WO2022209606A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
WO2022209606A1
WO2022209606A1 PCT/JP2022/009701 JP2022009701W WO2022209606A1 WO 2022209606 A1 WO2022209606 A1 WO 2022209606A1 JP 2022009701 W JP2022009701 W JP 2022009701W WO 2022209606 A1 WO2022209606 A1 WO 2022209606A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
casing
discharge
cooling
channel
Prior art date
Application number
PCT/JP2022/009701
Other languages
French (fr)
Japanese (ja)
Inventor
聖太 谷本
利明 矢部
航平 酒井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2022209606A1 publication Critical patent/WO2022209606A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a screw compressor, and more particularly to a screw compressor whose casing is cooled by a coolant.
  • Some screw compressors have a pair of screw rotors that rotate while meshing with each other, and a casing that houses both screw rotors. This screw compressor sucks and compresses gas by increasing and decreasing the volume of a plurality of working chambers formed by both screw rotors and the inner wall surface of a casing surrounding them as both screw rotors rotate.
  • Internal leakage of compressed gas is a typical factor that reduces the performance of screw compressors.
  • Internal leakage of compressed gas is the reverse flow of compressed gas from a high-pressure space (working chamber) where compression has progressed and the pressure has risen to a relatively low-pressure space before the start of compression or where compression has not progressed. It refers to the phenomenon of This internal leakage results in a loss of energy as the compressed gas returns to a low pressure state at an energy cost.
  • the internal gaps which are paths for internal leakage of compressed gas, include the gap between the meshing portions of the two screw rotors, the gap between the tip of the screw rotor and the inner wall surface (inner peripheral surface) of the casing, and the discharge side end face of the screw rotor. and the discharge-side inner wall surface of the casing facing it.
  • the compressed gas becomes hot, so the temperature of the casing and screw rotor rises due to the high temperature of the compressed gas, causing thermal deformation. Due to thermal deformation of the casing and screw rotor, the internal gap tends to expand. In particular, in non-feed type screw compressors that do not supply liquid to the working chamber, the compressed gas is not cooled by the liquid, so the compressed gas becomes hotter than in the case of feed type screw compressors. In addition, the internal clearance increases due to thermal deformation of the casing and screw rotor.
  • Patent Document 1 As a measure for reducing an increase in the internal leakage of compressed gas due to thermal deformation of the casing, a technique of cooling the casing by circulating a coolant through cooling channels provided in the casing is known (for example, Patent Document 1 (see FIGS. 1 and 4).
  • a cooling passage is provided in a portion of the casing radially outside the rotor chamber, and the axial discharge side of the screw rotor is rotatably supported.
  • a cooling passage is provided in the peripheral portion of the discharge side bearing.
  • Discharge-side bearings that rotatably support the respective screw rotors are arranged in the vicinity of the discharge passage of the casing through which the discharged compressed gas flows. Since the casing around the discharge passage undergoes particularly large thermal deformation due to heat transfer from the high-temperature compressed gas, the increase in the relative distance between the two discharge-side bearings causes the gap between the meshing portions of the two screw rotors to widen. easy to grow.
  • the present invention has been made to solve the above problems, and one of the objects thereof is to improve the efficiency of the compressor by increasing the cooling capacity of the periphery of the discharge-side bearing in the casing.
  • a compressor is provided.
  • a preferred example of the present invention accommodates a plurality of screw rotors that rotate so as to mesh with each other, discharge-side bearings that rotatably support one axial side of each of the plurality of screw rotors, and the plurality of screw rotors.
  • a casing having an accommodation chamber, wherein the discharge side bearing is disposed at a position on the one side in the axial direction relative to the accommodation chamber, and which forms an operating chamber together with the plurality of screw rotors, the casing comprising: A cooling passage communicating with the one side of the housing chamber in the axial direction and having a discharge passage for guiding the compressed gas in the working chamber to the outside of the casing, and through which a coolant supplied from the outside of the casing circulates.
  • cooling channel branches from upstream to downstream at a branching portion, the branching portion being located between the discharge channel and the discharge-side bearing in the axial direction, and
  • the screw compressor is positioned so as to overlap the projected area of the discharge passage in the axial direction.
  • the cooling flow path is branched at a position between the discharge flow path and the discharge-side bearing in the axial direction of the screw rotor and at a position overlapping an area where the discharge flow path is projected in the axial direction.
  • the heat transfer coefficient is improved in the branched portion of the cooling channel and in the region immediately downstream thereof.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a screw compressor according to a first embodiment of the present invention, and a system diagram showing an external circulation path of coolant for the screw compressor;
  • FIG. 2 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the II-II arrow direction shown in FIG. 1;
  • FIG. 2 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the line III-III shown in FIG. 1;
  • FIG. 1 is a cross-sectional view showing a schematic structure of a screw compressor according to a first embodiment of the present invention, and a system diagram showing an external circulation path of coolant for the screw compressor;
  • FIG. 2 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the II-II arrow direction shown in FIG. 1;
  • FIG. 2 is a cross-sectional view of the screw compressor according to the first embodiment of
  • FIG. 4 is a schematic diagram showing the flow (secondary flow) in the cooling channel when the screw compressor according to the first embodiment of the present invention is viewed from the IV-IV arrows shown in FIG. 3;
  • FIG. 4 is a diagram showing analysis results of the distribution of heat transfer coefficient between the casing and the coolant in the cooling flow path in the screw compressor according to the first embodiment of the present invention; It is a sectional view showing a schematic structure of a screw compressor concerning a 2nd embodiment of the present invention.
  • FIG. 5 is a diagram showing analysis results of a flow velocity distribution of coolant in a bent pipe connected to a cooling flow path of a casing in a screw compressor according to a second embodiment of the present invention; Analysis of the relationship between the distance from the bent portion (bent flow path) of the bent pipe connected to the cooling flow path of the casing and the flow velocity of the coolant at that position in the screw compressor according to the second embodiment of the present invention It is a figure which shows a result. It is a sectional view showing a schematic structure of a screw compressor concerning a 3rd embodiment of the present invention.
  • FIG. 10 is a diagram showing analysis results of a flow velocity distribution of a coolant in a contraction tube connected to a cooling flow path of a casing in a screw compressor according to a third embodiment of the present invention;
  • FIG. 1 is a cross-sectional view showing the schematic structure of a screw compressor according to a first embodiment of the present invention, and a system diagram showing an external circulation route of a coolant for the screw compressor.
  • FIG. 2 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the II-II arrow direction shown in FIG.
  • the left side is the axial suction side of the screw compressor
  • the right side is the axial discharge side.
  • thick arrows indicate the direction of flow of lubricating oil as a coolant.
  • the thick arrow indicates the direction of rotation of the screw rotor.
  • a screw compressor 1 has a male rotor 2 (male screw rotor) and a female rotor 3 (female screw rotor) that mesh and rotate, and the male and female rotors 2 and 3 mesh with each other. and a casing 4 that rotatably accommodates it in a state.
  • the male rotor 2 and the female rotor 3 are arranged such that their center axes A1 and A2 are parallel to each other.
  • One side (left side in FIG. 1) and the other side (right side in FIG. 1) of the male rotor 2 in its axial direction (horizontal direction in FIG. 1) are supported by a suction side bearing 6 and discharge side bearings 7 and 8, respectively.
  • the female rotor 3 is rotatably supported by a suction-side bearing and a discharge-side bearing (both not shown) on one side and the other side in the axial direction.
  • the male rotor 2 and the female rotor 3 are arranged to rotate in a non-contact state. That is, a gap is formed in the meshing portion between the male rotor 2 and the female rotor 3 .
  • the male rotor 2 includes a rotor tooth portion 21 having a plurality (four in FIG. 2) of twisted male teeth (lobes) 21a, and a suction side (see FIG. 1 It is composed of a shaft portion 22 on the middle, left side) and a shaft portion 23 on the discharge side (right side in FIG. 1).
  • the suction-side shaft portion 22 for example, extends outside the casing 4 and is integrated with the shaft portion of the motor 90 .
  • the suction side shaft portion 22 may be configured to be connected to the motor 90 via a gear (not shown).
  • a timing gear 10 is attached to the tip of the shaft portion 23 on the discharge side.
  • the female rotor 3 has a rotor tooth portion 31 having a plurality (six in FIG. 2) of twisted female teeth (lobes) 31a, and a rotor tooth portion 31 at both ends in the axial direction (perpendicular to the plane of FIG. 2) of the rotor tooth portion 31. It is composed of a suction-side shaft portion (not shown) and a discharge-side shaft portion 33 (see FIG. 3) provided respectively.
  • a female timing gear (not shown) that meshes with the male timing gear 10 is attached to the distal end of the discharge-side shaft portion 33 .
