JPS61169688A - Screw fluid machinery - Google Patents

Screw fluid machinery

Info

Publication number
JPS61169688A
JPS61169688A JP900085A JP900085A JPS61169688A JP S61169688 A JPS61169688 A JP S61169688A JP 900085 A JP900085 A JP 900085A JP 900085 A JP900085 A JP 900085A JP S61169688 A JPS61169688 A JP S61169688A
Authority
JP
Japan
Prior art keywords
casing
passage
screw
discharge passage
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP900085A
Other languages
Japanese (ja)
Inventor
Taiji Hashimoto
泰司 橋本
Hidetomo Mori
茂利 英智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP900085A priority Critical patent/JPS61169688A/en
Publication of JPS61169688A publication Critical patent/JPS61169688A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the thermal deformation of a casing accompanied by the temperature rise of the discharged gas and permit the operation with the high discharge pressure having a high-temperature, by forming a cooling-water flow passage on the outer periphery of the discharge passage of the oil free screw fluid machinery. CONSTITUTION:A vacant chamber 15 for the flow of cooling water is formed in a casing 1, and the cooling water is allowed to flow into an effluence port 15b from in an inflow port 15a. In this case, an annular flow passage 21 for the cooling water is formed by a partitioning wall 20 on the outer periphery of a discharged-gas passage 14. The cooling water is allowed to flow in the casing 1 through an annular passage 21 from the inflow port 15a, and the cooling effect in the vicinity of the outer periphery of the discharged-gas passage 14 is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はケーシング内にスクリューロータを囲んで水冷
ジャケットが形成されているスクリュー流体機械に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a screw fluid machine in which a water cooling jacket is formed in a casing surrounding a screw rotor.

〔発明の背景〕[Background of the invention]

オイルフリースクリユー流体機械のように、高温状態で
運転される装置においては発熱によるケーシングの熱変
形を防止するため、雄雌一対のスクリューロータを囲ん
で水冷ジャケットがケーシング内に形成される。
In devices operated at high temperatures, such as oil-free screw fluid machines, a water cooling jacket is formed in the casing surrounding a pair of male and female screw rotors to prevent thermal deformation of the casing due to heat generation.

スクリュー流体機械は、ケーシング内方に雄雌一対のス
クリューロータが収納され、ケーシングの一側に吸入通
路、他側に吐出通路が形成される。
In a screw fluid machine, a pair of male and female screw rotors are housed inside a casing, and a suction passage is formed on one side of the casing and a discharge passage is formed on the other side.

雄ロータを回転することにより、タイミングギヤー等を
介して雌ロータは従動回転し1両ロータで形成される歯
形空間に吸入通路より作動ガスを取入れ、該密封ガスを
スクリューロータにて所定圧力まで圧縮し吐出通路より
機外に吐出し所望の用に供する。
By rotating the male rotor, the female rotor is driven to rotate via a timing gear, etc., and working gas is introduced from the suction passage into the toothed space formed by the single rotor, and the sealed gas is compressed to a predetermined pressure by the screw rotor. Then, it is discharged outside the machine from the discharge passage and used for the desired purpose.

しかるに、スクリューロータに油を注入しない所謂オイ
ルフリースクリユー流体機械のように、高温状態で運転
されるため、発熱によりケーシングが熱変形を起すこと
がある。上記対策として米国特許第2410172号に
開示されているように、ロータ外周部に水冷ジャケット
を設け、冷却水によリケーシングの発熱を低下させる構
造が知られている。
However, since the so-called oil-free screw fluid machine, in which oil is not injected into the screw rotor, is operated at high temperatures, the casing may be thermally deformed due to heat generation. As a countermeasure to the above, a structure is known in which a water cooling jacket is provided on the outer circumference of the rotor to reduce the heat generation of the recasing using cooling water, as disclosed in US Pat. No. 2,410,172.

