空燃比変動の目
標周期を、機関の定常運転時に過渡運転時よりも長く設
定する。
In the air-fuel ratio control apparatus for an internal combustion engine according to a second aspect, in the invention according to the first aspect, the target cycle of the air-fuel ratio fluctuation is set to be longer during steady operation of the engine than during transient operation.

【0009】請求項3記載の内燃機関の空燃比制御装置
は、請求項1または2のいずれかに記載の発明におい
て、前記空燃比補正制御係数のうち積分制御分を加減算
して燃料量を補正し、空燃比の帰還制御を行う。
According to a third aspect of the present invention, in the air-fuel ratio control system for an internal combustion engine according to the first or second aspect of the invention, the integral control amount of the air-fuel ratio correction control coefficient is added or subtracted to correct the fuel amount. Then, feedback control of the air-fuel ratio is performed.

【0010】請求項4記載の内燃機関の空燃比制御装置
は、請求項1から3のいずれかに記載の発明において、
前記空燃比補正制御係数の積分制御分は、定常運転時と
過渡運転時とで別の基本値を参照し、かつ両運転状態に
おける積分制御分の帰還制御結果を学習し、この学習値
を次回制御時に参照する。
An air-fuel ratio control system for an internal combustion engine according to a fourth aspect is the invention according to any one of the first to third aspects,
The integral control amount of the air-fuel ratio correction control coefficient refers to different basic values during steady operation and transient operation, and learns the feedback control result of the integral control in both operating states, and this learned value is next time. Refer to when controlling.

【0011】[0011]

【作用】検出された実際の空燃比をもとに空燃比補正係
数に比例制御分と積分制御分から構成される空燃比補正
制御係数を加減算して燃料量を補正し、空燃比を目標空
燃比に近づける。こうした空燃比に対する帰還制御は、
空燃比を検出するセンサの応答速度、あるいは制御速度
等の影響により、ある時間の遅れを持つため、実際の空
燃比が周期的にリッチ側とリーン側に変わり、これに伴
ってエンジン出力も周期的に変動する。
[Function] Based on the detected actual air-fuel ratio, the air-fuel ratio correction coefficient is added to or subtracted from the air-fuel ratio correction coefficient, which is composed of proportional control portion and integral control portion, to correct the fuel amount, and the air-fuel ratio is set to the target air-fuel ratio. Approach to. Feedback control for such air-fuel ratio is
There is a certain time delay due to the influence of the response speed of the sensor that detects the air-fuel ratio, or the control speed, etc., so the actual air-fuel ratio changes periodically between the rich side and the lean side, and the engine output also changes accordingly. Fluctuate.

【0012】請求項1記載の内燃機関の空燃比制御装置
は、空燃比の変動周期が目標周期に近づくように空燃比
補正制御係数を算出することにより、空燃比の変動周波
数が問題になる周波数帯域に重ならないようにする。
The air-fuel ratio control apparatus for an internal combustion engine according to claim 1 calculates the air-fuel ratio correction control coefficient so that the fluctuation cycle of the air-fuel ratio approaches the target cycle, so that the fluctuation frequency of the air-fuel ratio becomes a problem frequency. Try not to overlap the band.

【0013】請求項2記載の内燃機関の空燃比制御装置
は、空燃比変動の目標周期が、機関の定常運転時に過渡
運転時よりも長く設定されることにより、過渡運転時に
おける空燃比の帰還制御応答性を損なうことを防止しつ
つ、過渡運転時から定常運転時に渡って空燃比の変動周
波数が問題になる振動周波数帯域に重ならないようにす
ることができる。
In the air-fuel ratio control apparatus for an internal combustion engine according to a second aspect of the present invention, the target cycle of the air-fuel ratio fluctuation is set to be longer during the steady operation of the engine than during the transient operation, so that the air-fuel ratio is fed back during the transient operation. It is possible to prevent the control responsiveness from being impaired, and prevent the fluctuation frequency of the air-fuel ratio from overlapping the vibration frequency band in question from the transient operation to the steady operation.

【0014】すなわち、定常運転時は、その運転条件下
で要求される基本燃料噴射量の変化が小さく、過渡運転
時に比べて空燃比のずれが起こりにくいため、空燃比帰
還制御の応答速度を比較的遅くして、空燃比変動の周波
数を問題になる周波数帯域よりも低周波数側に設定する
ことが可能となる。
That is, during steady operation, the change in the basic fuel injection amount required under the operating conditions is small and the air-fuel ratio is less likely to deviate than during transient operation. Therefore, the response speeds of air-fuel ratio feedback control are compared. It becomes possible to set the frequency of the air-fuel ratio fluctuation to a lower frequency side than the frequency band in which the problem occurs by delaying the delay.

【0015】一方、過渡運転時は、その運転条件下で要
求される基本燃料噴射量の変化が大きく、空燃比のずれ
が起こりやすいため、空燃比帰還制御の応答速度を高め
る必要がある。
On the other hand, during the transient operation, the change in the basic fuel injection amount required under the operating conditions is large, and the air-fuel ratio is likely to shift. Therefore, it is necessary to increase the response speed of the air-fuel ratio feedback control.

【0016】請求項3記載の内燃機関の空燃比制御装置
は、空燃比補正制御係数のうち積分制御分を加減算して
燃料量を補正し、空燃比の帰還制御を行うことにより、
空燃比の変動幅を小さく抑えられ、空燃比の帰還制御応
答性を高められる。
An air-fuel ratio control apparatus for an internal combustion engine according to a third aspect of the present invention corrects the fuel amount by adding and subtracting the integral control amount of the air-fuel ratio correction control coefficient, and performs feedback control of the air-fuel ratio.
The fluctuation range of the air-fuel ratio can be suppressed to be small, and the feedback control response of the air-fuel ratio can be improved.