  • the rotational force of the male rotor 2 is transmitted to the female rotor 3 by the male timing gear 10 and the female timing gear, and the male rotor 2 and the female rotor 3 rotate synchronously without contact.
  • the casing 4 includes a main casing 41, a suction side cover 42 attached to the suction side (left side in FIG. 1) of the main casing 41, and a discharge side cover attached to the discharge side (right side in FIG. 1) of the main casing 41. 43.
  • an accommodation chamber (bore) 46 is formed to accommodate the rotor teeth 21 of the male rotor 2 and the rotor teeth 31 of the female rotor 3 in a state of being meshed with each other.
  • the storage chambers 46 are two partially overlapping cylindrical spaces formed inside the casing 4 .
  • the rotor tooth portions 21 and 31 of the male and female rotors 2 and 3 are arranged with a gap of several tens to several hundreds of ⁇ m from the inner wall surface forming the housing chamber 46 of the casing 4 .
  • a plurality of working chambers C are formed by the rotor tooth portions 21 and 31 of the male and female rotors 2 and 3 and the inner wall surface of the casing 4 surrounding them (the wall surface of the housing chamber 46).
  • the working gas in the working chamber C is compressed as the working chamber C contracts while moving in the axial direction as the male and female rotors 2 and 3 rotate.
  • the casing 4 is provided with a suction passage 47 for sucking gas into the working chamber C so as to communicate with the housing chamber 46 . Further, the casing 4 is provided with a discharge passage 48 for guiding and discharging the compressed air in the working chamber C to the outside of the casing 4 so as to communicate with the axial discharge side of the housing chamber 46 .
  • a suction side bearing 6 on the male rotor 2 side and a suction side bearing on the female rotor 3 side are arranged at the end of the main casing 41 on the motor 90 side.
  • a shaft seal member 12 is arranged on the suction side shaft portion 22 of the male rotor 2 on the motor 90 side of the suction side bearing 6 .
  • a suction side cover 42 is attached to the main casing 41 so as to cover the suction side bearing 6 on the male rotor 2 side, the suction side bearing on the female rotor 3 side, and the shaft seal member 12 .
  • the discharge side bearings 7, 8 and timing gear 10 on the male rotor 2 side and the discharge side bearing and timing gear on the female rotor 3 side are arranged.
  • the discharge-side bearings 7, 8 and timing gear 10 on the male rotor 2 side and the discharge-side bearing and timing gear on the female rotor 3 side are arranged at positions on the axial discharge side (right side in FIG. 1) of the housing chamber 46. ing.
  • An air seal 13 and an oil seal 14 are arranged in order from the rotor tooth portion 21 in the portion from the rotor tooth portion 21 side to the discharge side bearings 7 and 8 in the shaft portion 23 on the discharge side of the male rotor 2 . .
  • the shaft portion 33 on the discharge side of the female rotor 3 is also provided with an air seal and an oil seal (both not shown) in order from the rotor tooth portion 31. ing.
  • the air seal 13 prevents the compressed gas in the working chamber C from leaking toward the discharge side bearings 7 and 8 .
  • the oil seal 14 prevents the lubricating oil supplied to the discharge-side bearings 7 and 8 from entering the housing chamber 46 (working chamber C).
  • An oil supply passage 49 for supplying lubricating oil to the suction side bearing 6 and the discharge side bearings 7 and 8 is provided in the casing 4 .
  • a discharge side cover 43 is attached to the main casing 41 so as to cover the discharge side bearings 7 and 8 and the timing gear 10 .
  • the casing 4 is provided with a cooling channel 60 for circulating the coolant.
  • the cooling channel 60 is for cooling the casing 4 to which the heat generated by the gas compression is transferred.
  • This embodiment is characterized by the structure of the cooling channel 60, and the details of the configuration and structure of the cooling channel 60 will be described later.
  • gas can be used in addition to liquid such as cooling water and lubricating oil.
  • An external cooling system 100 for circulating a coolant is connected to the cooling channel 60 of the casing 4 .
  • the external cooling system 100 is configured, for example, to use lubricating oil for lubricating the suction side bearings 6 and the discharge side bearings 7 and 8 of the male and female rotors 2 and 3 as a coolant for the casing 4 as well.
  • the external cooling system 100 includes a pump 101 that sends lubricating oil (coolant) to the suction side bearing 6, the discharge side bearings 7 and 8, and the casing 4, and a cooler that cools the lubricating oil (coolant).
  • auxiliary equipment 103 such as a filter and a check valve, and piping 104 connecting them.
  • the cooler 102 is, for example, an air-cooled type that uses outside air around the cooler 102 for cooling.
  • the pipe 104 branches into a coolant supply pipe 104a that supplies lubricating oil as a coolant to the cooling flow path 60, and a lubricating oil supply pipe 104b that supplies lubricating oil to the suction side bearing 6 and the discharge side bearings 7 and 8. is doing.
  • lubricating oil is used as a cooling material for the casing 4, so that a system for supplying lubricating oil to the suction side bearing 6 and the discharge side bearings 7 and 8 and the external cooling system 100 are shared.
  • a configuration is also possible in which an external cooling system is provided separately from the system for supplying lubricating oil to the suction side bearing 6 and the discharge side bearings 7 and 8 .
  • cooling water as a coolant is introduced into the casing 4 and the motor 90 via an external cooling system.
  • FIG. 3 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the line III--III shown in FIG.
  • the temperature around the discharge passage 48 and around the working chamber C (accommodating chamber 46) in the casing 4 shown in FIG. 2 causes the casing 4 to be thermally deformed.
  • the thermal deformation of the peripheral portion of the discharge passage 48 through which the high-temperature compressed gas flows becomes large.
  • the relative distance to the discharge-side bearing may increase. If the gap between the meshing portions of the male and female rotors 2 and 3 shown in FIG. 2 becomes large due to the increase in the relative distance, internal leakage of the compressed gas increases through the gap.
  • Cooling passages 60 are provided at radially outer positions of the shaft portions 23 and 33 on the discharge side of the female rotors 2 and 3 .
  • the cooling flow path 60 is an introduction flow path for introducing a coolant (lubricating oil) supplied from an external cooling system 100 outside the casing 4 into the casing 4, as shown in FIGS. 1 to 3, for example.
  • a discharge channel 62 that discharges the coolant that has cooled the casing 4 to the external cooling system 100 outside the casing 4
  • a first branch channel 63 that branches from the introduction channel 61
  • a second branch flow It is composed of a channel 64 and a third branch channel 65 arranged radially outside the accommodation chamber 46 .
  • the introduction channel 61 has an introduction port 61a at its upstream end that is connected directly or via a connecting pipe to the external cooling system 100, and is bifurcated into a first branch channel 63 and a second branch channel 64. has a branching portion 61b at the downstream end.
  • An introduction passage 61 including an introduction port 61a and a branch portion 61b is arranged at a position between the discharge passage 48 and the discharge-side bearings 7, 8 in the axial direction of the male and female rotors 2, 3. It is arranged at a position overlapping with a region 48p obtained by projecting the flow path 48 in the axial direction of both the male and female rotors 2 and 3 .
  • the discharge channel 62 has a discharge port 62a at its downstream end that is directly or indirectly connected to the external cooling system 100 via a connecting pipe, and has a first branch channel 63 and a second branch channel 64. has a confluence portion 62b at the upstream end where the two flow paths merge.
  • a discharge passage 62 including a discharge port 62a and a merging portion 62b is arranged at a position between the housing chamber 46 and the discharge side bearings 7, 8 in the axial direction of the male and female rotors 2, 3. 2 and the center axis A2 of the female rotor 3 on the opposite side of the introduction passage 61 .
  • the first branch channel 63 and the second branch channel 64 branch into two from the branch portion 61b in the upstream introduction channel 61 and extend in opposite directions along the circumferential direction of the casing 4, It is configured to merge at a confluence portion 62 b in the discharge flow path 62 .
  • the first branch flow path 63 extends along the circumferential direction at a portion radially outside the shaft portion 23 on the discharge side of the male rotor 2 .
  • the second branch flow path 64 extends along the circumferential direction at a portion radially outside the shaft portion 33 on the discharge side of the female rotor 3 .
  • first branch flow path 63 and the second branch flow path 64 are arranged at positions between the axial discharge flow paths 48 of the male and female rotors 2 and 3 and the discharge side bearings 7 and 8. 2 and 3 are provided so as to surround the shaft portions 23 and 33 on the discharge side from the outside in the radial direction.
  • the first branched flow path 63 and the second branched flow path 64 and their branching portion 61b and merging portion 62b cool the casing portion between the discharge flow path 48 through which the high-temperature compressed gas flows and the discharge side bearings 7 and 8. It is.
  • the third branch flow path 65 communicates with at least one of the first branch flow path 63 and the second branch flow path 64, and as shown in FIG. It extends in the circumferential direction.
