JPS61171505A - Preparation of asymmetric pore size membrane material - Google Patents

Preparation of asymmetric pore size membrane material

Info

Publication number
JPS61171505A
JPS61171505A JP26674585A JP26674585A JPS61171505A JP S61171505 A JPS61171505 A JP S61171505A JP 26674585 A JP26674585 A JP 26674585A JP 26674585 A JP26674585 A JP 26674585A JP S61171505 A JPS61171505 A JP S61171505A
Authority
JP
Japan
Prior art keywords
thin film
temperature
stretching
roll
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26674585A
Other languages
Japanese (ja)
Other versions
JPS6348562B2 (en
Inventor
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26674585A priority Critical patent/JPS61171505A/en
Publication of JPS61171505A publication Critical patent/JPS61171505A/en
Publication of JPS6348562B2 publication Critical patent/JPS6348562B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To make the structure of a front surface and that of a back surface non-uniform, by forming an ethylenetetrafluoride resin containing a liquid wetting agent into a membrane by a paste method and removing the liquid wetting agent before stretching the formed membrane by using a low speed rotary roll and a high speed rotary roll between which temp. difference is provided. CONSTITUTION:An ethylenetetrafluoride resin fine powder is uniformly mixed with a liquid wetting agent while the resulting mixture is subjected to preparatory compression molding and subsequently extruded and rolled to be molded into a membrane. Subsequently, the liquid wetting agent is removed by evaporation or extraction and the molded membrane is stretched to the rolled direction at temp. equal to or less than the m.p. of the resin by a pair of rolls different in a rotary ratio. At this time, the temp. of the low speed rotary roll or high speed rotary roll is made higher by at least 50 deg.C or more than that of a furnace. The temp. of the high speed rotary roll is pref. set to at least 250 deg.C or more. After stretching, sintering is performed at 327 deg.C or more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は四弗化エチレン樹脂からなる多孔性薄膜材料の
製造方法に関するものであり、特に多孔性四弗化エチレ
ン樹脂の繊維組織が表面と裏面Iこおいで異った不均一
組織となっている非対称孔径薄膜材料の製造方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a porous thin film material made of a tetrafluoroethylene resin, and in particular, the present invention relates to a method for producing a porous thin film material made of a polytetrafluoroethylene resin. This invention relates to a method for manufacturing a thin film material with asymmetric pore diameters having a different non-uniform structure on the back surface.

〔従来の技術〕[Conventional technology]

多孔性四弗化エチレン樹脂材料の製造方法に関しでは、
特公昭42−13560および特公昭51−18991
などが公知である。これらにおいては液状潤滑剤を含む
四弗化エチレン樹脂を押出し圧延または両者を含む方法
でシート、ロッド、チューブ等に成形したのち未焼結状
態で少なくとも一方向に延伸した状態で約327℃以上
に加熱することを特徴としでいる。
Regarding the manufacturing method of porous tetrafluoroethylene resin material,
Special Publication No. 42-13560 and Special Publication No. 51-18991
etc. are publicly known. In these methods, a tetrafluoroethylene resin containing a liquid lubricant is formed into a sheet, rod, tube, etc. by extrusion rolling or a method including both, and then stretched in an unsintered state in at least one direction at a temperature of about 327°C or higher. It is characterized by heating.

これらの方法で得られた多孔性材料は延伸した割合や延
伸時の温度・速度等により幾分変化するとはいうものの
、小さい繊維によって互に連結された結節からなる繊維
組織を有し、この繊維と結節とで囲まれた空間が多孔性
空孔0こ一致している。
Although the porous materials obtained by these methods vary somewhat depending on the stretching ratio, temperature and speed during stretching, etc., they have a fibrous structure consisting of nodes interconnected by small fibers. The space surrounded by the nodules and the nodules coincide with zero porous pores.

一般的には延伸する割合を増すことによって繊維の長さ
を大きくし結節の大きさを小さくし、多孔性の割合即ち
気孔率が増大する。
In general, increasing the stretching rate increases the length of the fibers, decreases the nodule size, and increases the percent porosity.

〔発明の構成〕[Structure of the invention]

本発明はこれらの方法の改良に関するものであって、液
状潤滑剤を含む四弗化エチレン樹脂をペースト法で薄膜
に成形したのち液状潤滑剤を除去し四弗化エチレン樹脂
の融点以下の温度で回転ロールによって連続的に延伸す
るが、この時低速回転ロールと高速回転ロールの間に温
度差をもうけることを特徴とする非対称孔径膜の製造方
法に係わるものである。
The present invention relates to improvements to these methods, in which a tetrafluoroethylene resin containing a liquid lubricant is formed into a thin film by a paste method, the liquid lubricant is removed, and the liquid lubricant is removed at a temperature below the melting point of the tetrafluoroethylene resin. The present invention relates to a method for producing an asymmetric pore membrane, which is continuously stretched using rotating rolls, and is characterized in that a temperature difference is created between a low-speed rotating roll and a high-speed rotating roll.

従来の四弗化エチレン樹脂膜は全て一定温度条件におい
て延伸されており、そのため全てが対称孔径膜の製造方
法になっており、本発明におけるような非対称孔径膜の
製造方法は知られでいない。
All conventional tetrafluoroethylene resin membranes are stretched under constant temperature conditions, and therefore all methods are for producing membranes with symmetric pores, and there is no known method for producing membranes with asymmetric pores as in the present invention.