【0017】請求項4記載の内燃機関の空燃比制御装置
は、定常運転時と過渡運転時とで別の基本値を参照し、
かつ両運転状態における積分制御分の帰還制御結果を学
習し、この学習値を次回制御時に参照することより、運
転状態が定常運転領域と過渡運転領域の間で変わった場
合に、各運転領域における制御開始直後の制御応答性を
高められる。
The air-fuel ratio control apparatus for an internal combustion engine according to claim 4 refers to different basic values during steady operation and during transient operation,
In addition, by learning the feedback control result for the integral control in both operating states and referring to this learned value at the time of the next control, when the operating state changes between the steady operating region and the transient operating region, The control response immediately after the start of control can be improved.

【0018】[0018]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0019】図1に示すように、エンジン1は吸気弁2
が開かれるのに伴って吸気ポート3からシリンダ4に吸
気(混合気)を吸入し、この吸気をピストン5で圧縮し
て、点火プラグ6で着火燃焼させ、排気弁7が開かれる
のに伴って排気が排気ポート8を介して排気通路9に排
出され、これらの各行程が連続して繰り返されるように
なっている。
As shown in FIG. 1, the engine 1 includes an intake valve 2
Intake air (air mixture) is sucked into the cylinder 4 from the intake port 3 as the engine is opened, and the intake air is compressed by the piston 5 and ignited and burned by the spark plug 6, and the exhaust valve 7 is opened. The exhaust gas is exhausted to the exhaust passage 9 through the exhaust port 8 and these steps are continuously repeated.

【0020】吸気通路20の途中には吸気ポート3に燃
料を噴射するインジェクタ14と、アクセルペダルに連
動して吸気を絞るスロットルバルブ11がそれぞれ設け
られ、その上流側には吸気量を検出するエアフロメータ
10が設けられる。
An injector 14 for injecting fuel into the intake port 3 and a throttle valve 11 for restricting intake air in association with an accelerator pedal are provided in the middle of the intake passage 20, and an air flow detecting an intake air amount is provided upstream thereof. A meter 10 is provided.

【0021】排気通路9の途中には三元触媒21が設置
され、排気中のHC、COを酸化するとともに、NOx
を還元する。
A three-way catalyst 21 is installed in the middle of the exhaust passage 9 to oxidize HC and CO in the exhaust gas and NOx.
Reduce.

【0022】インジェクタ14からの燃料噴射量を制御
するコントロールユニット13が設けられる。コントロ
ールユニット13には、エアフロメータ10で検出され
る吸気量Qと、スロットルポジションセンサ12で検出
されるスロットル開度TVOと、エンジン回転数センサ
22で検出されるエンジン回転数Nと、冷却水温センサ
23で検出される冷却水温度TW等を入力して、基本燃
料噴射量Tpを運転状態に応じて演算する。
A control unit 13 for controlling the amount of fuel injected from the injector 14 is provided. The control unit 13 includes an intake air amount Q detected by the air flow meter 10, a throttle opening TVO detected by the throttle position sensor 12, an engine speed N detected by the engine speed sensor 22, and a cooling water temperature sensor. The coolant temperature TW detected in 23 is input, and the basic fuel injection amount Tp is calculated according to the operating state.

【0023】排気通路9の途中にO2センサ15が設置
される。コントロールユニット13は、O2センサ15
で検出される排気中の酸素濃度に応じた出力VO2を入
力して、混合気が理論空燃比となるように燃料噴射量を
帰還制御して、三元触媒21での転化効率を最大限に維
持するようになっている。
An O 2 sensor 15 is installed in the exhaust passage 9. The control unit 13 has an O 2 sensor 15
Input the output VO 2 according to the oxygen concentration in the exhaust gas detected at, and feedback control the fuel injection amount so that the air-fuel mixture becomes the stoichiometric air-fuel ratio, and maximize the conversion efficiency in the three-way catalyst 21. To maintain.

【0024】なお、コントロールユニット13には、空
燃比変動周期を検出するために、クロック16およびカ
ウンタ17が内蔵される。
The control unit 13 contains a clock 16 and a counter 17 for detecting the air-fuel ratio fluctuation period.

【0025】図2のフローチャートはコントロールユニ
ット13において実行される空燃比帰還制御のプログラ
ムを示しており、これは一定周期毎に実行される。
The flow chart of FIG. 2 shows a program for air-fuel ratio feedback control executed in the control unit 13, which is executed at regular intervals.

【0026】まず、ステップS1にて、エンジン回転数
N、スロットル開度TVO、冷却水温度TW、吸気量Q
を読込む。
First, in step S1, engine speed N, throttle opening TVO, cooling water temperature TW, intake air amount Q
Read in.

【0027】ステップS2で、これらの検出値に基づい
て基本燃料噴射量Tpを演算する。
In step S2, the basic fuel injection amount Tp is calculated based on these detected values.

【0028】ステップS3で、現在の運転条件が予め設
定された空燃比帰還制御領域内であるか否かを判定し、
領域内であればステップS4に進み、領域外であればス
テップS20に進んで、空燃比補正係数αを100%と
し、続いてステップS21に進んで、フラッグFlug
Vをリセットし、ステップS11で今回の基本燃料噴射
量TpをBTpに保管する。
In step S3, it is determined whether or not the current operating condition is within the preset air-fuel ratio feedback control region,
If it is within the region, the process proceeds to step S4, and if it is outside the region, the process proceeds to step S20 to set the air-fuel ratio correction coefficient α to 100%, and then proceeds to step S21, and the flag Flag is set.
V is reset, and the basic fuel injection amount Tp of this time is stored in BTp in step S11.