  • the third branch flow path 65 cools the peripheral portion of the inner peripheral surface of the casing 4 (the wall surface of the accommodation chamber 46 ) facing the tips of the male and female rotors 2 and 3 .
  • the cooling flow path 60 of the casing 4 is configured to bifurcate from upstream to downstream and then merge again.
  • the branch portion 61b of the cooling channel 60 is positioned between the discharge channel 48 and the discharge side bearings 7 and 8 in the axial direction of the male and female rotors 2 and 3, It is located at a position overlapping the axially projected area 48p of the rotors 2,3.
  • FIG. FIG. 4 is a schematic diagram showing the flow (secondary flow) in the cooling channel when the screw compressor according to the first embodiment of the present invention is viewed from the IV-IV arrows shown in FIG.
  • FIG. 5 is a diagram showing analysis results of distribution of heat transfer coefficient between the casing and the coolant in the cooling flow path in the screw compressor according to the first embodiment of the present invention.
  • white arrows indicate the direction of flow of the coolant (lubricating oil).
  • arrows indicate the direction of the secondary flow of the coolant (lubricating oil).
  • the screw compressor 1 having the above configuration, when the male rotor 2 is driven by the motor 90 shown in FIG. 1, the male rotor 2 rotates the female rotor 3 shown in FIG. As a result, the working chamber C shown in FIGS. 1 and 2 moves axially as the male and female rotors 2 and 3 rotate. At this time, the working chamber C sucks gas (for example, air) from the outside of the casing 4 through the suction passage 47 shown in FIG. Compress to a pressure of When the working chamber C communicates with the discharge passage 48 , the compressed gas in the working chamber C passes through the discharge passage 48 and is discharged to the outside of the casing 4 . As the gas heats up when compressed, the heat of the gas is transferred to the casing 4 .
  • gas for example, air
  • lubricating oil is supplied from the external cooling system 100 shown in FIG.
  • the coolant that cools the casing 4 and rises in temperature is discharged from the cooling flow path 60 to the external cooling system 100 .
  • the coolant discharged to the external cooling system 100 is sent to the cooler 102 by the pump 101 of the external cooling system 100 and cooled by the cooler 102 .
  • the coolant whose temperature has been lowered by the cooler 102 is again introduced into the cooling flow path 60 via the auxiliary machine 103 and the coolant supply pipe line 104a.
  • the size of the cooler 102 of the external cooling system 100 needs to be increased, which increases the cost.
  • the cooler 102 is an air-cooled type, the temperature of the coolant is restricted to be higher than the outside air temperature, so it is difficult to improve the cooling capacity by lowering the temperature of the coolant.
  • Another measure to improve the cooling capacity is to increase the flow rate of the coolant in the casing 4. As a result, the flow velocity of the coolant increases, and the heat transfer coefficient in the vicinity of the wall surface of the cooling channel 60 improves. However, in this case, it is necessary to increase the size of the pump 101 of the external cooling system 100, and the power of the pump 101 increases accordingly. As a result, the overall power of the compressor system may increase.
  • the cooling flow path 60 of the casing 4 is divided from the upstream introduction flow path 61 via the branch portion 61b to the downstream first branch flow path 63 and the second flow path. It is configured to be bifurcated with the branch flow path 64 .
  • the characteristic part of the structure of the cooling flow path 60 is intended to improve the cooling performance for the casing 4 .
  • the main direction of the coolant flowing through the introduction channel 61 is changed by the branching of the first branch channel 63 and the second branch channel 64 .
  • centrifugal force acts on the main stream of the coolant to generate a pressure gradient in the region of the branching portion 61b and the first branching flow channel 63 and the second branching flow channel 64 immediately downstream thereof.
  • a secondary flow as shown in FIG. .
  • the generation of the secondary flow thins the thermal boundary layer of the coolant near the wall surface of the region, thereby increasing the heat transfer coefficient between the wall surface of the region and the coolant.
  • the branch portion 61b of the cooling passage 60 of the casing 4 which has an improved heat transfer coefficient, is arranged between the discharge passage 48 and the discharge side bearings 7, 8 in the axial direction of the male and female rotors 2, 3. and a position overlapping a region 48p where the discharge flow path 48 is projected in the axial direction.
  • the screw compressor 1 of the present embodiment described above includes the male rotor 2 and the female rotor 3 (plurality of screw rotors) that rotate so as to mesh with each other, and the shafts of the male rotor 2 and the female rotor 3 (plurality of screw rotors). It has discharge side bearings 7 and 8 that rotatably support the discharge side (one side) of the direction, and an accommodation chamber 46 that accommodates the male rotor 2 and the female rotor 3 (a plurality of screw rotors). Discharge-side bearings 7 and 8 are arranged at positions on the discharge side (one side) in the axial direction.
  • the casing 4 has a discharge passage 48 that communicates with the discharge side (one side) of the housing chamber 46 in the axial direction and guides the compressed gas in the working chamber C to the outside of the casing 4 . It has a cooling channel 60 through which a coolant circulates.
  • the cooling channel 60 branches from upstream to downstream at a branch portion 61b.
  • the branching portion 61b is located between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction, and overlaps a region 48p where the discharge flow path 48 is projected in the axial direction.
  • the cooling flow path is formed at the branch portion 61b located between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction and overlapping the area 48p where the discharge flow path 48 is projected in the axial direction.
  • the heat transfer coefficient is improved in the branched portion 61b of the cooling channel 60 and the region immediately downstream thereof.
  • the cooling ability of the coolant to the casing 4 is improved. That is, since the cooling capacity of the casing 4 around the discharge side bearings 7 and 8 is enhanced, the increase in the relative distance between the discharge side bearings 7 and 8 due to thermal deformation of the casing 4 is suppressed, and the efficiency of the compressor is improved. can be achieved.
  • the cooling flow path 60 of the casing 4 has an introduction port 61a for introducing a coolant from the outside of the casing 4 at its upstream end and extends from the introduction port 61a to a branch portion 61b (predetermined position). It includes an existing inlet channel 61 .
  • the introduction flow path 61 is arranged at a position between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction and at a position overlapping a region 48p where the discharge flow path 48 is projected in the axial direction.
  • the coolant introduced from the outside of the casing 4 through the introduction port 61a flows through the region between the discharge flow path 48 and the discharge side bearings 7, 8, which becomes hot. Thermal deformation of the casing around 8 can be suppressed.
  • the cooling channel 60 includes a first branch channel 63 and a second branch channel 64 that are bifurcated at the branch portion 61b.
  • the first branched flow path 63 and the second branched flow path 64 are configured to extend in opposite directions from each other along the circumferential direction of the casing 4 from the branched portion 61b.
  • the first branch flow path 63 and the second branch flow path 64 are extended from the branch portion 61b in opposite directions along the circumferential direction of the casing 4, so that the discharge side bearings 7 and 8 is cooled, it is possible to suppress expansion of the relative distance between the discharge side bearings 7 and 8 of the male rotor 2 and the discharge side bearing of the female rotor 3 due to thermal deformation of the casing 4 . Therefore, expansion of the gap between the meshing portions of the male rotor 2 and the female rotor 3 (plurality of screw rotors) is suppressed, so that the efficiency of the compressor can be improved.
  • FIG. 6 is a sectional view showing a schematic structure of a screw compressor according to a second embodiment of the invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 5 are the same parts, and detailed description thereof will be omitted.
  • the bent tube 66 includes a bent channel that turns the flow direction of the main flow of coolant and causes separation of the coolant flow.
  • the bent flow path is arranged within a certain range upstream of the branch portion 61b (see FIG. 3) of the cooling flow path 60.
  • the bent pipe 66 includes a first straight pipe portion 66a having a linearly extending flow path and a second straight pipe having a linearly extending flow path located downstream of the first straight pipe portion 66a. and a bent portion 66c connecting the first straight pipe portion 66a and the second straight pipe portion 66b.
  • the first straight pipe portion 66a is a portion connected to the external cooling system 100 side.
  • the second straight pipe portion 66b is a portion connected to the introduction port 61a of the cooling channel 60 of the casing 4.
  • the bent portion 66c is a portion that functions as a bent flow path that turns the flow direction of the main flow of the coolant to cause flow separation.
  • the configuration, structure, position, etc. of the cooling channel 60 of the casing 4 are the same as those of the first embodiment (see FIG. 3). That is, the cooling channel 60 is configured to bifurcate from an upstream introduction channel 61 into a downstream first branch channel 63 and a second branch channel 64 via a branch portion 61b. Further, the branch portion 61b is located between the discharge flow passage 48 and the discharge side bearings 7 and 8 in the axial direction of the male and female rotors 2 and 3, 3 overlaps the axially projected area 48p.
