JPS58176436A - Control device for engine - Google Patents

Control device for engine

Info

Publication number
JPS58176436A
JPS58176436A JP57059214A JP5921482A JPS58176436A JP S58176436 A JPS58176436 A JP S58176436A JP 57059214 A JP57059214 A JP 57059214A JP 5921482 A JP5921482 A JP 5921482A JP S58176436 A JPS58176436 A JP S58176436A
Authority
JP
Japan
Prior art keywords
roughness
engine
air
exhaust gas
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57059214A
Other languages
Japanese (ja)
Other versions
JPH0323734B2 (en
Inventor
Tokuichi Matsumoto
松本 徳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP57059214A priority Critical patent/JPS58176436A/en
Publication of JPS58176436A publication Critical patent/JPS58176436A/en
Publication of JPH0323734B2 publication Critical patent/JPH0323734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To control both the air fuel ratio and the exhaust gas return flow rate properly without complicating the control system of the engine by a method wherein when a roughness signal regarding the engine is generated and the air- fuel ratio and the exhaust gas return flow rate are controlled in a direction in which the roughness of the engine is controlled, both the air-fuel ratio and the exhaust gas return flow rate are controlled alternately by a predetermined cycle. CONSTITUTION:The detecting value of an oscillation sensor 12 fixed to the engine 1 is inputted to a roughness control circuit 13 and when the roughness of the engine is detected, a solenoid valve 6 of a carburettor 4 is controlled in the direction in which the air-fuel mixture becomes rich while a relief valve 11 in a negative pressure passage 10 is controlled in the direction in which the negative pressure reduces, that is, in the direction in which an exhaust gas return flow rate control valve 19 is closed. In this case, the roughness control circuit 13 controls the solenoid valve 6 and the relief valve 11 alternately so that the increase of the amount of fuel supply and the decrease of the exhaust gas flow rate place alternately.

Description

【発明の詳細な説明】 本発明は、エンジンの制御装置、殊にエンジンのラフネ
スを検出して、そのラフネスを抑制する方向に混合気の
空燃比もしくは排気還流量を制御するようにしたエンジ
ン制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine control device, particularly an engine control device that detects engine roughness and controls the air-fuel ratio of a mixture or the amount of exhaust gas recirculation in a direction to suppress the roughness. Regarding equipment.

最近の自動車用エンジンでは、排ガス対策及び燃料消費
率の改善のために、エンジンに供給される混合気の空燃
比は常に適正に制御する必要がある。寸だ、排気中の窒
素酸化物の量を抑制するために、排気の一部を吸気系に
還流させる排気還流装置が採用されているが、この場合
にも、排気還流量はエンジン運転状態に応じて常に適正
に制御されねばならない。しかしながら、排ガス対策及
び燃料消費率改善の目的で、混合気を比較的希薄状態に
保つようにしたエンジンでは、エンジン運転条件によっ
ては燃焼状態が不安定になることがある。特に、この傾
向は、排気還流が行なわれる運転域において生じ易い。
In modern automobile engines, the air-fuel ratio of the air-fuel mixture supplied to the engine must always be appropriately controlled in order to take measures against exhaust gas and improve fuel consumption. In order to suppress the amount of nitrogen oxides in the exhaust, an exhaust recirculation device is used that recirculates part of the exhaust to the intake system, but even in this case, the amount of exhaust recirculation varies depending on the engine operating condition. must be properly controlled at all times. However, in engines in which the air-fuel mixture is kept relatively lean for the purpose of reducing exhaust gas and improving fuel consumption, the combustion state may become unstable depending on engine operating conditions. In particular, this tendency tends to occur in the operating range where exhaust gas recirculation is performed.