【0029】ステップS4で、O2センサ出力VO2を読
込み、ステップS5でVO2と所定値VSLとを比較し
て、排気の空燃比がリッチかリーンかを判定する。
In step S4, the O 2 sensor output VO 2 is read, and in step S5 VO 2 is compared with a predetermined value VSL to determine whether the air-fuel ratio of the exhaust gas is rich or lean.

【0030】VO2が所定値VSLより小さいリーン判
定時に、ステップS6に進んで、フラッグFlugVO
を参照し、排気空燃比がリッチからリーンに反転するリ
ーン反転時を検出する。この反転が検出された場合、ス
テップS7に進んで、後述する空燃比補正制御係数の演
算を行う。
When VO 2 is judged to be leaner than the predetermined value VSL, the routine proceeds to step S6, where the flag FlagVO
Referring to, the lean air-fuel ratio when the exhaust air-fuel ratio is inverted from rich to lean is detected. When this reversal is detected, the process proceeds to step S7, and the air-fuel ratio correction control coefficient to be described later is calculated.

【0031】リーン反転時、ステップS8に進んで、エ
ンジン回転数Nと基本燃料噴射量Tpに応じて予め設定
されたマップに基づいてリッチ反転時の比例制御分Pl
を検索し、ステップS9に進んで空燃比補正係数αにこ
の比例制御分Plを加算する。
At the lean reversal, the routine proceeds to step S8, where the proportional control amount Pl at the time of the rich reversal is set based on a map preset according to the engine speed N and the basic fuel injection amount Tp.
Is searched for, and the proportional control amount Pl is added to the air-fuel ratio correction coefficient α in step S9.

【0032】リーン反転時でない場合、ステップS12
に進んで、空燃比補正制御係数のリーン時積分制御分I
lを読込み、ステップS13に進んで空燃比補正係数α
にこの積分制御分Ilを加算する。
If it is not lean inversion, step S12
To the lean-time integral control component I of the air-fuel ratio correction control coefficient I.
1 is read, and the routine proceeds to step S13, where the air-fuel ratio correction coefficient α
Is added to the integral control component Il.

【0033】このようにして空燃比補正係数αが決定さ
れた後、ステップS10に進んで、今回のリッチ・リー
ン判定結果をフラッグFlugVOに保存し、ステップ
S11で今回の基本燃料噴射量TpをBTpに保管す
る。
After the air-fuel ratio correction coefficient α is determined in this way, the routine proceeds to step S10, the rich / lean determination result of this time is stored in the flag FlagVO, and the basic fuel injection amount Tp of this time is BTp at step S11. Store in.

【0034】一方、VO2が所定値VSLより大きいリ
ッチ判定時に、ステップS14に進んで、フラッグFl
ugVOを参照し、排気空燃比がリーンからリッチに反
転するリッチ反転時を検出する。
On the other hand, when VO 2 is richer than the predetermined value VSL, the routine proceeds to step S14, where the flag Fl is set.
With reference to ugVO, a rich inversion time when the exhaust air-fuel ratio is inverted from lean to rich is detected.

【0035】リッチ反転時、ステップS15に進んで、
エンジン回転数Nと基本燃料噴射量Tpに応じて予め設
定されたマップに基づいてリーン反転時の比例制御分P
rを検索し、ステップS16に進んで空燃比補正係数α
からこの比例制御分Prを減算する。
At the time of rich inversion, the process proceeds to step S15,
The proportional control amount P at the time of lean reversal based on a map preset according to the engine speed N and the basic fuel injection amount Tp
r is searched, and the routine proceeds to step S16, where the air-fuel ratio correction coefficient α
This proportional control amount Pr is subtracted from.

【0036】リッチ反転時でない場合、ステップS18
に進んで、空燃比補正制御係数のリッチ時積分制御分I
rを読込み、ステップS19に進んで空燃比補正係数α
からこの積分制御分Irを減算する。
If it is not during the rich inversion, step S18
To the rich-time integral control component I of the air-fuel ratio correction control coefficient I.
r is read, and the routine proceeds to step S19, where the air-fuel ratio correction coefficient α
This integral control component Ir is subtracted from.

【0037】このようにして空燃比補正係数αが決定さ
れた後、ステップS17で、今回のリーン・リッチ判定
結果をフラッグFlugVOに保存し、ステップS11
で今回の基本燃料噴射量TpをBTpに保管する。
After the air-fuel ratio correction coefficient α is determined in this way, the lean / rich determination result of this time is stored in the flag FlagVO in step S17, and step S11
Then, the basic fuel injection amount Tp of this time is stored in BTp.

【0038】コントロールユニット13は、上記ルーチ
ンで算出された空燃比補正係数αに基づいて、燃料噴射
量を次式で算出する。
The control unit 13 calculates the fuel injection amount by the following equation based on the air-fuel ratio correction coefficient α calculated in the above routine.