一方セルロースエステル膜に代表される逆浸透膜や限外
p過膜はほとんどが非対称孔径膜であり表面と裏面の孔
径が10倍あるいは100倍以上も異なった不均一組織
が知られでいる。
On the other hand, most reverse osmosis membranes and ultrapolar membranes, typified by cellulose ester membranes, are membranes with asymmetric pore diameters, and are known to have a nonuniform structure in which the pore diameters on the front and back surfaces differ by 10 or 100 times or more.

最近芳香族ポリイミド、アクリロニトリル等の材料を用
いた非対称孔径膜の製造方法も公知となったが、これら
の製造方法は樹脂を溶解させることが必須条件となって
いるため四弗化エチレン樹脂には全く応用できない。四
弗化エチレン樹脂を溶解させる溶媒が全く存在しないた
めである。
Recently, methods for manufacturing asymmetric pore membranes using materials such as aromatic polyimide and acrylonitrile have become publicly known, but these manufacturing methods require dissolving the resin, so tetrafluoroethylene resin cannot be used. Not applicable at all. This is because there is no solvent that can dissolve the tetrafluoroethylene resin.

多孔性薄膜の工業的用途においては異った成分の戸別・
濃縮・分割などを精度よく行なう機能と同時tこ大量処
理が可能であることを要求しでいる。
In industrial applications of porous thin films, different components are
It is required to have the ability to perform concentration, division, etc. with high precision, and to be able to process large quantities at the same time.

戸別や分割は孔径の分布が狭い程正確に行なえる  1
が、一定の面積と時間における処理量を増加するために
は孔の数を飛躍的に増大するかあるいは薄膜材料の厚み
を可能な限り薄くすることが必要となる孔数を大巾に増
すことは特定の製造条件の枠内では非常にむつかしく、
また厚みの急激な減少も機械的強度を悪くするので実用
的な手段となり得ない欠点を有していた。このような欠
点を克服する技術として非対称孔径のセルロースエステ
ル膜が開発され、海水の脱塩などで代表される逆浸透膜
が従来の対称孔径膜ではほとんど経済的に利点を見いだ
せなかったにもかかわらず、非対称孔径膜では十分な処
理量があるため経済性を持ちうることがわかり実用化さ
れでいる。このように非対称孔径膜は従来の対称孔径膜
と比較して戸別や分割の機能は同一でありながらその処
理量を大きくすることで経済的な優位性を主張できる。
The narrower the distribution of hole diameters, the more accurate the division into individual units.1
However, in order to increase the throughput in a given area and time, it is necessary to dramatically increase the number of holes or to reduce the thickness of the thin film material as much as possible. is extremely difficult within the framework of specific manufacturing conditions;
In addition, a rapid decrease in thickness also deteriorates mechanical strength, which has the disadvantage that it cannot be used as a practical means. Cellulose ester membranes with asymmetric pore diameters have been developed as a technology to overcome these drawbacks, and reverse osmosis membranes, typically used for seawater desalination, have found little economic advantage with conventional symmetric pore membranes. First, asymmetric pore membranes have been found to be economical because they have a sufficient throughput, and have been put into practical use. In this way, the asymmetric pore membrane can claim economic superiority by increasing the throughput while having the same door-to-door and dividing functions as compared to the conventional symmetric pore membrane.

本発明の非対称孔径薄膜材料は極めて小さい繊維により
相互に連結された結節からなっているがこの繊維の長さ
、太さおよび結節形状などを含めた全体の繊維組織が薄
膜材料の表と裏の面で異なっており、その結果薄膜材料
はその繊維長さ、太さが相違していることに応じで定義
される孔径の非対称性を持つことを特徴としでいる。こ
こでいう表と裏とは製造条件によって決まるもので一枚
の薄膜材料の両表面を任意に意味するものであり、どち
らの表面を表と定義しでもかまわないものであるが、仮
に孔径の小さい方を表面、孔径の大きい方を裏面と区別
する。戸別などを行なう応用のためには孔径の小さい面
から溶液を流すことが効率的な方法となる。
The asymmetric pore diameter thin film material of the present invention consists of nodules interconnected by extremely small fibers, and the entire fiber structure including the length, thickness, and nodule shape of the fibers is the same between the front and back sides of the thin film material. As a result, the thin film material is characterized by an asymmetry in pore size defined by the difference in fiber length and thickness. The front and back sides here are determined by manufacturing conditions and arbitrarily refer to both surfaces of a single thin film material, and it does not matter which surface is defined as the front, but if the pore size The smaller pore size is the front surface, and the larger pore size is the back surface. For applications such as door-to-door distribution, an efficient method is to flow the solution from the surface with small pores.

また繊維長さとは結節と結節とを結ぶ距離としで定義す
るものとし、繊維が結節間にある別の結節と接触しでい
る時には最短結節間の距離を表わすものとする。このた
め多孔性空間を背景としでいる部分の繊維のみが長さと
しで定義できることになる。
Fiber length is defined as the distance between nodes, and when the fiber is in contact with another node between the nodes, it represents the shortest distance between the nodes. Therefore, only the length of the fibers that are exposed against the background of the porous space can be defined.

更に繊維長さの平均は個々の長さの加重平均として計算
できる。
Furthermore, the average fiber length can be calculated as a weighted average of the individual lengths.