排ガス対策及び燃料消費の両面からみて、エンジンに供
給される混合気の空燃比は、燃焼状態が不安定になる直
前まで希薄化することが好ましく、この要求を実現しよ
うとしたものに特公昭56−53570号公報に記載さ
れた空燃比制御装置がある。この装置は、エンジンの空
燃比補正用の補正用空気通路を並列な2つの分岐管によ
り構成し、一方の分岐管には周期的に開閉する開閉弁を
設け、他方の分岐管には補正用空気量を制御する制御弁
を設けて、開閉弁の周期的開閉によって空燃比を周期的
に変化させこの空燃比変化により生じるエンジン速度変
化を検出して空燃比設定点を定め、上述の制御弁の開度
を制御するものである。
From the viewpoint of both exhaust gas countermeasures and fuel consumption, it is preferable to dilute the air-fuel ratio of the mixture supplied to the engine until just before the combustion condition becomes unstable. There is an air-fuel ratio control device described in Japanese Patent No.-53570. In this device, the correction air passage for correcting the air-fuel ratio of the engine is composed of two parallel branch pipes, one branch pipe is equipped with an on-off valve that opens and closes periodically, and the other branch pipe is used for correction. A control valve for controlling the amount of air is provided, and the air-fuel ratio is periodically changed by periodically opening and closing the on-off valve, and a change in engine speed caused by the change in the air-fuel ratio is detected to determine the air-fuel ratio set point. This controls the opening degree of the valve.

しかし、この特許公報は、空燃比変動により生じるエン
ジン速度の変動により、適正な空燃比制御を行なうこと
を教示するものであって、排気還流装置を備えたエンジ
ンにおいて、排気還流量を適正に保つための対策につい
ては、何も教えるところがない。したがって、この特許
公報の教示に従えば、排気還流量が過大であるために燃
焼状態に不安定を生じた場合にも、空燃比の調節のみで
対策を講じることになり、燃料消費量の改善の観点から
好ましいとは言えない。この問題を解決するために、空
燃比と排気還流量の両方を制御するようにすれば、過制
御を防ぐには、各々の制御量を通常の制御量の半分づつ
にせねばならず、それぞれに対して非常にち密な制御が
必要になり、弁機構及び制御回路の両面からみて実現が
困難になる。
However, this patent publication teaches how to perform appropriate air-fuel ratio control based on engine speed fluctuations caused by air-fuel ratio fluctuations, and it teaches how to maintain an appropriate amount of exhaust gas recirculation in an engine equipped with an exhaust gas recirculation device. There is nothing to teach about countermeasures. Therefore, if the teachings of this patent publication are followed, even if the combustion state becomes unstable due to an excessive amount of exhaust gas recirculation, countermeasures can be taken only by adjusting the air-fuel ratio, thereby improving fuel consumption. It cannot be said that it is preferable from the viewpoint of To solve this problem, if both the air-fuel ratio and the exhaust gas recirculation amount are controlled, in order to prevent overcontrol, each control amount must be half of the normal control amount, and each However, very precise control is required, which is difficult to realize from the viewpoint of both the valve mechanism and the control circuit.

本発明は、エンジン制御におけるこのような問題を解決
し、エンジンに供給される混合気の空燃比及び排気還流
量の両方を適正(直に調節できるエンジン制御装置を提
供することを目的とする。
An object of the present invention is to solve such problems in engine control and to provide an engine control device that can appropriately (directly adjust) both the air-fuel ratio of the air-fuel mixture supplied to the engine and the amount of exhaust gas recirculation.

すなわち1本発明のエンジン制御装置は、エンジンのラ
フネスを検出してラフネス信号を発生するラフネス検出
装置と、このラフネス信号を受けてエンジンに吸入され
る混合気の空燃比あるいは排気還流量を、ラフネスを抑
制する方向に制御するようにした形式であって、空燃比
の制御と排気還流量の制御とを所定の周期で交番制御す
る交番制御装置を備えたことを特徴とする。本発明のこ
の構成によれば、混合気の空燃比制御と排気還流量の制
御とが交互に行なわれるので、弁機構及び制御回路をさ
ほど精密にしなくても、過制御の生じる恐れがなく、制
御は容易に遂行できる。
In other words, the engine control device of the present invention includes a roughness detection device that detects the roughness of the engine and generates a roughness signal, and a roughness detection device that detects the roughness of the engine and generates a roughness signal. This type of system is designed to control the air-fuel ratio and the exhaust gas recirculation amount in a direction that suppresses the air-fuel ratio, and is characterized by being equipped with an alternating control device that alternately controls the control of the air-fuel ratio and the control of the amount of exhaust gas recirculation at a predetermined cycle. According to this configuration of the present invention, the air-fuel ratio control of the air-fuel mixture and the control of the exhaust gas recirculation amount are performed alternately, so there is no risk of overcontrol even if the valve mechanism and control circuit are not very precise. Control can be easily carried out.