しかして、スクリュー圧縮機のスクリューケーシングの
温度分布としては圧縮された吐出ガスの温度上昇により
、吐出通路の近傍が最も高温となり吐出通路から離れる
につれ温度は低くなる。
Therefore, as for the temperature distribution of the screw casing of the screw compressor, due to the temperature increase of the compressed discharge gas, the temperature is highest near the discharge passage, and the temperature decreases as the distance from the discharge passage increases.

しかるに、従来の装置においては、吐出通路近傍を積極
的に冷却するような考慮はなされておらず、むしろ吐出
通路近傍では冷却水が淀んでしまう形状になったり、更
に冷却水の通路断面積は吐出通路近傍が広く形成され、
冷却水の流速は吐出通路近傍では遅くなり冷却水の熱伝
達が低下する構造になっている。
However, in conventional devices, no consideration has been given to actively cooling the vicinity of the discharge passage; rather, the shape of the cooling water stagnates near the discharge passage, and furthermore, the cross-sectional area of the passage of the cooling water is too small. The vicinity of the discharge passage is formed wide,
The structure is such that the flow velocity of the cooling water slows down near the discharge passage, reducing heat transfer of the cooling water.

上記のように、ガス吐出通路近傍のケーシング部の冷却
が十分行なわれないため、特にガスの吐出圧力が大きく
圧縮による発熱の大きなスクリュー圧縮機では吐出ガス
の温度上昇により吐出通路付近のスクリューケーシング
円筒部が変形し、回転している雄雌ロータと接触し、ス
クリュー圧縮機の運転継続が不可能になることもあり、
吐出圧力をあまり大きく設定できないという問題点を有
していた。
As mentioned above, the casing near the gas discharge passage is not sufficiently cooled, and the screw casing cylinder near the discharge passage may be affected by the temperature rise of the discharge gas, especially in screw compressors where the gas discharge pressure is high and the heat generated by compression is large. The screw compressor may become deformed and come into contact with the rotating male and female rotors, making it impossible for the screw compressor to continue operating.
There was a problem in that the discharge pressure could not be set too high.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑みて発明されたもので、スクリ
ュー流体機械の吐出ガスの温度上昇に伴なうケーシング
の熱変形を防止し、スクリューロータとケーシングの接
触を無くし、吐出ガスが高温となる高い吐出圧力でも運
転可能なスクリュー流体機械を提供することを目的とす
る。
The present invention was invented in view of the above problems, and prevents thermal deformation of the casing due to the temperature rise of the discharge gas of a screw fluid machine, eliminates contact between the screw rotor and the casing, and prevents the discharge gas from becoming hot. The object of the present invention is to provide a screw fluid machine that can be operated even at a high discharge pressure.

〔発明の概要〕[Summary of the invention]

水冷ジャケットによるケーシングの冷却は主に高温のケ
ーシングと低温の冷却水の間の熱伝達によって行なわれ
、乱流熱伝達の場合、熱伝達率αは次の各式により表さ
れる。
Cooling of the casing by the water cooling jacket is mainly performed by heat transfer between the high temperature casing and low temperature cooling water, and in the case of turbulent heat transfer, the heat transfer coefficient α is expressed by the following equations.

Nu=0.023  XRe’・8XPr”’   −
42)Xd Re=□                  ・・・
(3)v” Q/ d”              
      −(4)ここでNuはヌセルト数、λはケ
ーシングの熱伝導率、dは冷却水通路の相当直径、Re
は冷却水のレイノルズ数、vtQは冷却水の流速および
流量、Pr、yはプラントル数および動粘性係数である
Nu=0.023XRe'・8XPr"'-
42) Xd Re=□...
(3) v"Q/d"
-(4) where Nu is the Nusselt number, λ is the thermal conductivity of the casing, d is the equivalent diameter of the cooling water passage, and Re
is the Reynolds number of the cooling water, vtQ is the flow rate and flow rate of the cooling water, and Pr, y are the Prandtl number and kinematic viscosity coefficient.

(1)、(2)、(3)、(4)式において、Qおよび
λl P r t γの物性値が一定だとすると熱伝達
率αを大きくするためには冷却水通路の相当直径dを小
さくすればよいことが解る。
In equations (1), (2), (3), and (4), if the physical property values of Q and λl P r t γ are constant, in order to increase the heat transfer coefficient α, the equivalent diameter d of the cooling water passage must be reduced. You'll know what to do.