【0039】 燃料噴射量=Tp×各種補正係数×α+電圧補正分 …(1) 図4に示すように、空燃比がリッチ側になった場合、O
2センサ15の出力が理論空燃比相当のスライスレベル
より大きくなると、空燃比補正係数αを始めに比例制御
分Prだけステップ状に下げて、それから積分制御分I
rの傾きで徐々に下げて空燃比を薄くするように制御す
る。こうして空燃比がリーン側になった場合、O2セン
サ15の出力がスライスレベルより小さくなると、始め
に空燃比補正係数αを比例制御分Plだけステップ状に
下げて、それから積分制御分Ilの傾きで徐々に下げて
空燃比を濃くするように制御する。この制御を繰り返す
ことにより実際の空燃比を理論空燃比の付近に保つこと
ができる。
Fuel injection amount = Tp × various correction coefficients × α + voltage correction amount (1) As shown in FIG. 4, when the air-fuel ratio is on the rich side, O
2 When the output of the sensor 15 becomes larger than the slice level corresponding to the theoretical air-fuel ratio, the air-fuel ratio correction coefficient α is first stepped down by the proportional control amount Pr and then the integral control amount I
It is controlled so that the air-fuel ratio is made thinner by gradually lowering it with the inclination of r. In this way, when the air-fuel ratio becomes lean, when the output of the O 2 sensor 15 becomes smaller than the slice level, the air-fuel ratio correction coefficient α is first lowered stepwise by the proportional control amount Pl, and then the slope of the integral control amount Il is increased. Is controlled to gradually increase the air-fuel ratio. By repeating this control, the actual air-fuel ratio can be maintained near the stoichiometric air-fuel ratio.

【0040】ところで、こうした空燃比に対する帰還制
御は、O2センサ15の応答速度、コントロールユニッ
ト13の制御速度等の影響により、ある時間の遅れを持
つため、実際の空燃比が周期的にリッチ側とリーン側に
変わり、これに伴ってエンジン出力も周期的に変動す
る。その変動周波数はエンジン運転状態等により変化す
るが、一般に、数Hz程度の人間の振動に敏感な周波数
帯域に近い値となる。
By the way, such feedback control with respect to the air-fuel ratio has a certain time delay due to the influence of the response speed of the O 2 sensor 15, the control speed of the control unit 13, etc., so that the actual air-fuel ratio is periodically on the rich side. Then, the engine output changes periodically with the change to lean side. The fluctuating frequency varies depending on the engine operating condition and the like, but generally has a value close to a frequency band of about several Hz, which is sensitive to human vibration.

【0041】これに対処して、図5に示すように、空燃
比の変動周波数が人間の振動に敏感な周波数帯域に重な
らず、かつ駆動系のシフト位置A,B,Cにおける各固
有振動数に重ならない目標周期が設定され、コントロー
ルユニット13は、空燃比の変動周期を検出し、検出さ
れた変動周期が目標周期に近づくように空燃比補正制御
係数の積分制御分Ir、Ilの値を算出する。
To cope with this, as shown in FIG. 5, the fluctuation frequency of the air-fuel ratio does not overlap the frequency band sensitive to human vibration, and the natural vibrations at the shift positions A, B and C of the drive system. The target cycle which does not overlap with the number is set, the control unit 13 detects the fluctuation cycle of the air-fuel ratio, and the values of the integrated control components Ir and Il of the air-fuel ratio correction control coefficient are detected so that the detected fluctuation cycle approaches the target cycle. To calculate.

【0042】図3のフローチャートは、コントロールユ
ニット13において空燃比の変動周期を帰還制御するた
めに実行される、空燃比制御係数を演算するプログラム
を示している。
The flow chart of FIG. 3 shows a program for calculating the air-fuel ratio control coefficient, which is executed in the control unit 13 for feedback control of the fluctuation cycle of the air-fuel ratio.

【0043】まず、ステップA1で、クロックにより駆
動されているタイマカウンタ値COUNTを読込む。
First, in step A1, the timer counter value COUNT driven by the clock is read.

【0044】続いて、ステップA2で、空燃比の変動周
期として、今回読込んだカウンタ値COUNTと前回読
込んだカウンタ値BCUNTとの差DCOUNTを算出
し、ステップA3で、今回読込んだカウンタ値COUN
Tをカウンタ値BCUNTに格納する。
Then, in step A2, the difference DCOUNT between the counter value COUNT read this time and the counter value BCOUNT read last time is calculated as the fluctuation cycle of the air-fuel ratio, and the counter value read this time is calculated in step A3. COUN
Store T in the counter value BCOUNT.

【0045】続いて、ステップA4で、前記ステップS
11で保存された前回のTp、すなわちBTpと今回の
Tpの差を求め、その絶対値が所定値TPTRJ以上の
過渡運転時かどうかを判定する。
Then, in step A4, the step S
The difference between the previous Tp stored in 11, that is, BTp and the current Tp is obtained, and it is determined whether or not the absolute value is in a transient operation of a predetermined value TPTRJ or more.

【0046】ステップA4で、所定値TPTRJ以上の
過渡運転時であると判定された場合、ステップA5に進
んで、空燃比変動の目標周期TCOUNTを過渡時の目
標周期TCOUNTTに定める。
When it is determined in step A4 that the engine is in the transient operation of the predetermined value TPTRJ or more, the process proceeds to step A5, and the target cycle TCOUNT of the air-fuel ratio fluctuation is set to the target cycle TCOUNTT of the transient.

【0047】続いて、ステップA6に進んでFlugT
RJを参照することにより、前回も過渡運転状態にあっ
たと判断した場合はステップA7に進む。
Then, the process proceeds to step A6 and the FlagT
By referring to RJ, if it is determined that the vehicle was in the transient operation state last time, the process proceeds to step A7.

【0048】ステップA7に進んで、エンジン回転数N
と基本燃料噴射量Tpからなる格子に割り付けられけた
空燃比補正制御係数の積分制御分Ir,IlのマップM
1を読込む。
In step A7, the engine speed N
And a map M of the integral control portions Ir and Il of the air-fuel ratio correction control coefficient assigned to the lattice consisting of the basic fuel injection amount Tp and
Read 1.