この多孔性空間部分を走る両面の繊維長さの相違は非常
に大きく少ない時でも5倍、しばしば50倍以上にも達
しでいる。ここで定義した裏面の繊維長さは1000倍
程度0走査型電子顕微鏡写真でみるとたとえば1μから
100μ程度に明確に判別できるが表面の繊維長さはし
ばしば判別できない程に小さくたとえば0.1μから1
0μ程度になる。
The difference in length of fibers on both sides running through this porous space is very large, sometimes reaching 5 times, and often 50 times or more. The length of the fibers on the back side defined here is about 1000 times larger. When viewed in a scanning electron micrograph, the length of the fibers on the back side can be clearly determined, for example, from 1μ to 100μ, but the length of the fibers on the front side is often so small that it cannot be determined, for example, from 0.1μ. 1
It becomes about 0μ.

第一図は1000倍に拡大した裏面の、第二図は同倍率
の表面の走査型電子顕微鏡写真であり、この図では裏面
の繊維1の長さは15μから30μであるのに対し第2
図の表面での繊維1の長さは多孔性空間部分を背景とす
る限り1μ以下に相当し、結局第1図と第2図の両表面
での繊維長さの比は少なくとも15倍から30倍になっ
ている。
Figure 1 is a scanning electron micrograph of the back side magnified 1000 times, and Figure 2 is a scanning electron micrograph of the front side at the same magnification.
The length of the fiber 1 on the surface of the figure corresponds to less than 1μ as long as the porous space is considered as a background, and as a result, the ratio of the fiber length on both the surfaces of FIG. 1 and FIG. 2 is at least 15 to 30 times. It's doubled.

結節2の形状においても一軸方向の延伸の場合には第一
図の裏面では個々に独立に細長くなり、かつその結節2
の長軸が延伸方向と垂直に配向しでいるが第二図の表面
ではもはや個々の独立した結節はみあたらずに連結して
しまい表面全部があたかも畳の表面の様に変化しでいる
のが判かる。
In the case of uniaxial stretching, the shape of the nodules 2 becomes individually elongated on the back side of Figure 1, and the nodules 2
The long axis of the tatami mat is oriented perpendicular to the stretching direction, but on the surface shown in Figure 2, individual nodules are no longer visible but are connected, and the entire surface has changed to look like the surface of a tatami mat. I understand.

表と裏の面が第一図と第二図の状態に全てがなるのでは
なく、これはあくまでも−例にすぎない。
The front and back sides are not all in the state shown in Figures 1 and 2; this is just an example.

たとえば表と裏面の平均繊維長さは変らないが結節形状
は裏面では個々に独立な細長い状態なのに対し表面では
結節短軸が裏面と同じにもかかわらず結節長軸がはるか
に長くなったもの。更に進むと表面ではもはや独立した
結節が存在しなくなって全部の結節が雁行状に連らなっ
てしまうものも確認された。勿論裏面はこの状態でも独
立な結節のままである。表面の全部の結節が連らなった
時には結節間を結ぶ平均の繊維長さにも表面は裏面より
も短かくなっていき、これが極端に進行した状態の一つ
が第一図と第二図の様相を示すものと思われる。
For example, although the average fiber length on the front and back sides is the same, the shape of the nodules on the back side is individually elongated, whereas on the front side, the short axis of the nodule is the same as the back side, but the long axis of the nodule is much longer. As we progressed further, we observed that there were no independent nodules on the surface anymore, and all the nodules were connected in a flying geese pattern. Of course, the back surface remains an independent nodule even in this state. When all the nodules on the surface are connected, the average fiber length connecting the nodules on the front side becomes shorter than that on the back side, and one of the states where this has progressed to an extreme is shown in Figures 1 and 2. This seems to indicate the situation.

ここで表面と裏面の繊維組織層が薄膜材料の全厚みに対
してどの程度の割合を示しでいるかが一つの問題となる
。r別や分割などの用途に対しでは孔径の小さい表面層
が可及的に薄い方が望ましい。一方高圧力下などで強度
を必要とする場合あるいは超精密tこ分割する用途では
ある程度の表面層厚みがある方が望ましい。     
        1この様に薄膜材料の厚み方向での繊
維組織変化も非対称孔径の要因ではあるが本発明の対象
物は少なくとも両表面での繊維組織が異なっているもの
であり孔径の小さい表面層が可及的に薄いもの・も、か
なり厚いものも、また可及的に薄い裏面層を持つものも
包含するものとする。
One issue here is how much the fiber tissue layers on the front and back sides account for the total thickness of the thin film material. For applications such as separation and division, it is desirable that the surface layer with small pore diameters be as thin as possible. On the other hand, in cases where strength is required under high pressure or in applications where ultra-precision T-cutting is required, it is desirable that the surface layer has a certain thickness.
1 As described above, changes in the fiber structure in the thickness direction of the thin film material are also a factor in the asymmetric pore size, but the object of the present invention has at least a different fiber structure on both surfaces, so a surface layer with a small pore size is possible. It includes those that are extremely thin, those that are quite thick, and those that have as thin a back layer as possible.

本発明に用いる四弗化エチレン樹脂はファインパウダー
と称されるペースト加工法に適合する樹脂ならば全てが
利用できる。この樹脂粉末を液状潤滑剤と均一混合し、
予備圧縮成形を行なって押出し、または圧延、あるいは
両者を含む方法で薄膜状に成形する。次いで蒸発または
抽出によって液状潤滑剤を除去する。この工程までが従
来のペースト加工法であり、シール用材料の製造方法と
して公知のものである。
As the tetrafluoroethylene resin used in the present invention, any resin suitable for paste processing called fine powder can be used. This resin powder is uniformly mixed with liquid lubricant,
Preliminary compression molding is performed and the product is formed into a thin film by extrusion, rolling, or a method including both. The liquid lubricant is then removed by evaporation or extraction. The process up to this step is a conventional paste processing method, which is a well-known method for manufacturing sealing materials.