本発明は所期の目的を達成するため、水冷ジャケットの
空室を吐出通路外周部にも形成すると共に、吐出通路の
外周を適宜空間を存して仕切壁にて囲み、吐出通路の外
周に添った冷却水流路を形成する特徴を有し、スクリュ
ー流体機械の発熱により最も温度の高くなるガス吐出通
路近傍の水冷ジャケットの冷却能力を高め、発熱に伴な
うケーシングの熱変形を防止するものである。
In order to achieve the intended purpose, the present invention forms a void space in the water cooling jacket also on the outer periphery of the discharge passage, and surrounds the outer periphery of the discharge passage with a partition wall with an appropriate space. It has the feature of forming a cooling water flow path along with the screw fluid machine, increasing the cooling capacity of the water cooling jacket near the gas discharge passage where the temperature is highest due to the heat generated by the screw fluid machine, and preventing thermal deformation of the casing due to heat generation. It is.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面に基づき説明する。 An embodiment of the present invention will be described below based on the drawings.

図はオイルフリースクリユー圧縮機を示し第1図は縦断
面図、第2図は第1図の■−■線矢視横断面図、第3図
は■−■矢視断面図を示す。
The figures show an oil-free screw compressor; FIG. 1 is a longitudinal cross-sectional view, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line ■-■.

ケーシングは、スクリューケーシング1、その駆動側端
面に配設されるサクションケーシング2、他側にエンド
ケーシング3を取付は形成されている。スクリューケー
シング1内には雄ロータ4゜雌ロータ5が噛合って、上
記スクリューケーシング1内に微小隙間を有して収納さ
れている。上記ロータ4,5は段付きの゛ロータ軸4a
、4b。
The casing includes a screw casing 1, a suction casing 2 disposed on its driving side end face, and an end casing 3 attached to the other side. A male rotor 4 degrees and a female rotor 5 are meshed with each other in the screw casing 1 and housed in the screw casing 1 with a small gap therebetween. The rotors 4 and 5 have a stepped rotor shaft 4a.
, 4b.

5a、5bを連設し、該軸はころ軸受6で支承され、更
に玉軸受7にて軸方向の移動を拘束支持されている。ま
た、上記ロータ軸4a、4b、5a。
5a and 5b are arranged in series, and the shaft is supported by a roller bearing 6, and is further supported by a ball bearing 7 to restrain movement in the axial direction. Also, the rotor shafts 4a, 4b, 5a.

5bの大径部とケーシングとの間には、シール部材8を
嵌装し、ケーシング1内の圧縮ガスの洩れを防止すると
共に、軸受6,7の給油が、スクリューケーシング1内
に浸入することを防止する。
A sealing member 8 is fitted between the large diameter portion of 5b and the casing to prevent compressed gas from leaking within the casing 1 and to prevent oil supply from the bearings 6 and 7 from entering the screw casing 1. prevent.

雄ロータ4は駆動側ロータでそのロータ軸4aには先端
にピニオン9が取付けられ、このピニオンは電動機(図
示せず)に連結されたギヤ10と噛合い動力が伝達され
る。他側のロータ軸4b。
The male rotor 4 is a drive side rotor, and a pinion 9 is attached to the tip of the rotor shaft 4a, and this pinion meshes with a gear 10 connected to an electric motor (not shown) to transmit power. The rotor shaft 4b on the other side.

5bの軸端には、WIロータを連結するタイミングギヤ
11,12が取付けられ、両ロータ4,5は小間隙を保
って非接触状に同期回転する。
Timing gears 11 and 12 that connect the WI rotor are attached to the shaft end of the rotor 5b, and both rotors 4 and 5 rotate synchronously in a non-contact manner while maintaining a small gap.