【0049】ステップA8に進んで、積分制御分Ir,
Ilが所定の制御範囲内にあるかどうかを判定し、本制
御の結果積分制御分Ir,Ilが過大になったり、過小
になることを防止する。
In step A8, the integral control component Ir,
It is determined whether or not Il is within a predetermined control range, and the integral control components Ir and Il are prevented from becoming excessively large or small as a result of this control.

【0050】ステップA8で、積分制御分Ir,Ilが
所定の範囲内にあると判定された場合、ステップA9に
進んで、実際の排気空燃比変動周期DCOUNTと目標
周期TCOUNTを比較し、DCOUNTの方が大きい
場合には、ステップA10に進み、積分制御分Ir,I
lに所定量dIを加え、逆の場合はステップA13にに
進んで、積分制御分Ir,Ilから所定量dIを減じ
る。
If it is determined in step A8 that the integral control components Ir and Il are within the predetermined range, the process proceeds to step A9, in which the actual exhaust air-fuel ratio fluctuation period DCOUNT and the target period TCOUNT are compared to determine DCOUNT. If it is larger, the process proceeds to step A10 and the integral control components Ir, I
A predetermined amount dI is added to l, and in the opposite case, the process proceeds to step A13, where the predetermined amount dI is subtracted from the integral control parts Ir and Il.

【0051】続いてステップA11に進んで、演算結果
の積分制御分Ir,IlをマップM1の該等箇所に書き
込む。最後にステップA12において、今回が過渡運転
状態であったことをFlugTRJに記録し、前記ステ
ップS8へと進む。
Then, the process proceeds to step A11, and the integral control components Ir and Il of the calculation result are written in the equal portions of the map M1. Lastly, in step A12, the fact that the current time is the transient operation state is recorded in FlagTRJ, and the process proceeds to step S8.

【0052】一方、ステップA6において、前回過渡運
転状態でないと判定された場合、この段階ではマップM
1には定常時の積分制御分Ir,IlのマップM1CS
Tおよびその周期制御結果が格納されていることになる
ので、ステップA14に進んでそれをマップM1CST
に格納した後、ステップA15に進んで過渡時積分制御
分Ir,IlのマップM1TRJをマップM1に読込
む。これにより、過渡運転状態に移行した直後から、積
分制御分Ir,Ilを応答性よく変化させることができ
る。
On the other hand, when it is determined in step A6 that the transient operation state is not the last time, the map M is set at this stage.
1 is a map M1CS of the integrated control components Ir and Il in the steady state.
Since T and its cycle control result have been stored, the process proceeds to step A14, where it is stored in the map M1CST.
Then, the process proceeds to step A15 to read the map M1TRJ of the integral control components Ir and Il during transient into the map M1. Thus, the integral control components Ir and Il can be changed with good responsiveness immediately after the transition to the transient operation state.

【0053】なお、ステップA14において、データ格
納の際、元のMICST値と周期制御結果MI値の加重
平均をマップMICSTに格納することにより、データ
の学習を行っている。次回の制御時に、この値を初期値
として制御を始めることにより、制御開始直後の制御性
を高めることが可能となる。
In step A14, when the data is stored, the weighted average of the original MICST value and the period control result MI value is stored in the map MICST to learn the data. By starting the control with this value as the initial value at the time of the next control, it becomes possible to enhance the controllability immediately after the start of the control.

【0054】一方、ステップA4で、基本燃料噴射量T
pの変化が所定値TPTRJより小さい定常運転時であ
ると判定された場合、ステップA16に進んで、空燃比
変動の目標周期TCOUNTを定常時の目標周期TCO
UNTCに定める。
On the other hand, in step A4, the basic fuel injection amount T
When it is determined that the change in p is in the steady operation which is smaller than the predetermined value TPTRJ, the process proceeds to step A16, and the target cycle TCOUNT of the air-fuel ratio fluctuation is set to the target cycle TCO in the steady state.
Determined by UNTC.

【0055】続いて、ステップA17に進んでFlug
TRJを参照することにより、前回も定常運転状態にあ
ったと判断した場合はステップA18に進む。
Then, the process proceeds to step A17, where the flag is set.
By referring to TRJ, when it is determined that the steady operation state was also last time, the process proceeds to step A18.

【0056】ステップA18に進んで、エンジン回転数
Nと基本燃料噴射量Tpからなる格子に割り付けられけ
た空燃比補正制御係数の積分制御分Ir,Ilのマップ
M1を読込む。
In step A18, the map M1 of the integral control parts Ir and Il of the air-fuel ratio correction control coefficient assigned to the grid consisting of the engine speed N and the basic fuel injection amount Tp is read.

【0057】ステップA19に進んで、積分制御分I
r,Ilが所定の制御範囲内にあるかどうかを判定し、
本制御の結果として積分制御分Ir,Ilが過大になっ
たり、過小になることを防止する。
In step A19, the integral control component I
It is determined whether r and Il are within a predetermined control range,
As a result of this control, the integral control components Ir and Il are prevented from becoming too large or too small.

【0058】ステップA19で、積分制御分Ir,Il
が所定の範囲内にあると判定された場合、ステップA2
0に進んで、実際の排気空燃比変動周期DCOUNTと
目標周期TCOUNTを比較し、DCOUNTの方が大
きい場合には、ステップA21に進み、積分制御分I
r,Ilに所定量dIを加え、逆の場合はステップA2
2にに進んで、積分制御分Ir,Ilから所定量dIを
減じる。
At step A19, integral control components Ir and Il
If it is determined that is within a predetermined range, step A2
0, the actual exhaust air-fuel ratio variation cycle DCOUNT is compared with the target cycle TCOUNT. If DCOUNT is larger, the process proceeds to step A21, where the integral control component I
A predetermined amount dI is added to r and Il, and in the opposite case, step A2
Proceeding to step 2, the predetermined amount dI is subtracted from the integral control parts Ir and Il.