以下、本発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.

甘ず、第1図において、エンジン]は吸気通路2及び排
気通路3を有し、吸気通路2には気化器4及び絞り弁5
が設けられている。気化器4には空燃比調整用のソレノ
イド弁6が設けられる。このソレノイド弁6は、気化器
4の燃料通路を開閉する形式でもよいし、燃料通路への
空気ブリード通路を開閉する形式でもよい。吸気通路2
と排気通路3との間には排気還流通路7が設けられ、こ
の排気還流通路7には負圧式アクチュエータ8により作
動する制御弁9が配置されている。アクチュエータ8に
作動用の負圧を供給する負圧通路10は、絞り弁5の近
傍で吸気通路2に開口し、絞り弁5が成る程度以上間い
たとき、負圧がアクチュエータ8に導入され、制御弁9
が開かれる。負圧通路10にはレリーフ弁11が設けら
れ、このレリーフ弁11を適宜作動させることにより、
通路10内の負圧を制御して、制御弁9の開度を調節す
ることができる。
In FIG. 1, the engine has an intake passage 2 and an exhaust passage 3, and the intake passage 2 has a carburetor 4 and a throttle valve 5.
is provided. The carburetor 4 is provided with a solenoid valve 6 for adjusting the air-fuel ratio. This solenoid valve 6 may be of a type that opens and closes the fuel passage of the carburetor 4, or may be of a type that opens and closes an air bleed passage to the fuel passage. Intake passage 2
An exhaust gas recirculation passage 7 is provided between the exhaust gas passage 3 and the exhaust gas recirculation passage 3, and a control valve 9 operated by a negative pressure actuator 8 is disposed in the exhaust gas recirculation passage 7. A negative pressure passage 10 that supplies operating negative pressure to the actuator 8 opens into the intake passage 2 in the vicinity of the throttle valve 5, and when the throttle valve 5 is in the vicinity of the throttle valve 5, negative pressure is introduced into the actuator 8. control valve 9
will be held. A relief valve 11 is provided in the negative pressure passage 10, and by operating this relief valve 11 appropriately,
By controlling the negative pressure in the passage 10, the opening degree of the control valve 9 can be adjusted.

エンジン1には振動センサー12が設けられ。The engine 1 is provided with a vibration sensor 12.

この振動センサー12の出力はラフネス制御回路13に
与えられて、ラフネス検出時に気化器4のソレノイド弁
6を混合気のリッチ化方向に、負圧通路10のレリーフ
弁11を負圧減少方向すなわち制御弁9の閉じる方向に
作動させる。第2図は、制御回路13の詳細を示すもの
で、撮動センサー12の出力はローパスフィルター14
に通され。
The output of this vibration sensor 12 is given to a roughness control circuit 13, and when roughness is detected, the solenoid valve 6 of the carburetor 4 is controlled in the direction of enriching the air-fuel mixture, and the relief valve 11 of the negative pressure passage 10 is controlled in the direction of reducing negative pressure. Operate the valve 9 in the closing direction. FIG. 2 shows details of the control circuit 13, in which the output of the imaging sensor 12 is filtered through a low-pass filter 14.
Passed by.

該ローパスフィルター14の出力は両波整流回路15を
経て積分回路16に与えられる。積分回路16の出力は
ラフネス判定回路に与えられ、このラフネス判定回路1
7は積分回路16の出力が所定値を越えたとき、ラフネ
ス発生を判定して、ハイレヘルのラフネス信号を発生す
る。このラフネス信号は、トランジスタ18のペースに
入力される。
The output of the low-pass filter 14 is applied to an integrating circuit 16 via a double-wave rectifier circuit 15. The output of the integrating circuit 16 is given to the roughness determining circuit 1.
7 determines that roughness has occurred when the output of the integrating circuit 16 exceeds a predetermined value, and generates a high-level roughness signal. This roughness signal is input to the pace of transistor 18.