スクリューケーシング1には一側に吸込通路13が形成
され、他側には吐出通路14が形成されている。該吸込
通路13はケーシング1端部及びサクションケーシング
2に形成された吸込室13aを連設し、該室13aを介
しスクリューロータ4,5の歯形にて形成される吸込空
間に連通ずる。
A suction passage 13 is formed on one side of the screw casing 1, and a discharge passage 14 is formed on the other side. The suction passage 13 is connected to a suction chamber 13a formed in the end of the casing 1 and the suction casing 2, and communicates with a suction space formed by the teeth of the screw rotors 4 and 5 via the chamber 13a.

またスクリューケーシング1にはスクリューロータ4,
5を囲み、更にエンドケーシング3側まで延長した水冷
ジャケット用の空室15が形成されている。この空室1
5は隔壁16を介し吸込室13aと隔絶され、スクリュ
ーケーシング1の一側に流入口15a、他側に流出口1
5bを設けている。吐出通路14の外周には第4図に展
開図を示すように、上記空室15内に一側を欠除した環
状の仕切壁20が設けられ、吐出通路14の外周を囲み
、上記流入口15aと流入孔19を介し貫流し、該孔1
9を入口とし、欠除部20bを出口とする環状の通路断
面積の小さい流通路21を形成している。
In addition, the screw casing 1 includes a screw rotor 4,
A cavity 15 for a water cooling jacket is formed surrounding the casing 5 and further extending to the end casing 3 side. This vacant room 1
5 is isolated from the suction chamber 13a via a partition wall 16, and has an inlet 15a on one side of the screw casing 1 and an outlet 1 on the other side.
5b is provided. As shown in a developed view in FIG. 4, an annular partition wall 20 with one side cut out is provided in the cavity 15 on the outer periphery of the discharge passage 14, and surrounds the outer periphery of the discharge passage 14 and connects the inlet. 15a and through the inflow hole 19,
An annular flow passage 21 having a small cross-sectional area is formed, with 9 serving as an inlet and the cutout 20b serving as an outlet.

上記構造のスクリュー圧縮機の作用について以下説明す
る。電動機の動力はギヤー10,9を介し、雄スクリユ
ーロータ4に伝達され、該ロータ4は回転し、タイミン
グギヤー11.12を介し雌スクリユーロータ5は非接
触状態に従動回転する1両スクリューロータ4,5の回
転により5作動ガスを吸込通路13から吸入室13aを
介し。
The operation of the screw compressor having the above structure will be explained below. The power of the electric motor is transmitted to the male screw rotor 4 through gears 10 and 9, and the rotor 4 rotates, and the female screw rotor 5 is transmitted through timing gears 11 and 12 to a single screw that rotates in a non-contact manner. The rotation of the rotors 4 and 5 causes the working gas to flow from the suction passage 13 through the suction chamber 13a.

スクリューロータの歯形空間に吸込み、圧縮したガスを
吐出通路14から機外に吐出する。
The compressed gas is sucked into the tooth-shaped space of the screw rotor and discharged from the discharge passage 14 to the outside of the machine.

圧縮過程を第5図を用いて説明すると、まずロータの噛
合いによって圧縮室の容積v0からvlに変化する。こ
のとき圧力は吸込圧力P、からPiまで上昇し、作動ガ
スの温度も圧縮に伴ない上昇する。ここまでの変化は吸
込口から吐出口までの変化を示したもので、−を設計圧
力比といP。
The compression process will be explained using FIG. 5. First, the volume of the compression chamber changes from v0 to vl due to the engagement of the rotors. At this time, the pressure increases from the suction pressure P, to Pi, and the temperature of the working gas also increases with the compression. The changes up to this point show the changes from the suction port to the discharge port, where - is the design pressure ratio P.

P。P.

う。圧縮によるガスの温度上昇は−の値が大きP。cormorant. The temperature rise of gas due to compression is P when the negative value is large.