【0059】続いてステップA22に進んで、演算結果
の積分制御分Ir,IlをマップM1の該等箇所に書き
込む。最後にステップA23において、今回が過渡運転
状態であったことをFlugTRJに記録し、前記ステ
ップS8へと進む。
Subsequently, the process proceeds to step A22, and the integral control components Ir and Il of the calculation result are written in the equal portions of the map M1. Finally, in step A23, the fact that this time is in the transient operation state is recorded in FlagTRJ, and the process proceeds to step S8.

【0060】一方、ステップA17において、前回定常
運転状態でないと判定された場合、この段階ではマップ
M1には過渡時の積分制御分Ir,IlのマップM1T
RJおよびその周期制御結果が格納されていることにな
るので、ステップA25に進んでそれをマップM1TR
Jに格納した後、ステップA26に進んで過渡時積分制
御分Ir,IlのマップM1CSTをマップM1に読込
む。これにより、定常運転状態に移行した直後から、積
分制御分Ir,Ilを応答性よく変化させることができ
る。
On the other hand, if it is determined in step A17 that the previous steady-state operation was not performed, then at this stage, the map M1 has a map M1T of integral control parts Ir and Il at the time of transition.
Since the RJ and the cycle control result thereof are stored, the process proceeds to step A25 and the map M1TR is set.
After storing in J, the process proceeds to step A26, and the map M1CST of the transient integration control parts Ir and Il is read into the map M1. As a result, the integral control components Ir and Il can be changed with good responsiveness immediately after shifting to the steady operation state.

【0061】図5に示すように、空燃比変動の目標変動
周期TCOUNTが、定常運転時に過渡運転時よりも長
く設定されることにより、過渡運転時における空燃比の
帰還制御応答性を損なうことを防止しつつ、空燃比の変
動周波数が人間が気になる振動周波数帯域に重ならない
ようにすることができる。
As shown in FIG. 5, the target fluctuation cycle TCOUNT of the air-fuel ratio fluctuation is set to be longer during steady operation than during transient operation, thereby impairing the feedback control response of the air-fuel ratio during transient operation. While preventing, it is possible to prevent the fluctuation frequency of the air-fuel ratio from overlapping the vibration frequency band in which people are concerned.

【0062】すなわち、定常運転時は、その運転条件下
で要求される基本燃料噴射量Tpの変化が小さく、過渡
運転時に比べて空燃比のずれが起こりにくいため、空燃
比帰還制御の応答速度を比較的遅くして、空燃比変動周
波数を人間が気にする周波数帯域よりも低周波数側に移
行することが可能となる。
That is, during steady operation, the change in the basic fuel injection amount Tp required under the operating conditions is small and the air-fuel ratio is less likely to deviate than during transient operation. By making it relatively slow, it becomes possible to shift the air-fuel ratio fluctuation frequency to a lower frequency side than the frequency band that humans care about.

【0063】一方、過渡運転時は、その運転条件下で要
求される基本燃料噴射量Tpの変化が大きく、空燃比の
ずれが起こりやすいため、空燃比帰還制御の応答速度を
高める必要がある。
On the other hand, during the transient operation, the change in the basic fuel injection amount Tp required under the operating conditions is large, and the air-fuel ratio is likely to shift. Therefore, it is necessary to increase the response speed of the air-fuel ratio feedback control.

【0064】また、空燃比補正制御係数のうち積分制御
分Ir、Ilを加減算して燃料量を補正して、空燃比の
帰還制御を行うことにより、空燃比の変動幅を小さく抑
えられる。
Further, the fluctuation range of the air-fuel ratio can be suppressed to a small level by performing the feedback control of the air-fuel ratio by adding and subtracting the integral control parts Ir and Il of the air-fuel ratio correction control coefficient to correct the fuel amount.

【0065】図6は、空燃比補正制御係数のうち比例制
御分Pr、Plを加減算して燃料量を補正する場合にお
ける空燃比の変化特性を示している。この場合、空燃比
補正係数αが100%から大きく離れた値をとり、空燃
比の変動が急激になるオーバーシュートが発生する。
FIG. 6 shows a change characteristic of the air-fuel ratio when the proportional control components Pr and Pl of the air-fuel ratio correction control coefficient are added and subtracted to correct the fuel amount. In this case, the air-fuel ratio correction coefficient α takes a value far from 100%, and an overshoot occurs in which the air-fuel ratio changes rapidly.

【0066】図7は、空燃比補正制御係数のうち積分制
御分Ir、Ilを加減算して燃料量を補正する場合にお
ける空燃比の変化特性を示している。この場合、空燃比
補正係数αが100%に近い値をとり、空燃比の変動幅
を小さく抑えられる。
FIG. 7 shows a change characteristic of the air-fuel ratio in the case of correcting the fuel amount by adding and subtracting the integral control parts Ir and Il of the air-fuel ratio correction control coefficient. In this case, the air-fuel ratio correction coefficient α takes a value close to 100%, and the fluctuation range of the air-fuel ratio can be suppressed to be small.