  • FIG. 7 is a diagram showing analysis results of the flow velocity distribution of the coolant in the bent pipe connected to the cooling flow path of the casing in the screw compressor according to the second embodiment of the present invention.
  • black and white shading represents the level of the flow velocity of the coolant, and indicates that the flow velocity increases as the color approaches black from white.
  • the white arrow indicates the direction of the mainstream of the coolant.
  • the flow velocity of the coolant flowing through the bent pipe 66 is such that the flow velocity in the second straight pipe portion 66b on the downstream side of the bent portion 66c (bent flow path) is the same as that in the first straight pipe portion 66a on the upstream side. greater than the flow velocity inside Therefore, when the coolant is introduced into the cooling channel 60 of the casing 4 via the bent pipe 66, the flow velocity of the coolant introduced into the cooling channel 60 increases. Therefore, the flow velocity of the main flow of the coolant also increases in the region of the branch portion 61b of the cooling channel 60 and the first branch channel 63 and the second branch channel 64 immediately downstream thereof (see FIG. 3).
  • the centerline of the channel is defined as a line connecting the center of gravity points in the cross section where the cross-sectional area of the channel is the smallest.
  • the direction in which the center line faces is defined as the direction of the flow channel, with the tangent line at each point on the curve being the center line.
  • the length of the curved center line of the curved channel is the length of the inlet 61a of the cooling channel 60 of the casing 4. It is desirable that the direction of the flow path changes from upstream to downstream within a range of 45° or more and 90° or less within the range of diameter or hydraulic diameter or less.
  • the bending point is defined as the position of the center line when the direction of the curved flow path (the direction in which the center line faces) changes by 45° viewed from the upstream.
  • the direction of the channel (the direction in which the center line faces) is set to 90° or less. This is because the pressure loss of the flow increases.
  • the stagnation area disappears and the flow velocity returns to the upstream side of the curved channel. That is, if the length of the second straight pipe portion 66b of the bent pipe 66 is too long, the effect of accelerating the coolant by the bent portion 66c disappears. Therefore, the distance from the bent portion 66c (bending point) of the bent pipe 66 to the branch portion 61b of the cooling flow path 60 of the casing 4 or the length of the second straight pipe portion 66b of the bent pipe 66 is set within a certain range. need to be limited.
  • FIG. 8 shows the relationship between the distance from the bent portion (bent flow path) of the bent tube connected to the cooling flow path of the casing and the flow velocity of the coolant at that position in the screw compressor according to the second embodiment of the present invention. It is a figure which shows the analysis result of relationship.
  • the horizontal axis L/d represents the ratio of the distance downstream from the bent portion 66c (bending point) of the bent pipe 66 to the diameter of the inlet 61a of the cooling channel 60
  • the vertical axis V/V0 represents the ratio of the bent pipe.
  • 66 represents the ratio of the main flow rate of the coolant in the second straight pipe portion 66b on the downstream side to the main flow velocity of the coolant in the first straight pipe portion 66a on the upstream side of the bent portion 66c.
  • the main stream velocity of the coolant in the second straight pipe portion 66b gradually increases from the bent portion 66c (bent flow path) toward the downstream side, and reaches a certain position (approximately 1). After that, the flow velocity of the coolant in the second straight pipe portion 66b decreases as it goes downstream.
  • the main stream of coolant in the first straight pipe portion 66a on the upstream side of the bent portion 66c Same speed as speed.
  • the maximum length of the flow path from the bending point of the bent portion 66c (bent flow path) of the bent tube 66 to the branching portion 61b of the cooling flow path 60 is determined by the diameter of the inlet 61a of the cooling flow path 60 or hydraulic power. By setting the diameter to less than 10 times the diameter, it is possible to obtain the effect of accelerating the coolant by the bent portion 66c (bent flow path) of the bent pipe 66 . Note that, as in the present embodiment, the flow path from the bending point of the bent portion 66c (bent flow path) of the bent tube 66 to the branching portion 61b of the cooling flow path 60 is in the axial direction of the male rotor 2 and the female rotor 3.
  • the shortest distance between the plane P including the central axis A1 of the male rotor 2 and the central axis A2 of the female rotor 3 and the bending point of the bent portion 66c of the bent pipe 66 is defined as It is also possible to set the diameter to 10 times or less the diameter of the inlet 61a or the hydraulic diameter.
  • the shortest distance is definitely longer than the length of the flow path from the bending point of the bent portion 66c (bent flow path) of the bent pipe 66 to the branched portion 61b of the cooling flow path 60, the branched portion 61b of the cooling flow path 60 , the effect of accelerating the coolant by the bent portion 66c (bent flow path) of the bent tube 66 can be reliably obtained.
  • the bent pipe 66 is connected to the casing 4 to arrange the bent flow path upstream of the branch portion 61b of the cooling flow path 60 is shown.
  • the bent tube 66 instead of connecting the bent tube 66 to the casing 4 , it is also possible to provide a bent channel inside the casing 4 . That is, the bent flow path is arranged at a position within a predetermined range on the upstream side of the branch portion 61b of the cooling flow path 60 inside the casing 4 .
  • the curved flow path in the cooling flow path 60 can increase the speed of the coolant, and the heat transfer coefficient at the branch portion 61b of the cooling flow path 60 is improved.
  • the position between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction and the projection of the discharge flow path 48 in the axial direction By branching the cooling channel 60 at the branching portion 61b that overlaps the region 48p, the heat transfer coefficient is improved in the branching portion 61b of the cooling channel 60 and the region immediately downstream thereof. Thereby, the cooling ability of the coolant to the casing 4 is improved. That is, since the cooling capacity of the casing 4 around the discharge side bearings 7 and 8 is enhanced, the increase in the relative distance between the discharge side bearings 7 and 8 due to thermal deformation of the casing 4 is suppressed, and the efficiency of the compressor is improved. can be achieved.
  • the bent portion 66c of the bent pipe 66 as a bent passage for turning the flow direction of the coolant is arranged upstream of the branch portion 61b of the cooling passage 60.
  • the cooling channel 60 has an inlet 61 a through which the coolant is introduced from the outside of the casing 4 .
  • the curved flow path has a centerline length within a range equal to or less than the diameter of the inlet 61a or the hydraulic diameter, and the direction of the centerline changes from upstream to downstream within a range of 45° or more and 90° or less. is configured as
  • the maximum length of the channel from the bending point of the curved channel to the branch portion 61b of the cooling channel 60 is set to be less than 10 times the diameter or hydraulic diameter of the inlet 61a.
  • the main stream velocity of the coolant in the branch portion 61b of the cooling channel 60 is increased to the upper stream speed of the coolant upstream of the bent channel (bent portion 66c). Faster than speed.
  • the cooling effect of the coolant on the casing 4 is improved because the heat transfer coefficient of the branched portion 61b and its immediate downstream side is improved by the speed increase of the main stream of the coolant.
  • the screw compressor 1A further includes a bent pipe 66 connected to the introduction port 61a of the casing 4.
  • the bent pipe 66 includes a first straight pipe portion 66a having a linearly extending flow path, and a second straight pipe portion 66a having a linearly extending flow path and positioned downstream of the first straight pipe portion 66a and connected to the inlet 61a. It has two straight pipe portions 66b and a bent portion 66c connecting the first straight pipe portion 66a and the second straight pipe portion 66b.
  • the flow path of the bent portion 66c is configured as a bent flow path that satisfies the conditions described above.
  • FIG. 9 is a sectional view showing a schematic structure of a screw compressor according to a third embodiment of the invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 8 are the same parts, and detailed description thereof will be omitted.
  • the screw compressor 1B according to the third embodiment shown in FIG. 9 differs from the first embodiment in that the cooling flow path 60 of the casing 4 is connected to the external cooling system 100 ( (See Fig. 1).
  • the channel of the contraction tube 67 is configured as a contraction channel in which the channel cross-sectional area decreases from upstream to downstream.
  • a reduced flow path is arranged on the upstream side of the branch portion 61b (see FIG. 3) of the cooling flow path 60. As shown in FIG.
  • the reduced pipe 67 includes a large-diameter pipe portion 67a connected to the external cooling system 100, a small-diameter pipe portion 67b connected to the inlet 61a of the cooling flow path 60 of the casing 4, and a large-diameter pipe portion 67a and a tapered tube portion 67c connecting the small-diameter tube portion 67b.
  • the large-diameter pipe portion 67a and the small-diameter pipe portion 67b are straight pipe portions extending linearly with a constant flow passage cross-sectional area. set to be large.
  • the tapered pipe portion 67c is a portion in which the channel cross-sectional area decreases from upstream to downstream. It should be noted that the reduction tube 67 can also be configured to directly connect the large-diameter tube portion 67a and the small-diameter tube portion 67b without passing through the tapered tube portion 67c.