い程大となる。吐出口以後は吐出の際の圧損の影響で一
度圧力の上昇はあるが、容積の減少に伴ない圧力は低下
し容積零の点では吐出圧力P4となる。このようにロー
タの噛合いによって第5図に示したP−■変化を連続的
に行う。
It becomes very large. After the discharge port, the pressure increases once due to the pressure drop during discharge, but as the volume decreases, the pressure decreases and becomes the discharge pressure P4 at the point of zero volume. In this manner, the P-■ change shown in FIG. 5 is continuously performed by the engagement of the rotors.

上記圧縮作用により、作動ガスは温度上昇し、この熱は
ケーシングに伝達される。ケーシングの温度上昇を防止
するため水冷ジャケットに冷却水を流し冷却を行なう、
冷却水は、流入口15aより流入し、流入孔19を経て
、吐出通路14まわりの環状の流通路21を流通し、次
いで空間15を第1図、第4図に矢印で示すように流れ
、流出口15bより機外に流出する。
Due to the compression action, the temperature of the working gas increases and this heat is transferred to the casing. To prevent the temperature of the casing from rising, cooling water is poured into the water cooling jacket to cool the casing.
The cooling water flows in from the inlet 15a, passes through the inlet hole 19, flows through the annular flow passage 21 around the discharge passage 14, and then flows through the space 15 as shown by arrows in FIGS. 1 and 4, It flows out of the machine from the outlet 15b.

しかして、上記冷却水の流通において、冷水は先ず、高
温となる吐出通路14近傍を流れ、同部を低温水で積極
的に冷却する。また吐出通路14まわりの通路は該通路
14の外周を通路断面積の小さい環状通路21に形成し
ているため、同道路21を流通する冷却水は流速を上げ
て流通するから同部の冷却能力は高められる。
Therefore, in the above-mentioned circulation of the cooling water, the cold water first flows near the discharge passage 14 where the temperature becomes high, and this portion is actively cooled with low-temperature water. In addition, since the passage around the discharge passage 14 is formed with an annular passage 21 having a small cross-sectional area on the outer periphery of the passage 14, the cooling water flowing through the road 21 flows at an increased flow rate, so that the cooling capacity of the passage 14 is increased. is enhanced.

上記両件用により吐出通路14近傍のケーシング部の冷
却効率は向上される。
The cooling efficiency of the casing portion near the discharge passage 14 is improved by both of the above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ケーシングは、高
温となる吐出通路近傍が積極的に冷却され、冷却効率が
向上されるため、吐出ガスの温度上昇に伴なうスクリュ
ーケーシング円筒部の熱変形を防ぎ、ロータとケーシン
グの接触は防止することが出来る。
As explained above, according to the present invention, the casing is actively cooled near the discharge passage where the temperature is high, and the cooling efficiency is improved. Deformation can be prevented, and contact between the rotor and the casing can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すスクリュー圧縮機の縦
断面図、第2図は第1図のn−n矢視断面図、第3図は
第1図の■−■矢視断面図、第4図は第3図のIV−I
V矢視断面展開図、第5図はスクリュー圧縮機のP−v
線図である。 1・・・スクリューケーシング、4・・・雄スクリュー
ロ−タ、5・・・雌スクリユーロータ、13・・・吸込
通路9.14・・・吐出通路、15・・・空室(水冷ジ
ャケット)、第30
Fig. 1 is a longitudinal sectional view of a screw compressor showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the nn arrow in Fig. 1, and Fig. 3 is a sectional view taken along the ■-■ arrow in Fig. 1. Figure 4 is IV-I of Figure 3.
V arrow cross-sectional developed view, Figure 5 is P-v of the screw compressor
It is a line diagram. DESCRIPTION OF SYMBOLS 1...Screw casing, 4...Male screw rotor, 5...Female screw rotor, 13...Suction passage 9.14...Discharge passage, 15...Vacancy (water cooling jacket) ), 30th

Claims (1)