ラフネス制御回路13はさらに交番制御回路を包含する
。この制御回路は、第1積分回路】9と第2積分回路2
0とを有し、第1積分回路19の正側入力端子には抵抗
19Rを介して発振器21のクロック出力が印加され、
また負側入力端子には抵抗19bを介して発振器21の
出力が印加されるようになっている。捷た第1積分回路
19の負側入力端子はトランジスタ18のコレクタKm
続される。第2積分回路20は、その正及び負側入力端
子にインバータ22及び入力抵抗20a、20bをそれ
ぞれ介して発振器21のクロック出力が印加される。さ
らに第2積分回路20の負側入力端子はトランジスタ1
8のコレクタに接続されている。伺、トランジスタ18
のコレクタは抵抗を介して電源に接続され、エミッタは
接地されている。
The roughness control circuit 13 further includes an alternation control circuit. This control circuit consists of a first integrator circuit] 9 and a second integrator circuit 2.
0, the clock output of the oscillator 21 is applied to the positive input terminal of the first integrating circuit 19 via the resistor 19R,
Further, the output of the oscillator 21 is applied to the negative input terminal via the resistor 19b. The negative input terminal of the switched first integrating circuit 19 is connected to the collector Km of the transistor 18.
Continued. The second integrating circuit 20 has the clock output of the oscillator 21 applied to its positive and negative input terminals via an inverter 22 and input resistors 20a and 20b, respectively. Furthermore, the negative side input terminal of the second integrating circuit 20 is connected to the transistor 1.
8 collector. Hello, transistor 18
The collector of is connected to the power supply through a resistor, and the emitter is grounded.

第1.第2a分回路19.20の出力は、それぞれ増巾
回路23.24を介してレリーフ弁11の作動用ソレノ
イドlla及び気化器4のソレノイド弁6の作動用ソレ
ノイド6aに与えられる。
1st. The outputs of the second a component circuits 19 and 20 are applied to the operating solenoid lla of the relief valve 11 and the operating solenoid 6a of the solenoid valve 6 of the carburetor 4 via amplifying circuits 23 and 24, respectively.

以上述べた回路において、ラフネス判定回路17により
エンジンラフネスが検出され、ラフネス判定回路17か
らハイレベルのラフネス信号が出力されると、トランジ
スタ18が導通し、積分回路19.20の負側入力端子
が接地状態となる。したがって、積分回路19には、発
振器21からのクロックパルスが入力するときに増加す
るような段階的増加傾向を示す出力が発生し、この出力
が増巾器23を経て弁11の作動用ソレノイドllaに
与えられる。このため、ラフネス判定回路17からラフ
ネス信号が出力されて因る間は、弁11の開度が段階的
に増加し続け、アクチュエータ8に導入される負圧がそ
の分だけ減少し続けるので。
In the circuit described above, when engine roughness is detected by the roughness determination circuit 17 and a high-level roughness signal is output from the roughness determination circuit 17, the transistor 18 becomes conductive and the negative input terminal of the integration circuit 19. Becomes grounded. Therefore, the integrating circuit 19 generates an output that shows a stepwise increasing tendency that increases when the clock pulse from the oscillator 21 is input, and this output passes through the amplifier 23 to the solenoid lla for operating the valve 11. given to. Therefore, while the roughness signal is output from the roughness determination circuit 17, the opening degree of the valve 11 continues to increase in stages, and the negative pressure introduced into the actuator 8 continues to decrease by that amount.

排気還流制御弁9の開度は減少し、排気還流量も減少す
るっ 積分回路20では、発振器21からクロックパルスの間
の低レベル信号が発生しているときに7・イレベル信号
が与えられるため1発振器21において低レベル信号を
発生する時に増加するような。
The opening degree of the exhaust gas recirculation control valve 9 decreases, and the amount of exhaust gas recirculation also decreases.In the integrating circuit 20, when a low level signal is generated between the clock pulses from the oscillator 21, a 7-level signal is given. 1 oscillator 21 when generating a low level signal.