次いで薄膜の少なくとも一方向、大抵の場合は押出し、
あるいは圧延した方向に回転比の異なる一対のロールで
延伸するが、この時薄膜を四弗化エチレン樹脂の融点で
ある約327℃以下の温度で加熱しながら実施する。こ
の加熱方法は炉を用いて延伸空間を空気加熱することも
可能であるが、回転ロールを直接加熱する方が便利であ
る。従来はこの加熱を均一な同一温度で実施することが
知られでいるが、本発明では低速回転ロールまたは ・
炉の温度よりも高速回転ロールの温度を高くすること、
特に両方の温度差を少なくとも50℃以上に設定するこ
とが好ましい。30〜49℃の温度差によっても結節の
長軸などの繊維組織に変化は表われ始めるが50℃以上
の温度差にすることによってその変化は顕著になってく
る。
The thin film is then extruded in at least one direction, most often
Alternatively, the thin film is stretched in the rolling direction using a pair of rolls having different rotation ratios, while heating the thin film at a temperature below about 327° C., which is the melting point of the tetrafluoroethylene resin. In this heating method, it is possible to air-heat the drawing space using a furnace, but it is more convenient to directly heat the rotating rolls. Conventionally, it has been known to carry out this heating at the same uniform temperature, but in the present invention, low speed rotating rolls or
Raising the temperature of the high-speed rotating rolls higher than the temperature of the furnace;
In particular, it is preferable to set the temperature difference between the two to at least 50°C or higher. Even with a temperature difference of 30 to 49°C, changes begin to appear in the fiber structure, such as the long axes of nodules, but the changes become noticeable when the temperature difference is 50°C or more.

更にこれらの場合においても高速回転ロールを少なくと
も250℃以上でかつ四弗化エチレン樹脂の融点以下に
設定することが平均繊維長さまでも含めた繊維組織を薄
膜材料の表裏で異ったものにし、孔径を非対称化するの
に有効なことを見い出し本発明を完成するに至った。
Furthermore, even in these cases, setting the high-speed rotating roll at a temperature of at least 250°C or higher and below the melting point of the tetrafluoroethylene resin will make the fiber structure, including the average fiber length, different on the front and back sides of the thin film material. The present invention was completed by discovering that this method is effective in making the pore diameter asymmetrical.

繊維組織がこのように変化するのは次のような理由から
生ずるものと思われる。
This change in fiber structure is thought to occur for the following reasons.

低回転ロール等の温度に加熱された薄膜がまずロールの
回転比に応じて延伸され、高回転ロールに接触した時、
そのロールは温度が高いため薄膜の高回転ロール接触面
から再加熱され、薄膜の厚み方向に温度分布が生じる。
A thin film heated to a temperature such as a low rotation roll is first stretched according to the rotation ratio of the roll, and when it comes into contact with a high rotation roll,
Since the temperature of the roll is high, the thin film is reheated from the contact surface of the high-speed roll, and a temperature distribution occurs in the thickness direction of the thin film.

一方回転比の異なるロール1こ張られた薄膜を延伸す・
るためには張力が必要であり、その張力はロール回転力
かロールに接している薄膜部分を支点としで伝達された
ものである。薄膜のロール接触部分は円弧となるため薄
膜の延伸方向には張力が働くと同時に厚み方向には張力
に応じた圧縮力が生じでくる。
On the other hand, one roll with a different rotation ratio stretches the stretched thin film.
In order to achieve this, tension is required, and that tension is transmitted through the rotational force of the roll or the part of the thin film that is in contact with the roll as a fulcrum. Since the part of the thin film in contact with the rolls forms an arc, tension acts in the stretching direction of the thin film, and at the same time, a compressive force corresponding to the tension is generated in the thickness direction.

結局薄膜の厚み方向での温度分布と圧縮力の二つが繊維
組織の変化をもたらす因子と考えられる。
Ultimately, temperature distribution in the thickness direction of the thin film and compressive force are considered to be the two factors that bring about changes in the fiber structure.

このため繊維組織を形成する結節と平均繊維長さはロー
ルの回転比、低回転ロール速度、延伸される薄膜の距離
などに依存するのみならず、用いた薄膜の厚み、延伸す
る前の薄膜の強度、残存する液状潤滑剤量などの因子に
よっても影響をうける。
Therefore, the knots and average fiber length that form the fibrous structure not only depend on the roll rotation ratio, low roll speed, and the distance of the thin film being stretched, but also on the thickness of the thin film used and the length of the thin film before stretching. It is also influenced by factors such as strength and amount of liquid lubricant remaining.

しかし温度分布が生じでも圧縮力が不足しでいる時ある
いは圧縮力は充分あるが温度分布がない時には薄膜の表
・裏面での繊維組織に変化は生じなくなる。
However, when there is a temperature distribution but the compressive force is insufficient, or when there is a sufficient compressive force but no temperature distribution, no change occurs in the fiber structure on the front and back surfaces of the thin film.