【特許請求の範囲】 1、ケーシング内方に雄雌一対のスクリューロータを噛
合せて収納し、ケーシングの一側に吸入通路、他側に吐
出通路を形成し、ケーシング内にスクリューロータを囲
む水冷ジャケットの空室を内設するスクリュー流体機械
において、上記空室を吐出通路外周部にも形成すると共
に、吐出通路の外周を適宜空間を存して仕切壁にて囲み
、吐出通路の外周に添った環状の冷却水流路を形成して
なることを特徴とするスクリュー流体機械。 2、冷却水流路が吐出通路の外周に添った流路を経て空
室流路に接続する特許請求の範囲第1項記載のスクリュ
ー流体機械。
[Claims] 1. A pair of male and female screw rotors are housed inside a casing in mesh with each other, a suction passage is formed on one side of the casing, a discharge passage is formed on the other side, and a water cooling system surrounds the screw rotor within the casing. In a screw fluid machine in which a jacket has a cavity inside, the cavity is also formed at the outer periphery of the discharge passage, and the outer periphery of the discharge passage is surrounded by a partition wall with an appropriate space, and the outer periphery of the discharge passage is surrounded by a partition wall. A screw fluid machine characterized by forming an annular cooling water flow path. 2. The screw fluid machine according to claim 1, wherein the cooling water flow path is connected to the empty chamber flow path via a flow path along the outer periphery of the discharge passage.
JP900085A 1985-01-23 1985-01-23 Screw fluid machinery Pending JPS61169688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP900085A JPS61169688A (en) 1985-01-23 1985-01-23 Screw fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP900085A JPS61169688A (en) 1985-01-23 1985-01-23 Screw fluid machinery

Publications (1)

Publication Number Publication Date
JPS61169688A true JPS61169688A (en) 1986-07-31

Family

ID=11708404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP900085A Pending JPS61169688A (en) 1985-01-23 1985-01-23 Screw fluid machinery

Country Status (1)

Country Link
JP (1) JPS61169688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419686U (en) * 1990-06-05 1992-02-19
WO2003001064A1 (en) * 2001-06-22 2003-01-03 Ghh-Rand Schraubenkompressoren Gmbh Two-stage helical screw compressor
WO2022209606A1 (en) * 2021-03-31 2022-10-06 株式会社日立産機システム Screw compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419686U (en) * 1990-06-05 1992-02-19
WO2003001064A1 (en) * 2001-06-22 2003-01-03 Ghh-Rand Schraubenkompressoren Gmbh Two-stage helical screw compressor
US6991440B2 (en) 2001-06-22 2006-01-31 Ghh-Rand Schraubenkompressoren Gmbh Two-stage screw compressor
WO2022209606A1 (en) * 2021-03-31 2022-10-06 株式会社日立産機システム Screw compressor

Similar Documents

Publication Publication Date Title
JP2650041B2 (en) 2-axis vacuum pump
KR102437094B1 (en) screw type's vacuum pump with cooling screen and cooling apparatus
JPS61169688A (en) Screw fluid machinery
US3209990A (en) Two stage screw rotor machines
JPS61200391A (en) Scroll type fluid machinery
JP3240851B2 (en) Dry screw fluid machine
KR101207298B1 (en) air compressor and expander
US4963079A (en) Screw fluid machine with high efficiency bore shape
CN101418801B (en) Screw compressor for lubricating screw rotor by water
EP2264319A2 (en) Oil free screw compressor
US3181296A (en) Gas engine with continuous fuel injection
US3430848A (en) Rotary-displacement compressors
CN216922491U (en) Water-cooled type screw vacuum pump
US3537269A (en) Rotary stirling cycle refrigerating system
CN203582758U (en) Continuous emulsification equipment for emulsion explosive
CN112746970A (en) Oil sump oil return structure, compressor and air conditioner
US10718334B2 (en) Compressor with ribbed cooling jacket
JPS6336085A (en) Screw type vacuum pump
JPH03213688A (en) Screw vacuum pump
CN109458331A (en) A kind of rotors for dry double-screw vacuum pump with double cooling systems
CN206785982U (en) A kind of serum recycle pump refrigerating device and its slurry circulating pump
WO2022209606A1 (en) Screw compressor
JP2004044606A (en) Oil-free screw compressor
JPH04314991A (en) Lubricating oil cooling structure for screw vacuum pump
JP4248055B2 (en) Oil-cooled screw compressor