【0067】[0067]

【発明の効果】以上説明したように請求項1記載の発明
は、空燃比の帰還制御を行う内燃機関の空燃比制御装置
において、空燃比の変動周期を検出する手段と、検出さ
れた空燃比の変動周期と目標周期とを比較する手段と、
比較された結果をもとに空燃比の変動周期が目標周期に
近づくように空燃比補正制御係数を算出する手段とを備
えたため、空燃比の変動周波数が問題になる周波数帯域
に重ならないようにして、自動車の乗員に感じられる振
動を低減することができる。
As described above, according to the first aspect of the invention, in the air-fuel ratio control device for an internal combustion engine that performs feedback control of the air-fuel ratio, means for detecting the fluctuation cycle of the air-fuel ratio and the detected air-fuel ratio. Means for comparing the fluctuation cycle of and the target cycle,
Based on the result of comparison, a means for calculating the air-fuel ratio correction control coefficient so that the air-fuel ratio fluctuation cycle approaches the target cycle is provided, so that the air-fuel ratio fluctuation frequency does not overlap the frequency band in question. As a result, it is possible to reduce the vibration felt by the occupant of the vehicle.

【0068】請求項2記載の内燃機関の空燃比制御装置
は、請求項1記載の発明において、前記空燃比変動の目
標周期は、機関の定常運転時に過渡運転時よりも長く設
定したため、過渡運転時における空燃比の帰還制御応答
性を損なうことなく、過渡運転時から定常運転時に渡っ
て空燃比の変動周波数が問題になる振動周波数帯域に重
ならないようにすることができる。
In the air-fuel ratio control device for an internal combustion engine according to a second aspect, in the invention according to the first aspect, the target cycle of the air-fuel ratio fluctuation is set to be longer during transient operation of the engine than during transient operation. It is possible to prevent the fluctuation frequency of the air-fuel ratio from overlapping the vibration frequency band in question from the transient operation to the steady operation without deteriorating the feedback control response of the air-fuel ratio at the time.

【0069】請求項3記載の内燃機関の空燃比制御装置
は、請求項1または2のいずれかに記載の発明におい
て、前記空燃比補正制御係数のうち積分制御分を加減算
して燃料量を補正し、空燃比の帰還制御を行うため、空
燃比の変動幅を小さく抑えられ、空燃比の帰還制御応答
性を高められる。
According to a third aspect of the present invention, in the air-fuel ratio control apparatus for an internal combustion engine according to the first or second aspect of the invention, the amount of integral control of the air-fuel ratio correction control coefficient is added or subtracted to correct the fuel amount. However, since the feedback control of the air-fuel ratio is performed, the fluctuation range of the air-fuel ratio can be suppressed to be small and the responsiveness of the feedback control of the air-fuel ratio can be improved.

【0070】請求項4記載の内燃機関の空燃比制御装置
は、請求項1から3のいずれかに記載の発明において、
前記空燃比補正制御係数の積分制御分は、定常運転時と
過渡運転時とで別の基本値を参照し、かつ両運転状態に
おける積分制御分の帰還制御結果を学習し、この学習値
を次回制御時に参照する構成としたため、運転状態が定
常運転領域と過渡運転領域の間で変わった場合に、各運
転領域における制御開始直後の制御応答性を高められ
る。
An air-fuel ratio control device for an internal combustion engine according to a fourth aspect is the invention according to any one of the first to third aspects,
The integral control amount of the air-fuel ratio correction control coefficient refers to different basic values during steady operation and transient operation, and learns the feedback control result of the integral control in both operating states, and this learned value is next time. Since the configuration is referred to during control, when the operating state changes between the steady operating region and the transient operating region, the control responsiveness immediately after the start of control in each operating region can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すシステム図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】同じく空燃比の帰還制御を行うためのフローチ
ャート。
FIG. 2 is a flowchart for similarly performing feedback control of the air-fuel ratio.

【図3】同じく空燃比補正制御係数を算出するためのフ
ローチャート。
FIG. 3 is a flowchart for similarly calculating an air-fuel ratio correction control coefficient.

【図4】同じく空燃比の制御例を示すタイミングチャー
ト。
FIG. 4 is a timing chart showing an example of controlling the air-fuel ratio.

【図5】同じく空燃比変動周波数の設定例を示す図。FIG. 5 is a diagram showing a setting example of an air-fuel ratio fluctuation frequency.

【図6】同じく空燃比の制御例を示すタイミングチャー
ト。
FIG. 6 is a timing chart showing an example of controlling the air-fuel ratio.

【図7】同じく空燃比の制御例を示すタイミングチャー
ト。
FIG. 7 is a timing chart showing an example of controlling the air-fuel ratio.

【図8】請求項1記載の発明を示すクレーム対応図。FIG. 8 is a claim correspondence diagram showing the invention according to claim 1;

【符号の説明】[Explanation of symbols]