ロールの回転比、低回転ロール速度、ロール径、薄膜の
厚みと強度などは延伸時の張力に関係し、それ故圧縮力
を支配する要因となる。ここでのロール回転比は勿論ロ
ールの直径が異なる一対の回転ロールを対象とする時に
は、ロールの周速比と変更されるべきである。一方回転
ロールに温度差をつけること、好ましくは50℃以上に
し、更に高速回転ロール温度を少なくとも250℃以上
にすることで薄膜の厚み方向の温度分布を設定すること
ができる。
The rotation ratio of the rolls, the low rotational roll speed, the roll diameter, the thickness and strength of the thin film, etc. are related to the tension during stretching and are therefore factors that govern the compressive force. Of course, the roll rotation ratio here should be changed to the circumferential speed ratio of the rolls when a pair of rotating rolls having different roll diameters are targeted. On the other hand, the temperature distribution in the thickness direction of the thin film can be set by providing a temperature difference between the rotating rolls, preferably at 50° C. or higher, and by setting the high-speed rotating roll temperature to at least 250° C. or higher.

これらの延伸工程が終った薄膜を約327℃以上の温度
で焼結するがその時には厚み方向の温度分布が生ずる瞬
間があっても圧縮力が加わっていないため繊維組織の表
と裏面での相違を大きくすることはほとんどないようで
ある。
After these stretching processes, the thin film is sintered at a temperature of approximately 327°C or higher, but at that time, even though there is a moment when a temperature distribution occurs in the thickness direction, no compressive force is applied, so there is a difference in the fiber structure between the front and back sides. There seems to be little chance of making it larger.

一方延伸工程を二回以上にわたって実施することも可能
であり、その時少なくとも一回の延伸においてロールに
温度差をつけること、より好ましくは少なくとも50℃
以上の温度差を設定することが必要となる・0の時最初
の延伸を等温度1実  1施するか、最後の延伸を等温
度で行なうかは任意に選択できるが、いずれにしでもこ
のように温度差をもうけたロールで少なくとも一回延伸
されることによって、薄膜の繊維組織が非対称化される
のは事実である。
On the other hand, it is also possible to carry out the stretching process two or more times, in which case a temperature difference is applied to the rolls during at least one stretching, more preferably at least 50°C.
It is necessary to set a temperature difference above ・When the temperature is 0, it is possible to arbitrarily choose whether to carry out the first stretching at a constant temperature, or to carry out the final stretching at a constant temperature. It is true that the fiber structure of the thin film is made asymmetric by being stretched at least once using rolls with a temperature difference of .

非対称化が進み難い条件では、二回以上にわたり温度差
をつけることが望ましく、反対に非対称化が進みすぎる
時には等温度延伸を最後に実施することが望ましい。
Under conditions where it is difficult for the asymmetry to progress, it is desirable to apply a temperature difference two or more times, and on the other hand, when the asymmetry progresses too much, it is desirable to carry out constant temperature stretching last.

非対称化が進む難易度は薄膜の厚み、強度あるいはロー
ルの温度、温度差、回転比などによって影響を受けるも
のである。一般に薄膜の厚みが薄ければ薄い程、強度が
大きれば大きい程、ロールの温度が高ければ高い程、温
度差が大きい程、さらに回転比が大きい程非対称化が容
易に進行する。
The degree of difficulty with which the asymmetry progresses is influenced by the thickness and strength of the thin film, the temperature of the roll, temperature difference, rotation ratio, etc. Generally, the thinner the thin film, the greater the strength, the higher the temperature of the roll, the greater the temperature difference, and the greater the rotation ratio, the easier the asymmetry will progress.

薄膜が非対称孔径になっていることを判定するのは、前
述のように顕微鏡写真によって容易に行なえる。一方!
STM  F3□6−7oの方法に従った孔径分布ある
いはバブルポイント(最大孔径)の測定値、またAST
MD276−72の方法による気孔率の測定値によって
も非対称化の程度を判定することが出来る。
As mentioned above, determining whether a thin film has asymmetric pore sizes can be easily done using a microscopic photograph. on the other hand!
Pore size distribution or bubble point (maximum pore size) measurements according to the method of STM F3□6-7o, and AST
The degree of asymmetry can also be determined by the measured value of porosity by the method of MD276-72.

薄膜の表面と裏面と両方から圧力をかけてバブルポイン
トを求めると、非対称化が進んでいる程両測定値間の差
が大きくなる。
When the bubble point is determined by applying pressure from both the front and back surfaces of the thin film, the difference between the two measured values increases as the asymmetry progresses.

〔実施例〕〔Example〕

以下には本発明を更に詳細に説明するための実施例を示
す。
Examples are shown below to explain the present invention in more detail.

実施例1 ダイキン工業社製四弗化エチレン樹脂、ポリフロンF−
103,50kg をホワイトオイル(村松石油製 ス
モイルP−s 5 ) 11.5 kg と均一混合し
たのち300mm角に圧縮予備成型した。これを12 
x 300 mmのグイオリフィスを通じて板状に押し
出し、次いでカレンダーロールを用いでQ、 3 mm
厚の長尺薄膜に圧延しで巻き取った。
Example 1 Tetrafluoroethylene resin manufactured by Daikin Industries, Ltd., Polyflon F-
103.50 kg was uniformly mixed with 11.5 kg of white oil (Sumoil P-s 5 manufactured by Muramatsu Oil Co., Ltd.), and then compressed and preformed into a 300 mm square. This is 12
x 300 mm through an orifice, and then using a calender roll to
It was rolled and wound into a thick long thin film.