  • the configuration, structure, position, etc. of the cooling channel 60 of the casing 4 are the same as those of the first embodiment (see FIG. 3). That is, the cooling channel 60 is configured to bifurcate from an upstream introduction channel 61 into a downstream first branch channel 63 and a second branch channel 64 via a branch portion 61b. Further, the branch portion 61b is located between the discharge flow passage 48 and the discharge side bearings 7 and 8 in the axial direction of the male and female rotors 2 and 3, 3 overlaps the axially projected area 48p.
  • FIG. 10 is a diagram showing analysis results of the flow velocity distribution of the coolant in the contraction tube connected to the cooling flow path of the casing in the screw compressor according to the third embodiment of the present invention.
  • black and white shading represents the level of the flow velocity of the coolant, and indicates that the flow velocity increases as the color approaches black from white.
  • the white arrow indicates the direction of the mainstream of the coolant.
  • the flow velocity of the coolant flowing through the contraction pipe 67 is such that the flow velocity in the small diameter pipe portion 67b on the downstream side of the tapered pipe portion 67c is higher than the flow speed in the upstream large diameter pipe portion 67a. .
  • the reduced pipe 67 connected to the cooling flow path 60 of the casing 4 is space-saving compared to the bent pipe 66 connected to the cooling flow path 60 of the casing 4 in the second embodiment. Therefore, it is more advantageous than the second embodiment when the space in the package containing the screw compressor 1B, the motor 90, etc. is limited.
  • the position between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction of the male rotor 2 and the female rotor 3 and the discharge By branching the cooling channel 60 at the branching portion 61b that overlaps with the region 48p projected in the axial direction of the channel 48, the heat transfer coefficient is improved in the branching portion 61b of the cooling channel 60 and the region immediately downstream thereof. do. Thereby, the cooling ability of the coolant to the casing 4 is improved.
  • the contraction pipe 67 as a contraction passage whose passage cross-sectional area decreases from upstream to downstream is located upstream of the branch portion 61b of the cooling passage 60.
  • the flow path between the reduced flow path and the branch portion 61b of the cooling flow path 60 is configured by a single flow path without branching.
  • the main stream velocity of the coolant in the branch portion 61b of the cooling channel 60 is reduced by the contraction pipe 67 as the contraction channel so that the coolant upstream of the contraction channel (the tapered pipe portion 67c of the contraction pipe 67) faster than the mainstream speed of
  • the cooling effect of the coolant on the casing 4 is improved because the heat transfer coefficient of the branched portion 61b and its immediate downstream side is improved by the speed increase of the main stream of the coolant.
  • the cooling flow path 60 has an inlet 61a for introducing a coolant from the outside of the casing 4, and the screw compressor 1B has a reduction pipe 67 connected to the inlet 61a of the casing 4. Prepare more.
  • the channel of the contraction tube 67 is configured as a contraction channel.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. That is, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
  • the oil-free screw compressors 1, 1A, and 1B have been described as examples.
  • the present invention can also be applied to a type screw compressor.
  • twin-screw type screw compressors 1, 1A, and 1B provided with a pair of screw rotors have been described as examples, but multi-screw type screw compressors provided with three or more screw rotors
  • the present invention can also be applied to compressors.
  • cooling channel 60 of the casing 4 bifurcates from the introduction channel 61 into the first branch channel 63 and the second branch channel 64 is shown.
  • the cooling channel can also be configured to branch from the introduction channel 61 into a plurality of branch channels of three or more. Even with such a configuration, the branching portion 61b where the plurality of branched flow paths branch is positioned between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction of the male and female rotors 2 and 3.
  • the discharge passage 48 is arranged at a position overlapping with the region 48p projected in the axial direction of the male and female rotors 2 and 3, the discharge passage 48 and the discharge side bearings 7 and 8 in the casing 4 are separated from each other. It is possible to promote cooling of the region of the hot part in between.
  • bent tube 66 of the second embodiment on the downstream side of the contraction tube 67 of the third embodiment described above.
  • the curved flow path downstream of the flow path whose cross-sectional area decreases toward the downstream side upstream of the branch portion 61 b of the cooling flow path 60 can be enhanced by obtaining the speed-increasing effect of the curved channel in addition to the speed-increasing effect of the coolant by the contracted channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This screw compressor is provided with: a plurality of screw rotors; a discharge side bearing that rotatably supports the axial discharge side of the plurality of screw rotors; and a casing which has a storage chamber for storing the plurality of screw rotors, in which the discharge side bearing is disposed at a position on the axial discharge side relative to the storage chamber, and which forms an operation chamber together with the plurality of screw rotors. The casing has: a discharge flow channel that is connected to the axial discharge side of the storage chamber and that guides compressed gas in the operation chamber to the outside; and a cooling flow channel in which a cooling material supplied from the outside of the casing circulates. The cooling flow channel branches off, at a branch part, from the upstream to the downstream. The branch part is present at a position between the discharge side bearing and the discharge flow channel in the axial direction and at a position that overlaps with a region to which the discharge flow channel is axially projected.

Description

スクリュー圧縮機screw compressor
 本発明は、スクリュー圧縮機に係り、更に詳しくは、ケーシングが冷却材により冷却されるスクリュー圧縮機に関する。 The present invention relates to a screw compressor, and more particularly to a screw compressor whose casing is cooled by a coolant.
 スクリュー圧縮機では、互いに噛合いながら回転する一対のスクリューロータと、両スクリューロータを収納するケーシングとを備えているものがある。このスクリュー圧縮機は、両スクリューロータとそれらを取り囲むケーシングの内壁面とによって形成された複数の作動室の容積が両スクリューロータの回転に伴い増減することで気体を吸い込み圧縮するものである。 Some screw compressors have a pair of screw rotors that rotate while meshing with each other, and a casing that houses both screw rotors. This screw compressor sucks and compresses gas by increasing and decreasing the volume of a plurality of working chambers formed by both screw rotors and the inner wall surface of a casing surrounding them as both screw rotors rotate.
 スクリュー圧縮機の性能を低下させる要因の代表的なものとして、圧縮気体の内部漏洩がある。圧縮気体の内部漏洩とは、圧縮が進んで圧力が上昇した高圧の空間(作動室)から、圧縮の開始前や圧縮が進んでいない相対的に低圧の空間へ、圧縮された気体が逆流してしまう現象をいう。この内部漏洩は、エネルギを要して圧縮した気体が低圧状態に戻ってしまうので、エネルギ損失となる。圧縮気体の内部漏洩の経路となる内部隙間としては、両スクリューロータの噛合い部間の隙間、スクリューロータの歯先とケーシングの内壁面(内周面)との隙間、スクリューロータの吐出側端面とそれに対向するケーシングの吐出側内壁面との隙間などがある。 Internal leakage of compressed gas is a typical factor that reduces the performance of screw compressors. Internal leakage of compressed gas is the reverse flow of compressed gas from a high-pressure space (working chamber) where compression has progressed and the pressure has risen to a relatively low-pressure space before the start of compression or where compression has not progressed. It refers to the phenomenon of This internal leakage results in a loss of energy as the compressed gas returns to a low pressure state at an energy cost. The internal gaps, which are paths for internal leakage of compressed gas, include the gap between the meshing portions of the two screw rotors, the gap between the tip of the screw rotor and the inner wall surface (inner peripheral surface) of the casing, and the discharge side end face of the screw rotor. and the discharge-side inner wall surface of the casing facing it.
 スクリュー圧縮機では、圧縮された気体が高温になるので、高温の圧縮気体によってケーシングやスクリューロータが温度上昇して熱変形する。ケーシングやスクリューロータの熱変形によって、上述の内部隙間が拡大する傾向にある。特に、作動室に対して液体を供給しない無給液式のスクリュー圧縮機では、液体による圧縮気体の冷却効果がないので、給液式のスクリュー圧縮機の場合よりも圧縮気体が高温になり、その分、ケーシングやスクリューロータの熱変形による内部隙間が増大する。 In a screw compressor, the compressed gas becomes hot, so the temperature of the casing and screw rotor rises due to the high temperature of the compressed gas, causing thermal deformation. Due to thermal deformation of the casing and screw rotor, the internal gap tends to expand. In particular, in non-feed type screw compressors that do not supply liquid to the working chamber, the compressed gas is not cooled by the liquid, so the compressed gas becomes hotter than in the case of feed type screw compressors. In addition, the internal clearance increases due to thermal deformation of the casing and screw rotor.