1 エンジン 2 吸気弁 3 吸気通路 4 シリンダ 5 ピストン 7 排気弁 8 排気通路 10 エアフロメータ 11 スロットルバルブ 12 スロットルポジションセンサ 13 コントロールユニット 14 インジェクタ 15 O2センサ 16 クロック 17 カウンタ 22 エンジン回転センサ 23 冷却水温度センサ a 運転状態検出手段 b 基本燃料噴射量算出手段 c 燃料供給手段 d 空燃比検出手段 e 空燃比判定手段 f 空燃比補正手段 g 空燃比変動周期検出手段 h 空燃比変動周期判定周期 i 空燃比補正制御係数算出手段 j 空燃比補正係数算出手段1 engine 2 intake valve 3 intake passage 4 cylinder 5 piston 7 exhaust valve 8 exhaust passage 10 air flow meter 11 throttle valve 12 throttle position sensor 13 control unit 14 injector 15 O 2 sensor 16 clock 17 counter 22 engine rotation sensor 23 cooling water temperature sensor a operating state detection means b basic fuel injection amount calculation means c fuel supply means d air-fuel ratio detection means e air-fuel ratio determination means f air-fuel ratio correction means g air-fuel ratio variation cycle detection means h air-fuel ratio variation cycle determination cycle i air-fuel ratio correction control Coefficient calculation means j Air-fuel ratio correction coefficient calculation means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】機関の運転状態を検出する手段と、 検出された運転状態に応じて機関に供給される燃料量を
算出する手段と、 算出された燃料量を供給する手段と、 機関の空燃比を検出する手段と、 検出された空燃比が目標空燃比に対してリッチであるか
リーンであるかを判定する手段と、 判定された結果をもとに空燃比補正係数に比例制御分と
積分制御分から構成される空燃比補正制御係数を加減算
する手段と、 算出された空燃比補正係数をもとにして燃料量を補正
し、空燃比の帰還制御を行う手段と、 を備えた内燃機関の空燃比制御装置において、 空燃比の変動周期を検出する手段と、 検出された空燃比の変動周期と目標周期とを比較する手
段と、 比較された結果をもとに空燃比の変動周期が目標周期に
近づくように空燃比補正制御係数を算出する手段と、 を備えたことを特徴とする内燃機関の空燃比制御装置。
1. A means for detecting an operating state of an engine, a means for calculating an amount of fuel supplied to the engine according to the detected operating state, a means for supplying the calculated amount of fuel, and an empty space of the engine. A means for detecting the fuel ratio, a means for judging whether the detected air-fuel ratio is rich or lean with respect to the target air-fuel ratio, and a proportional control component for the air-fuel ratio correction coefficient based on the judged result. An internal combustion engine comprising: means for adding / subtracting an air-fuel ratio correction control coefficient composed of integral control parts; means for correcting the fuel amount based on the calculated air-fuel ratio correction coefficient and performing feedback control of the air-fuel ratio. In the air-fuel ratio control device, the means for detecting the fluctuation cycle of the air-fuel ratio, the means for comparing the fluctuation cycle of the detected air-fuel ratio with the target cycle, and the fluctuation cycle of the air-fuel ratio based on the result of the comparison. Air-fuel ratio correction control section to approach the target cycle An air-fuel ratio control device for an internal combustion engine, comprising: a means for calculating the number.
【請求項2】前記空燃比変動の目標周期は、機関の定常
運転時に過渡運転時よりも長く設定したことを特徴とす
る請求項1記載の内燃機関の空燃比制御装置。
2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the target cycle of the air-fuel ratio fluctuation is set longer during steady operation of the engine than during transient operation.
【請求項3】前記空燃比補正制御係数のうち積分制御分
を加減算して燃料量を補正し、空燃比の帰還制御を行う
ことを特徴とする請求項1または2のいずれかに記載の
内燃機関の空燃比制御装置。
3. The internal combustion engine according to claim 1, wherein feedback control of the air-fuel ratio is performed by adding and subtracting an integral control amount of the air-fuel ratio correction control coefficient to correct the fuel amount. Air-fuel ratio control system for engines.
【請求項4】前記空燃比補正制御係数の積分制御分は、
定常運転時と過渡運転時とで別の基本値を参照し、かつ
両運転状態における積分制御分の帰還制御結果を学習
し、この学習値を次回制御時に参照することを特徴とす
る請求項1から3のいずれかに記載の内燃機関の空燃比
制御装置。
4. The integral control portion of the air-fuel ratio correction control coefficient is:
2. A different basic value is referred to during steady operation and during transient operation, the feedback control result for integral control in both operating states is learned, and this learned value is referred to in the next control. 4. The air-fuel ratio control device for an internal combustion engine according to any one of 1 to 3.
JP5916594A 1994-03-29 1994-03-29 Air-fuel ratio controller of internal combustion engine Pending JPH07269398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5916594A JPH07269398A (en) 1994-03-29 1994-03-29 Air-fuel ratio controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5916594A JPH07269398A (en) 1994-03-29 1994-03-29 Air-fuel ratio controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07269398A true JPH07269398A (en) 1995-10-17

Family

ID=13105502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5916594A Pending JPH07269398A (en) 1994-03-29 1994-03-29 Air-fuel ratio controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07269398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970966A (en) * 1996-12-04 1999-10-26 Nissan Motor Co., Ltd. Engine air-fuel ratio controller
JP2012167637A (en) * 2011-02-16 2012-09-06 Daihatsu Motor Co Ltd Air-fuel ratio control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970966A (en) * 1996-12-04 1999-10-26 Nissan Motor Co., Ltd. Engine air-fuel ratio controller
DE19753814C2 (en) * 1996-12-04 2000-04-27 Nissan Motor Control device for the air-fuel ratio of an engine
JP2012167637A (en) * 2011-02-16 2012-09-06 Daihatsu Motor Co Ltd Air-fuel ratio control device

Similar Documents

Publication Publication Date Title
US5655363A (en) Air-fuel ratio control system for internal combustion engines
JPH03271544A (en) Control device of internal combustion engine
JP3356878B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08158918A (en) Air fuel ratio learning control device for internal combustion engine
US4915081A (en) Method of determining activation of exhaust gas ingredient-concentration sensors for internal combustion engines
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
JPH03134241A (en) Air-fuel ratio controller of internal combustion engine
JPH06229290A (en) Air-fuel ratio control device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07269398A (en) Air-fuel ratio controller of internal combustion engine
JPH08121223A (en) Deterioration detection device for air-fuel ratio sensor in internal combustion engine
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JP2600772B2 (en) Air-fuel ratio control device for internal combustion engine
JP2630371B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JPS6342103B2 (en)
JPH0740673Y2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH0646013B2 (en) Air-fuel ratio control method for fuel supply device for internal combustion engine
JPH0729234Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH077563Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH077562Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0569971B2 (en)