ホワイトオイルをトリクレンによって抽出除去した後で
の厚みは0.32mm、比重は1.65、圧延後の引張
強さは縦方向で1.3 kg/mm2、横方向で0.2
5 kg/mm  を示した。
The thickness after white oil was extracted and removed using trichlorene was 0.32 mm, the specific gravity was 1.65, and the tensile strength after rolling was 1.3 kg/mm2 in the longitudinal direction and 0.2 in the transverse direction.
It showed 5 kg/mm.

330℃まで加熱できる一対の12 mmロール用い、
延伸される薄膜距離8.5mm、ロール回転比1:9、
低速ロールの回転速度2 m/ m i n、低速ロー
ルの温度を130℃に設定し、高速ロールの温度を第−
表の様に変えながら延伸した。
Using a pair of 12 mm rolls that can be heated up to 330℃,
Thin film distance stretched 8.5 mm, roll rotation ratio 1:9,
The rotational speed of the low-speed roll was set to 2 m/min, the temperature of the low-speed roll was set to 130°C, and the temperature of the high-speed roll was set to 2 m/min.
It was stretched as shown in the table.

次いで約327℃以上の温度で焼結した物の特性をも併
せて下表に示した。
The properties of the product sintered at a temperature of about 327° C. or higher are also shown in the table below.

第   −表 高速回転ロールの温度が高くなる程焼結前の気孔率は減
少しでいくが、引張強度は増大しでいき、薄膜の厚み方
向での温度分布と圧縮力が有効に働らいでいることが判
る。ここでの気孔率は比重の測定値から計算したもので
ある。
Table - As the temperature of the high-speed rotating roll increases, the porosity before sintering decreases, but the tensile strength increases, and the temperature distribution and compressive force in the thickness direction of the thin film no longer work effectively. I know that there is. The porosity here is calculated from the measured value of specific gravity.

実施例2 0一ル回転比を1:12、低速回転ロール速度を25c
m/minにした以外は実施例1と同条件で延伸したと
ころ第二表の物性値を示した。
Example 2 Roll rotation ratio is 1:12, low rotation roll speed is 25c
When stretched under the same conditions as in Example 1 except that the stretching speed was changed to m/min, the physical properties shown in Table 2 were obtained.

気孔率および引張強度と高速回転ロール温度との関係は
実施例1の結果と類似の傾合を示しでいるがここでの縦
方向引張強度は実施例よりも太き(なっている。
The relationship between the porosity and tensile strength and the high-speed rotating roll temperature shows a similar tendency to the results of Example 1, but the longitudinal tensile strength here is thicker than in Example.

第  二   表 一方バプルポイントはアルコールで濡れた薄膜を通じて
最初の気泡が通過する圧力を表わしでおり薄膜の孔径と
は逆比例の関係にある。結局バブルポイントが高い程孔
径が小さく、バブルポイントか低い程孔径が大きいこと
になる、 薄膜の表面と裏面との繊維組織が異っていることを確認
するため表面より空気圧力をかけた時のバブルポイント
と裏面より圧力をかけた時の値を求めたところ実験A5
では顕著な差が認められ、実験ム10では実験誤差の範
囲で一致しでいる。
Table 2 On the other hand, the bubble point represents the pressure at which the first bubble passes through a thin film wetted with alcohol, and is inversely proportional to the pore size of the thin film. In the end, the higher the bubble point, the smaller the pore diameter, and the lower the bubble point, the larger the pore diameter.In order to confirm that the fiber structures on the front and back sides of the thin film are different, air pressure was applied from the front surface. Experiment A5 was obtained by calculating the value when pressure was applied from the bubble point and the back side.
In Experiment 10, a remarkable difference was observed, and in Experiment 10, there was agreement within the experimental error.

表裏のバブルポイントが一致するものは対称孔径膜であ
り、一致せずに差が太き(なる程非対称孔径化が進んで
いることを示しでいる。
A membrane in which the bubble points on the front and back sides match is a symmetric pore size membrane, whereas they do not match and the difference is large (this clearly indicates that the asymmetric pore size is progressing).

実施例3 0一ル回転比を1:12、低速ロールの回転速度25 
cm/min 、薄膜の延伸距離15.5 mm 、高
速回転ロールの温度を300℃に設定し、低速回転ロー
ルの温度を変えながら実施例1と類似方法で延伸したも
のの特性を第三表に示す。
Example 3 Roll rotation ratio is 1:12, rotation speed of low speed roll is 25
Table 3 shows the properties of the film stretched in a similar manner to Example 1 while setting the thin film stretching distance to 300°C and the temperature of the high-speed rotating roll to 300°C and changing the temperature of the low-speed rotating roll. .

第  三   表 ここでの測定値は焼結後のものであり、透液時間とは4
 Q mmφ の有効面積を通じて1OOrnlのイソ
プロピルアルコールが7 Q cmHgの圧力差で通過
するに要する時間を表示している。
Table 3 The measured values here are after sintering, and the liquid permeation time is 4.
The time required for 1OOrnl of isopropyl alcohol to pass through an effective area of Q mmφ with a pressure difference of 7 Q cmHg is displayed.

薄膜の表面と裏面での特性値は実験’AI 2から15
において特に顕著である。
The characteristic values on the front and back sides of the thin film are from Experiment'AI 2 to 15.
This is particularly noticeable.