 ケーシングの熱変形に起因した圧縮気体の内部漏洩の増加を低減させる方策として、ケーシングに設けた冷却流路に冷却液を循環させてケーシングを冷却する技術が知られている(例えば、特許文献1の図1及び図4を参照)。特許文献1で図示されたオイルフリースクリュー圧縮機では、ケーシングのうち、ロータ室よりも径方向外側の部分に冷却流路が設けられていると共に、スクリューロータの軸方向吐出側を回転可能に支持する吐出側軸受の周辺部分に冷却流路が設けられている。 As a measure for reducing an increase in the internal leakage of compressed gas due to thermal deformation of the casing, a technique of cooling the casing by circulating a coolant through cooling channels provided in the casing is known (for example, Patent Document 1 (see FIGS. 1 and 4). In the oil-free screw compressor illustrated in Patent Document 1, a cooling passage is provided in a portion of the casing radially outside the rotor chamber, and the axial discharge side of the screw rotor is rotatably supported. A cooling passage is provided in the peripheral portion of the discharge side bearing.
特開2016-70145号公報JP 2016-70145 A
 上述の内部隙間を介した圧縮気体の漏洩のうち、圧縮機効率に与える影響度が最も大きいものは、両スクリューロータの噛合い部間の隙間を介した圧縮気体の内部漏洩であることがシミュレーションから判明している。吐出される圧縮気体が流れるケーシングの吐出流路の近傍には、各スクリューロータを回転可能に支持する吐出側軸受が配置されている。吐出流路周辺のケーシング部分は高温の圧縮気体からの伝熱により熱変形が特に大きくなるので、両吐出側軸受間の相対距離が拡大することで、両スクリューロータの噛合い部間の隙間が大きくなりやすい。 Among the leaks of compressed gas through the above-mentioned internal gaps, it was simulated that the leak of compressed gas through the gaps between the meshing portions of the two screw rotors had the greatest impact on the compressor efficiency. It is clear from Discharge-side bearings that rotatably support the respective screw rotors are arranged in the vicinity of the discharge passage of the casing through which the discharged compressed gas flows. Since the casing around the discharge passage undergoes particularly large thermal deformation due to heat transfer from the high-temperature compressed gas, the increase in the relative distance between the two discharge-side bearings causes the gap between the meshing portions of the two screw rotors to widen. easy to grow.
 このようなケーシングの熱変形により生じる両スクリューロータの噛合い部間の隙間の拡大を抑制する必要がある。特許文献1で図示されたオイルフリースクリュー圧縮機では、吐出流路(吐出口)と吐出側軸受(玉軸受)との間のケーシング部分に冷却流路が設けられているので、吐出流路を流れる高温の圧縮気体の吐出側軸受の周辺部分への伝熱が抑制される。しかし、このような冷却方法でも、ケーシングの熱変形を完全に防ぐことはできない。そのため、圧縮機の効率向上のためには、ケーシングに対する冷却能力の更なる向上が求められている。 It is necessary to suppress the expansion of the gap between the meshing portions of both screw rotors caused by such thermal deformation of the casing. In the oil-free screw compressor illustrated in Patent Document 1, a cooling channel is provided in the casing portion between the discharge channel (discharge port) and the discharge-side bearing (ball bearing). Heat transfer of the flowing high temperature compressed gas to the peripheral portion of the discharge side bearing is suppressed. However, even such a cooling method cannot completely prevent thermal deformation of the casing. Therefore, in order to improve the efficiency of the compressor, it is required to further improve the cooling capacity for the casing.
 本発明は上記の問題点を解消するためになされたものであり、その目的の一つは、ケーシングにおける吐出側軸受の周辺部に対する冷却能力を高めて圧縮機効率の向上を図ることができるスクリュー圧縮機を提供するものである。 SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and one of the objects thereof is to improve the efficiency of the compressor by increasing the cooling capacity of the periphery of the discharge-side bearing in the casing. A compressor is provided.
 本発明の好ましい一例は、噛み合うように回転する複数のスクリューロータと、前記複数のスクリューロータの各々の軸方向の一方側を回転自在に支持する吐出側軸受と、前記複数のスクリューロータを収容する収容室を有し、前記収容室よりも前記軸方向の前記一方側の位置に前記吐出側軸受が配置され、前記複数のスクリューロータと共に作動室を形成するケーシングとを備え、前記ケーシングは、前記収容室における前記軸方向の前記一方側に連通し、前記作動室内の圧縮気体を前記ケーシングの外部へ導く吐出流路を有すると共に、前記ケーシングの外部から供給される冷却材が循環する冷却流路を有し、前記冷却流路は、分岐部において上流から下流に向かって分岐し、前記分岐部は、前記軸方向における前記吐出流路と前記吐出側軸受との間の位置にあり、且つ、前記吐出流路を前記軸方向に投影した領域に重なる位置にあるスクリュー圧縮機である。 A preferred example of the present invention accommodates a plurality of screw rotors that rotate so as to mesh with each other, discharge-side bearings that rotatably support one axial side of each of the plurality of screw rotors, and the plurality of screw rotors. a casing having an accommodation chamber, wherein the discharge side bearing is disposed at a position on the one side in the axial direction relative to the accommodation chamber, and which forms an operating chamber together with the plurality of screw rotors, the casing comprising: A cooling passage communicating with the one side of the housing chamber in the axial direction and having a discharge passage for guiding the compressed gas in the working chamber to the outside of the casing, and through which a coolant supplied from the outside of the casing circulates. wherein the cooling channel branches from upstream to downstream at a branching portion, the branching portion being located between the discharge channel and the discharge-side bearing in the axial direction, and The screw compressor is positioned so as to overlap the projected area of the discharge passage in the axial direction.
 本発明の好ましい一例によれば、スクリューロータの軸方向における吐出流路と吐出側軸受との間の位置かつ吐出流路を軸方向に投影した領域と重なる位置で冷却流路を分岐させることにより、冷却流路の当該分岐部及びその直下流の領域において熱伝達率が向上する。つまり、ケーシングにおける吐出側軸受の周辺部分に対する冷却能力が高まるので、ケーシングの熱変形に起因する吐出側軸受間の相対距離の拡大が抑制され、圧縮機効率の向上を図ることができる。
  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to a preferred embodiment of the present invention, the cooling flow path is branched at a position between the discharge flow path and the discharge-side bearing in the axial direction of the screw rotor and at a position overlapping an area where the discharge flow path is projected in the axial direction. , the heat transfer coefficient is improved in the branched portion of the cooling channel and in the region immediately downstream thereof. In other words, since the cooling capacity of the casing around the discharge side bearing is enhanced, expansion of the relative distance between the discharge side bearings due to thermal deformation of the casing is suppressed, and the efficiency of the compressor can be improved.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1の実施の形態に係るスクリュー圧縮機の概略構造を示す断面図及び当該スクリュー圧縮機に対する冷却材の外部循環経路を示す系統図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a schematic structure of a screw compressor according to a first embodiment of the present invention, and a system diagram showing an external circulation path of coolant for the screw compressor; 本発明の第1の実施の形態に係るスクリュー圧縮機を図1に示すII-II矢視から見た断面図である。FIG. 2 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the II-II arrow direction shown in FIG. 1; 本発明の第1の実施の形態に係るスクリュー圧縮機を図1に示すIII-III矢視から見た断面図である。FIG. 2 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the line III-III shown in FIG. 1; 本発明の第1の実施の形態に係るスクリュー圧縮機を図3に示すIV-IV矢視から見たときの冷却流路内の流れ(二次流れ)を示す概略図である。FIG. 4 is a schematic diagram showing the flow (secondary flow) in the cooling channel when the screw compressor according to the first embodiment of the present invention is viewed from the IV-IV arrows shown in FIG. 3; 本発明の第1の実施の形態に係るスクリュー圧縮機におけるケーシングと冷却流路内の冷却材との間の熱伝達率の分布の解析結果を示す図である。FIG. 4 is a diagram showing analysis results of the distribution of heat transfer coefficient between the casing and the coolant in the cooling flow path in the screw compressor according to the first embodiment of the present invention; 本発明の第2の実施の形態に係るスクリュー圧縮機の概略構造を示す断面図である。It is a sectional view showing a schematic structure of a screw compressor concerning a 2nd embodiment of the present invention. 本発明の第2の実施の形態に係るスクリュー圧縮機におけるケーシングの冷却流路に接続された曲がり管内の冷却材の流速分布の解析結果を示す図である。FIG. 5 is a diagram showing analysis results of a flow velocity distribution of coolant in a bent pipe connected to a cooling flow path of a casing in a screw compressor according to a second embodiment of the present invention; 本発明の第2の実施の形態に係るスクリュー圧縮機におけるケーシングの冷却流路に接続された曲がり管の曲げ部(曲げ流路)からの距離と当該位置の冷却材の流速との関係の解析結果を示す図である。Analysis of the relationship between the distance from the bent portion (bent flow path) of the bent pipe connected to the cooling flow path of the casing and the flow velocity of the coolant at that position in the screw compressor according to the second embodiment of the present invention It is a figure which shows a result. 本発明の第3の実施の形態に係るスクリュー圧縮機の概略構造を示す断面図である。It is a sectional view showing a schematic structure of a screw compressor concerning a 3rd embodiment of the present invention. 本発明の第3の実施の形態に係るスクリュー圧縮機におけるケーシングの冷却流路に接続された縮小管内の冷却材の流速分布の解析結果を示す図である。FIG. 10 is a diagram showing analysis results of a flow velocity distribution of a coolant in a contraction tube connected to a cooling flow path of a casing in a screw compressor according to a third embodiment of the present invention;
 以下、本発明によるスクリュー圧縮機の実施の形態について図面を用いて例示説明する。本実施の形態は、無給油式のスクリュー圧縮機に本発明を適用した例である。 An embodiment of a screw compressor according to the present invention will be described below with reference to the drawings. The present embodiment is an example in which the present invention is applied to an oilless screw compressor.