段階的増加傾向を示す出力が発生し、この出力が増巾器
24を経てソレノイド弁6の作動用ソレノイ)76aに
与えられる。したがって、ラフネス判定回路17からラ
フネス信号が出力されている間は、ソレノイド弁6の開
度が段階的に増加し続け、気化器4からの燃料供給量が
増加して空燃比がリッチ化される。前述のように、積分
器19の出力は発振器21からのクロックパルスの入力
時に増加し、積分器20の出力はクロックツ母ルス間の
低レベル信号の入力時に増加するので、ソレノイド6a
xllaへの!、流増加は交番的に行なわれる。
An output showing a stepwise increasing tendency is generated, and this output is applied to the actuating solenoid 76a of the solenoid valve 6 via the amplifier 24. Therefore, while the roughness signal is output from the roughness determination circuit 17, the opening degree of the solenoid valve 6 continues to increase step by step, the amount of fuel supplied from the carburetor 4 increases, and the air-fuel ratio is enriched. . As mentioned above, the output of the integrator 19 increases when the clock pulse from the oscillator 21 is input, and the output of the integrator 20 increases when the low level signal between the clock pulses is input, so the solenoid 6a
To xlla! , the flow increase is carried out alternately.

エンジンラフネスが解消され、ラフネス判定回路17か
らのラフネス信号が消滅すると、トランジスタ18が非
導通となるため、積分器19.20け正角側入力端子の
入力が同レベルになる。
When the engine roughness is eliminated and the roughness signal from the roughness determination circuit 17 disappears, the transistor 18 becomes non-conductive, so that the input terminals of the integrator 19 and 20 on the positive side become at the same level.

したがって、積分器19の出力は、発振器21かラノク
ロツクノ4ルスの間の低レベル入力が与えられるときに
減少する段階的な減少傾向を示し、弁11け段階的閉じ
られるため、排気還流制御弁9の開度が増し、排気還流
量が増加する、積分器20では、発振器21からクロッ
クパルスが発生するときに低レベル入力が与えられ、こ
の時期に出力が減少してソレノイド弁6の開度が減少し
、燃料供給量が減少させられる。このようにして、排気
還流量の増加と燃料供給量の減少が交互に行なわれ、エ
ンジンラフネスが発生したときには、前述したように、
再び排気還流量の減少と燃料供給量の増加とが交互に行
なわれる。したがって、上述の制御回路13を用いると
、排気還流量と空燃比の両方を、エンジンラフネスの生
じる限界付近に維持することが可能にhる。また、排気
還流量の制御と空燃比の制御とが交互に行なわれるので
、−回ごとの制御量を極端に小さくする必要がなく、制
御弁及び制御回路の構成が容易になる。
Therefore, the output of the integrator 19 exhibits a stepwise decreasing tendency which decreases when a low level input between the oscillator 21 and the clock pulse is applied, and the exhaust recirculation control valve 9 is closed stepwise. The integrator 20 receives a low level input when the clock pulse is generated from the oscillator 21, and at this time the output decreases and the opening of the solenoid valve 6 increases. and the fuel supply is reduced. In this way, the exhaust recirculation amount increases and the fuel supply amount decreases alternately, and when engine roughness occurs, as described above,
Again, the exhaust gas recirculation amount is reduced and the fuel supply amount is increased alternately. Therefore, by using the above-described control circuit 13, it is possible to maintain both the exhaust gas recirculation amount and the air-fuel ratio near the limits where engine roughness occurs. Further, since the control of the exhaust gas recirculation amount and the control of the air-fuel ratio are performed alternately, it is not necessary to make the control amount extremely small every time, and the configuration of the control valve and the control circuit becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すエンジン制御装置の概略
図、第2図はラフネス制御回路の詳細を示すブロック図
である。 2・・・吸気、通路、3・・・排気通路、4・・・気化
器、6・・・ソレノイド弁、7・・・排気還流通路、9
・・・排気還流制御弁、11・・・レリーフ弁、13・
・・ラフネス制御回路、19.20・・・積分器 特許出願人 東洋工業株式会社
FIG. 1 is a schematic diagram of an engine control device showing an embodiment of the present invention, and FIG. 2 is a block diagram showing details of a roughness control circuit. 2... Intake, passage, 3... Exhaust passage, 4... Carburetor, 6... Solenoid valve, 7... Exhaust recirculation passage, 9
...Exhaust recirculation control valve, 11...Relief valve, 13.
...Roughness control circuit, 19.20...Integrator patent applicant Toyo Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] エンジンのラフネスを検出してラフネス信号を発生する
ラフネス検出装置と、前記ラフネス信号を受けてエンジ
ンに吸入される混合気の空燃比あるいは排気還流量を、
ラフネスを抑制する方向に制御するようにしたエンジン
の制御装置において1空燃比の制御と排気還流量の制御
とを所定の周期で交番制御する交番制御装置を備えたこ
とを特徴とするエンジンの制御装置。
a roughness detection device that detects the roughness of the engine and generates a roughness signal; and a roughness detection device that detects the roughness of the engine and detects the air-fuel ratio of the air-fuel mixture taken into the engine or the amount of exhaust recirculation in response to the roughness signal;
An engine control device configured to control roughness in a direction that suppresses roughness, characterized in that the engine control device includes an alternating control device that alternately controls an air-fuel ratio and an exhaust gas recirculation amount at a predetermined cycle. Device.
JP57059214A 1982-04-09 1982-04-09 Control device for engine Granted JPS58176436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57059214A JPS58176436A (en) 1982-04-09 1982-04-09 Control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57059214A JPS58176436A (en) 1982-04-09 1982-04-09 Control device for engine