実施例4 高速回転ロールと薄膜の接触時間による効果を調べる目
的で実施例1と類似の以下の実験を行った。
Example 4 The following experiment similar to Example 1 was conducted for the purpose of investigating the effect of the contact time between the high-speed rotating roll and the thin film.

低速ロールの直径120 mm、  温度100℃、回
転速度を240 crrVmin、薄膜の延伸距離15
゜5 mm、高速ロールの温度は300℃、直径は12
0 mm、 80mm、 40 mm と変化させるが
薄膜の回転比による延伸率は800%となるように回転
速度を設定した。延伸された薄膜が高速回転ロールと接
触する時間はロールの直径にはゾ比例しで変化しでおり
それらの特性を第四表に示す。
The diameter of the low-speed roll is 120 mm, the temperature is 100°C, the rotation speed is 240 crrVmin, and the stretching distance of the thin film is 15.
゜5 mm, high speed roll temperature 300℃, diameter 12
The rotational speed was set such that the stretching ratio of the thin film was 800%, although the thickness was changed to 0 mm, 80 mm, and 40 mm. The time that the stretched thin film is in contact with the high-speed rotating rolls varies in proportion to the diameter of the rolls, and these characteristics are shown in Table 4.

第   四   表 高速回転ロールの直径が大きくなる程バブルポイントは
高くなり結局小さい孔径となる。
Table 4 The larger the diameter of the high-speed rotating roll, the higher the bubble point, resulting in a smaller pore size.

しかるに気孔率はロール径が小さい程増大し、透液時間
も小さくなっている、表面と裏面との特性値は明確な差
をもっでおり、繊維組織の相違は顕著である、 実施例5 薄膜の延伸距離の効果を以下の実験で確かめた。
However, the porosity increases as the roll diameter decreases, and the liquid permeation time also decreases. There is a clear difference in the characteristic values between the front and back surfaces, and the difference in fiber structure is remarkable. Example 5 Thin film The effect of the stretching distance was confirmed in the following experiment.

薄膜の厚みQ、 l mm 、低速ロールの温度130
”C1回転速度25 cm/min、高速ロールの温度
300℃、延伸率を100%と設定し、薄膜の延伸距離
を変更して得たものの特性は第五表の如くであった。
Thin film thickness Q, l mm, low speed roll temperature 130
"C1 rotational speed 25 cm/min, high speed roll temperature 300° C., stretching ratio 100%, and the thin film stretching distance was changed to obtain properties as shown in Table 5.

第  五   表 イソプロピルアルコールの透液時間は表面と裏面のどち
らの面より流下させるかによって約3倍の相違をきたし
でおり繊維組、織の違いが明らかである。
Table 5: The liquid permeation time of isopropyl alcohol varies by about 3 times depending on whether it is flowed down from the front or back surface, and the difference in fiber structure and texture is clear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は繊維1と結節2が明確に判別できる裏面の、ま
た第2図は表面の非対称孔径をもった薄膜の走査型電子
顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of the back side where fibers 1 and nodules 2 can be clearly distinguished, and FIG. 2 is a scanning electron micrograph of a thin film with asymmetric pore sizes on the front side.

Claims (4)

【特許請求の範囲】[Claims] (1)液状潤滑剤を含む四弗化エチレン樹脂をペースト
法で薄膜に成形したのち該液状潤滑剤を除去し、四弗化
エチレン樹脂の融点以下の温度で延伸する時低速回転ロ
ールと、該低速回転ロールより高温の高速回転ロールに
よって延伸し、該薄膜の厚み方向に温度差と圧縮力を同
時に発生させることを特徴とする非対称孔径薄膜材料の
製造方法。
(1) When a tetrafluoroethylene resin containing a liquid lubricant is formed into a thin film by a paste method, the liquid lubricant is removed, and the film is stretched at a temperature below the melting point of the tetrafluoroethylene resin. 1. A method for producing a thin film material with an asymmetric pore size, characterized by stretching with a high-speed rotating roll that is hotter than a low-speed rotating roll, and simultaneously generating a temperature difference and compressive force in the thickness direction of the thin film.
(2)回転比の異なるロールによって、少なくとも2回
以上にわたって延伸し、そのうちの少なくとも一回の延
伸は該回転比の異なるロールに温度差をもうけることを
特徴とする特許請求の範囲第一項記載の非対称孔径薄膜
材料の製造方法。
(2) Stretching is performed at least two times using rolls having different rotation ratios, and at least one of the stretching is performed by creating a temperature difference between the rolls having different rotation ratios. A method for producing asymmetric pore size thin film materials.
(3)回転比の異なるロールに少なくとも50℃以上の
温度差をもうけて延伸することを特徴とする特許請求の
範囲第一項または第二項記載の非対称孔径薄膜材料の製
造方法。
(3) A method for producing an asymmetric pore diameter thin film material according to claim 1 or 2, characterized in that the stretching is carried out with a temperature difference of at least 50° C. between rolls having different rotation ratios.
(4)回転比の異なるロールにおいて低速回転ロールの
温度を230℃以下に、高速回転ロールの温度を少なく
とも250℃以上でかつ四弗化エチレン樹脂の融点以下
に設定することを特徴とする特許請求の範囲第一項また
は第二項記載の非対称孔径薄膜材料の製造方法。
(4) A patent claim characterized in that among rolls having different rotation ratios, the temperature of the low-speed rotating roll is set to 230°C or lower, and the temperature of the high-speed rotating roll is set to at least 250°C or higher and lower than the melting point of the tetrafluoroethylene resin. A method for producing an asymmetric pore diameter thin film material according to item 1 or 2.
JP26674585A 1985-11-25 1985-11-25 Preparation of asymmetric pore size membrane material Granted JPS61171505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26674585A JPS61171505A (en) 1985-11-25 1985-11-25 Preparation of asymmetric pore size membrane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26674585A JPS61171505A (en) 1985-11-25 1985-11-25 Preparation of asymmetric pore size membrane material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51105912A Division JPS603842B2 (en) 1976-09-03 1976-09-03 Asymmetric pore diameter thin film material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS61171505A true JPS61171505A (en) 1986-08-02
JPS6348562B2 JPS6348562B2 (en) 1988-09-29