 [第1の実施の形態]
  第1の実施の形態に係るスクリュー圧縮機の構成を図1及び図2を用いて説明する。図1は本発明の第1の実施の形態に係るスクリュー圧縮機の概略構造を示す断面図及び当該スクリュー圧縮機に対する冷却材の外部循環経路を示す系統図である。図2は本発明の第1の実施の形態に係るスクリュー圧縮機を図1に示すII-II矢視から見た断面図である。図1中、左側がスクリュー圧縮機の軸方向吸込側、右側が軸方向吐出側である。また、太線の矢印は冷却材としての潤滑油の流れ方向を表している。図2中、太線の矢印はスクリューロータの回転方向を表している。
[First embodiment]
A configuration of a screw compressor according to a first embodiment will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a cross-sectional view showing the schematic structure of a screw compressor according to a first embodiment of the present invention, and a system diagram showing an external circulation route of a coolant for the screw compressor. FIG. 2 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the II-II arrow direction shown in FIG. In FIG. 1, the left side is the axial suction side of the screw compressor, and the right side is the axial discharge side. In addition, thick arrows indicate the direction of flow of lubricating oil as a coolant. In FIG. 2, the thick arrow indicates the direction of rotation of the screw rotor.
 図1及び図2において、スクリュー圧縮機1は、互いに噛み合い回転する雄ロータ2(雄型のスクリューロータ)及び雌ロータ3(雌型のスクリューロータ)と、雄雌両ロータ2、3を噛み合った状態で回転可能に収容するケーシング4とを備えている。雄ロータ2及び雌ロータ3は、互いの中心軸線A1、A2が平行となるように配置されている。雄ロータ2は、その軸方向(図1中、左右方向)の一方側(図1中、左側)及び他方側(図1中、右側)がそれぞれ吸込側軸受6および吐出側軸受7、8により回転自在に支持されており、回転駆動源であるモータ90に接続されている。雌ロータ3は、その軸方向の一方側及び他方側がそれぞれ吸込側軸受および吐出側軸受(共に図示せず)により回転自在に支持されている。無給油式のスクリュー圧縮機1では、雄ロータ2と雌ロータ3が非接触の状態で回転するように配置されている。すなわち、雄ロータ2と雌ロータ3の噛合い部には隙間が形成されている。 1 and 2, a screw compressor 1 has a male rotor 2 (male screw rotor) and a female rotor 3 (female screw rotor) that mesh and rotate, and the male and female rotors 2 and 3 mesh with each other. and a casing 4 that rotatably accommodates it in a state. The male rotor 2 and the female rotor 3 are arranged such that their center axes A1 and A2 are parallel to each other. One side (left side in FIG. 1) and the other side (right side in FIG. 1) of the male rotor 2 in its axial direction (horizontal direction in FIG. 1) are supported by a suction side bearing 6 and discharge side bearings 7 and 8, respectively. It is rotatably supported and connected to a motor 90 as a rotational drive source. The female rotor 3 is rotatably supported by a suction-side bearing and a discharge-side bearing (both not shown) on one side and the other side in the axial direction. In the oilless screw compressor 1, the male rotor 2 and the female rotor 3 are arranged to rotate in a non-contact state. That is, a gap is formed in the meshing portion between the male rotor 2 and the female rotor 3 .
 雄ロータ2は、ねじれた雄歯(ローブ)21aを複数(図2中、4つ)有するロータ歯部21と、ロータ歯部21の軸方向の両側端部にそれぞれ設けた吸込側(図1中、左側)のシャフト部22及び吐出側(図1中、右側)のシャフト部23とで構成されている。吸込側のシャフト部22は、例えば、ケーシング4の外側に延出しており、モータ90のシャフト部と一体の構成である。なお、吸込側のシャフト部22は、ギア(図示せず)を介してモータ90と接続されるように構成することも可能である。吐出側のシャフト部23の先端部には、タイミングギア10が取り付けられている。 The male rotor 2 includes a rotor tooth portion 21 having a plurality (four in FIG. 2) of twisted male teeth (lobes) 21a, and a suction side (see FIG. 1 It is composed of a shaft portion 22 on the middle, left side) and a shaft portion 23 on the discharge side (right side in FIG. 1). The suction-side shaft portion 22 , for example, extends outside the casing 4 and is integrated with the shaft portion of the motor 90 . The suction side shaft portion 22 may be configured to be connected to the motor 90 via a gear (not shown). A timing gear 10 is attached to the tip of the shaft portion 23 on the discharge side.
 雌ロータ3は、ねじれた雌歯(ローブ)31aを複数(図2中、6つ)有するロータ歯部31と、ロータ歯部31の軸方向(図2の紙面直交方向)の両側端部にそれぞれ設けた吸込側のシャフト部(図示せず)及び吐出側のシャフト部33(図3参照)とで構成されている。吐出側のシャフト部33の先端部には、雄側のタイミングギア10と噛み合う雌側のタイミングギア(図示せず)が取り付けられている。雄側のタイミングギア10及び雌側のタイミングギアによって、雄ロータ2の回転力が雌ロータ3に伝達され、雄ロータ2と雌ロータ3が非接触で同期回転する。 The female rotor 3 has a rotor tooth portion 31 having a plurality (six in FIG. 2) of twisted female teeth (lobes) 31a, and a rotor tooth portion 31 at both ends in the axial direction (perpendicular to the plane of FIG. 2) of the rotor tooth portion 31. It is composed of a suction-side shaft portion (not shown) and a discharge-side shaft portion 33 (see FIG. 3) provided respectively. A female timing gear (not shown) that meshes with the male timing gear 10 is attached to the distal end of the discharge-side shaft portion 33 . The rotational force of the male rotor 2 is transmitted to the female rotor 3 by the male timing gear 10 and the female timing gear, and the male rotor 2 and the female rotor 3 rotate synchronously without contact.
 ケーシング4は、主ケーシング41と、主ケーシング41の吸込側(図1中、左側)に取り付けられる吸込側カバー42と、主ケーシング41の吐出側(図1中、右側)に取り付けられる吐出側カバー43とを備えている。 The casing 4 includes a main casing 41, a suction side cover 42 attached to the suction side (left side in FIG. 1) of the main casing 41, and a discharge side cover attached to the discharge side (right side in FIG. 1) of the main casing 41. 43.
 ケーシング4の内部には、雄ロータ2のロータ歯部21および雌ロータ3のロータ歯部31を互いに噛み合った状態で収容する収容室(ボア)46が形成されている。収容室46は、ケーシング4の内部に形成された一部重複する2つの円筒状空間である。ケーシング4の収容室46を形成する内壁面に対して、雄雌両ロータ2、3のロータ歯部21、31がそれぞれ数十~数百μmの隙間を保って配置されている。雄雌両ロータ2、3のロータ歯部21、31とそれを取り囲むケーシング4の内壁面(収容室46の壁面)とによって複数の作動室Cが形成される。作動室C内の作動気体は、作動室Cが雄雌両ロータ2、3の回転に伴って軸方向に移動しつつ収縮することで圧縮される。 Inside the casing 4, an accommodation chamber (bore) 46 is formed to accommodate the rotor teeth 21 of the male rotor 2 and the rotor teeth 31 of the female rotor 3 in a state of being meshed with each other. The storage chambers 46 are two partially overlapping cylindrical spaces formed inside the casing 4 . The rotor tooth portions 21 and 31 of the male and female rotors 2 and 3 are arranged with a gap of several tens to several hundreds of μm from the inner wall surface forming the housing chamber 46 of the casing 4 . A plurality of working chambers C are formed by the rotor tooth portions 21 and 31 of the male and female rotors 2 and 3 and the inner wall surface of the casing 4 surrounding them (the wall surface of the housing chamber 46). The working gas in the working chamber C is compressed as the working chamber C contracts while moving in the axial direction as the male and female rotors 2 and 3 rotate.