Publications (2)

Publication Number Publication Date
JPS58176436A true JPS58176436A (en) 1983-10-15
JPH0323734B2 JPH0323734B2 (en) 1991-03-29

Family

ID=13106911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57059214A Granted JPS58176436A (en) 1982-04-09 1982-04-09 Control device for engine

Country Status (1)

Country Link
JP (1) JPS58176436A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623158A (en) * 1985-06-29 1987-01-09 Daihatsu Motor Co Ltd Air-fuel ratio control for carburetor
JPS6238853A (en) * 1985-08-14 1987-02-19 Hitachi Ltd Intelligent engine controller
US5060618A (en) * 1990-01-30 1991-10-29 Toyota Jidosa Kabushiki Kaisha Method and apparatus for controlling torque variations in an internal combustion engine
JPH0577182U (en) * 1992-03-31 1993-10-19 三菱重工業株式会社 Compatible hanging beam device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145729A (en) * 1974-04-09 1975-11-22
JPS5134329A (en) * 1974-07-19 1976-03-24 Bosch Gmbh Robert
JPS51106827A (en) * 1975-02-19 1976-09-22 Bosch Gmbh Robert

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145729A (en) * 1974-04-09 1975-11-22
JPS5134329A (en) * 1974-07-19 1976-03-24 Bosch Gmbh Robert
JPS51106827A (en) * 1975-02-19 1976-09-22 Bosch Gmbh Robert

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623158A (en) * 1985-06-29 1987-01-09 Daihatsu Motor Co Ltd Air-fuel ratio control for carburetor
JPH0329982B2 (en) * 1985-06-29 1991-04-25
JPS6238853A (en) * 1985-08-14 1987-02-19 Hitachi Ltd Intelligent engine controller
US5060618A (en) * 1990-01-30 1991-10-29 Toyota Jidosa Kabushiki Kaisha Method and apparatus for controlling torque variations in an internal combustion engine
JPH0577182U (en) * 1992-03-31 1993-10-19 三菱重工業株式会社 Compatible hanging beam device

Also Published As

Publication number Publication date
JPH0323734B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
US4501240A (en) Idling speed control system for internal combustion engine
US4281631A (en) Exhaust gas recirculation and idle speed control device
US4364227A (en) Feedback control apparatus for internal combustion engine
US4705009A (en) Exhaust gas recirculation control system for an engine
US4391256A (en) Air-fuel ratio control apparatus
JPS58176436A (en) Control device for engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
JPS6342101B2 (en)
JPS632019B2 (en)
US4617900A (en) Air-fuel ratio control system for an internal combustion engine having a control characteristic varying with the engine load
JPS611857A (en) Processing device of vaporized fuel
US4677959A (en) Air intake side secondary air supply system for an internal combustion engine
US4976242A (en) Fuel injection control device of an engine
JPS5898631A (en) Fuel controlling device of engine
JPS6158912A (en) Exhaust cleaning apparatus of engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPH0415388B2 (en)
US4114578A (en) Air-to-fuel ratio control system
JPS6321018B2 (en)
US4681078A (en) Air-fuel ratio control system for an internal combustion engine
JPS58182516A (en) Oscillation detector
JPS5949346A (en) Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type
JPH08189391A (en) Fuel feed device for internal combustion engine
JPS6139106Y2 (en)
JPH0330601Y2 (en)