Family

ID=17435116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26674585A Granted JPS61171505A (en) 1985-11-25 1985-11-25 Preparation of asymmetric pore size membrane material

Country Status (1)

Country Link
JP (1) JPS61171505A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332342A (en) * 2006-05-19 2007-12-27 Fujifilm Corp Microporous membrane of crystalline polymer, its manufacturing method and filter for filtration
JP2009061363A (en) * 2007-09-04 2009-03-26 Fujifilm Corp Crystalline polymer microporous film, manufacturing method of the same, and filtration filter
JP2009066552A (en) * 2007-09-14 2009-04-02 Chung Yuan Christian Univ Asymmetric film material forming method and its apparatus
JP2009274010A (en) * 2008-05-14 2009-11-26 Seiichi Manabe Multi layer membrane where fine particle capturing capability on front face is different from that on rear face, and method for manufacturing the same
JP2010058024A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtration
JP2010058026A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtration
CN102441329A (en) * 2010-10-09 2012-05-09 私立中原大学 Moulding method and apparatus for asymmetric porous membrane material
EP3666370A4 (en) * 2017-10-26 2020-10-28 LG Chem, Ltd. Fluorine-based porous membrane and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722210Y2 (en) * 1987-07-15 1995-05-24 順彦 佐藤 Picking tool with sticky material
JP2012161741A (en) * 2011-02-07 2012-08-30 Fujifilm Corp Microporous crystalline polymer membrane, production method therefor, and filtration filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332342A (en) * 2006-05-19 2007-12-27 Fujifilm Corp Microporous membrane of crystalline polymer, its manufacturing method and filter for filtration
JP2009061363A (en) * 2007-09-04 2009-03-26 Fujifilm Corp Crystalline polymer microporous film, manufacturing method of the same, and filtration filter
JP2009066552A (en) * 2007-09-14 2009-04-02 Chung Yuan Christian Univ Asymmetric film material forming method and its apparatus
JP2009274010A (en) * 2008-05-14 2009-11-26 Seiichi Manabe Multi layer membrane where fine particle capturing capability on front face is different from that on rear face, and method for manufacturing the same
JP2010058024A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtration
JP2010058026A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtration
US8151998B2 (en) 2008-09-02 2012-04-10 Fujifilm Corporation Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
CN102441329A (en) * 2010-10-09 2012-05-09 私立中原大学 Moulding method and apparatus for asymmetric porous membrane material
EP3666370A4 (en) * 2017-10-26 2020-10-28 LG Chem, Ltd. Fluorine-based porous membrane and manufacturing method therefor

Also Published As

Publication number Publication date
JPS6348562B2 (en) 1988-09-29

Similar Documents

Publication Publication Date Title
JPS603842B2 (en) Asymmetric pore diameter thin film material and its manufacturing method
US5110527A (en) Polytetrafluoroethylene porous material and process for producing the same
EP1019238B1 (en) Microporous membrane with a stratified pore structure created in situ and process
US4049589A (en) Porous films of polytetrafluoroethylene and process for producing said films
US5900292A (en) Liquid crystal polymer film and a method for manufacturing the same
TWI706977B (en) Method for preparing porous membrane of fluorine-based resin and porous membrane of fluorine-based resin
JPH03179038A (en) Production of multilayered porous membrane of polytetrafluoroethylene
JPS61171505A (en) Preparation of asymmetric pore size membrane material
Huang et al. Pore size control of PTFE membranes by stretch operation with asymmetric heating system
JPS621404A (en) Poly-composite hollow fiber membrane and its manufacturing process
JPH07196831A (en) Porous polytetrafluoroethylene film and its production
JPH11319523A (en) Porous poly(tetrafluoroethylene) membrane
JPS587334A (en) Preparation of stringy porous product
JPS6029282B2 (en) Semipermeable membrane and its manufacturing method
JP2533229B2 (en) Polytetrafluoroethylene porous body and method for producing the same
WO2004078831A1 (en) Porous polytetrafluoroethylene resin body and process for producing the same
JP7102678B2 (en) Fluorine-based resin porous membrane and its manufacturing method
JP5620665B2 (en) Method for producing stretched resin porous membrane
JPS5932562B2 (en) Hollow fibrous membrane and its manufacturing method
KR102267597B1 (en) Porous fluorine resin film and method for preparing the same
JPS6157328A (en) Manufacture of polytetrafluoroethylene porous material
Bildyukevich et al. Influence of Spinning Modes on the Structure and Properties of Polyethersulfone Hollow-Fiber Ultrafiltration Membrane
KR20200044564A (en) Porous fluorine resin sheet and method for prepararing the same
KR20210061777A (en) Porous fluorine resin sheet and method for prepararing the same
CN113396007A (en) Porous PTFE membrane