 ケーシング4には、図1に示すように、作動室Cに気体を吸い込むための吸込流路47が収容室46に連通するように設けられている。また、ケーシング4には、作動室C内の圧縮空気をケーシング4の外部へ導いて吐出するための吐出流路48が収容室46における軸方向吐出側に連通するように設けられている。 As shown in FIG. 1, the casing 4 is provided with a suction passage 47 for sucking gas into the working chamber C so as to communicate with the housing chamber 46 . Further, the casing 4 is provided with a discharge passage 48 for guiding and discharging the compressed air in the working chamber C to the outside of the casing 4 so as to communicate with the axial discharge side of the housing chamber 46 .
 主ケーシング41におけるモータ90側の端部には、雄ロータ2側の吸込側軸受6及び雌ロータ3側の吸込側軸受が配置されている。また、雄ロータ2の吸込側のシャフト部22における吸込側軸受6よりもモータ90側には、軸封部材12が配置されている。主ケーシング41には、雄ロータ2側の吸込側軸受6及び雌ロータ3側の吸込側軸受並びに軸封部材12を覆うように、吸込側カバー42が取り付けられている。 A suction side bearing 6 on the male rotor 2 side and a suction side bearing on the female rotor 3 side are arranged at the end of the main casing 41 on the motor 90 side. A shaft seal member 12 is arranged on the suction side shaft portion 22 of the male rotor 2 on the motor 90 side of the suction side bearing 6 . A suction side cover 42 is attached to the main casing 41 so as to cover the suction side bearing 6 on the male rotor 2 side, the suction side bearing on the female rotor 3 side, and the shaft seal member 12 .
 主ケーシング41におけるモータ90とは反対側の端部には、雄ロータ2側の吐出側軸受7、8及びタイミングギア10並びに雌ロータ3側の吐出側軸受及びタイミングギアが配置されている。雄ロータ2側の吐出側軸受7、8及びタイミングギア10並びに雌ロータ3側の吐出側軸受及びタイミングギアは、収容室46よりも軸方向吐出側(図1中、右側)の位置に配置されている。雄ロータ2の吐出側のシャフト部23におけるロータ歯部21側から吐出側軸受7、8までの部分には、ロータ歯部21に近い方から順に、エアシール13及びオイルシール14が配置されている。雌ロータ3の吐出側のシャフト部33にも、雄ロータ2の吐出側のシャフト部23と同様に、ロータ歯部31に近い方から順に、エアシール及びオイルシール(共に図示せず)が配置されている。エアシール13は、作動室C内の圧縮気体の吐出側軸受7、8側への漏出を抑制するものである。オイルシール14は、吐出側軸受7、8に供給された潤滑油の収容室46(作動室C)への侵入を防止するものである。吸込側軸受6及び吐出側軸受7、8に潤滑油を供給するための給油路49がケーシング4に設けられている。主ケーシング41には、吐出側軸受7、8及びタイミングギア10を覆うように、吐出側カバー43が取り付けられている。 At the end of the main casing 41 opposite to the motor 90, the discharge side bearings 7, 8 and timing gear 10 on the male rotor 2 side and the discharge side bearing and timing gear on the female rotor 3 side are arranged. The discharge- side bearings 7, 8 and timing gear 10 on the male rotor 2 side and the discharge-side bearing and timing gear on the female rotor 3 side are arranged at positions on the axial discharge side (right side in FIG. 1) of the housing chamber 46. ing. An air seal 13 and an oil seal 14 are arranged in order from the rotor tooth portion 21 in the portion from the rotor tooth portion 21 side to the discharge side bearings 7 and 8 in the shaft portion 23 on the discharge side of the male rotor 2 . . Similarly to the discharge-side shaft portion 23 of the male rotor 2, the shaft portion 33 on the discharge side of the female rotor 3 is also provided with an air seal and an oil seal (both not shown) in order from the rotor tooth portion 31. ing. The air seal 13 prevents the compressed gas in the working chamber C from leaking toward the discharge side bearings 7 and 8 . The oil seal 14 prevents the lubricating oil supplied to the discharge- side bearings 7 and 8 from entering the housing chamber 46 (working chamber C). An oil supply passage 49 for supplying lubricating oil to the suction side bearing 6 and the discharge side bearings 7 and 8 is provided in the casing 4 . A discharge side cover 43 is attached to the main casing 41 so as to cover the discharge side bearings 7 and 8 and the timing gear 10 .
 また、ケーシング4には、図1及び図2に示すように、冷却材を循環させるための冷却流路60が設けられている。冷却流路60は、気体の圧縮により生じる熱が伝達されるケーシング4を冷却するためのものである。本実施の形態は冷却流路60の構造に特徴を有するものであり、当該冷却流路60の構成及び構造の詳細は後述する。冷却材としては、冷却水や潤滑油などの液体の他に気体を用いることも可能である。 In addition, as shown in FIGS. 1 and 2, the casing 4 is provided with a cooling channel 60 for circulating the coolant. The cooling channel 60 is for cooling the casing 4 to which the heat generated by the gas compression is transferred. This embodiment is characterized by the structure of the cooling channel 60, and the details of the configuration and structure of the cooling channel 60 will be described later. As the coolant, gas can be used in addition to liquid such as cooling water and lubricating oil.
 ケーシング4の冷却流路60には、冷却材を循環させるための外部冷却系統100が接続されている。外部冷却系統100は、例えば、雄雌両ロータ2、3の吸込側軸受6及び吐出側軸受7、8を潤滑するための潤滑油をケーシング4の冷却材としても用いるように構成されたものである。具体的には、外部冷却系統100は、潤滑油(冷却材)を吸込側軸受6及び吐出側軸受7、8並びにケーシング4へ送出するポンプ101と、潤滑油(冷却材)を冷却する冷却器102と、フィルタや逆止弁などの補機103と、これらを接続する配管104とを備えている。冷却器102は、例えば、冷却器102の周囲の外気を用いて冷却する空冷式のものである。配管104は、冷却流路60に冷却材としての潤滑油を供給する冷却材供給配管104aと、吸込側軸受6及び吐出側軸受7、8に潤滑油を供給する潤滑油供給配管104bとに分岐している。 An external cooling system 100 for circulating a coolant is connected to the cooling channel 60 of the casing 4 . The external cooling system 100 is configured, for example, to use lubricating oil for lubricating the suction side bearings 6 and the discharge side bearings 7 and 8 of the male and female rotors 2 and 3 as a coolant for the casing 4 as well. be. Specifically, the external cooling system 100 includes a pump 101 that sends lubricating oil (coolant) to the suction side bearing 6, the discharge side bearings 7 and 8, and the casing 4, and a cooler that cools the lubricating oil (coolant). 102, auxiliary equipment 103 such as a filter and a check valve, and piping 104 connecting them. The cooler 102 is, for example, an air-cooled type that uses outside air around the cooler 102 for cooling. The pipe 104 branches into a coolant supply pipe 104a that supplies lubricating oil as a coolant to the cooling flow path 60, and a lubricating oil supply pipe 104b that supplies lubricating oil to the suction side bearing 6 and the discharge side bearings 7 and 8. is doing.
 なお、本実施の形態においては、ケーシング4の冷却材として潤滑油を用いることで、吸込側軸受6及び吐出側軸受7、8に潤滑油を供給する系統と外部冷却系統100と共用とした構成の例を示した。しかし、吸込側軸受6及び吐出側軸受7、8に潤滑油を供給する系統とは別に、外部冷却系統を設ける構成も可能である。例えば、外部冷却系統を介して冷却材としての冷却水をケーシング4やモータ90に導入する構成も可能である。 In the present embodiment, lubricating oil is used as a cooling material for the casing 4, so that a system for supplying lubricating oil to the suction side bearing 6 and the discharge side bearings 7 and 8 and the external cooling system 100 are shared. example. However, a configuration is also possible in which an external cooling system is provided separately from the system for supplying lubricating oil to the suction side bearing 6 and the discharge side bearings 7 and 8 . For example, a configuration is possible in which cooling water as a coolant is introduced into the casing 4 and the motor 90 via an external cooling system.
 次に、第1の実施の形態に係るスクリュー圧縮機におけるケーシングの冷却流路の構成及び構造について図1~図3を用いて説明する。図3は本発明の第1の実施の形態に係るスクリュー圧縮機を図1に示すIII-III矢視から見た断面図である。 Next, the configuration and structure of the casing cooling flow path in the screw compressor according to the first embodiment will be described with reference to FIGS. 1 to 3. FIG. FIG. 3 is a cross-sectional view of the screw compressor according to the first embodiment of the present invention, viewed from the line III--III shown in FIG.
 図1に示すケーシング4における吐出流路48の周辺や作動室C(収容室46)の周囲は、気体の圧縮過程で生じる熱が伝達されて温度が上昇する。この伝熱によりケーシング4には熱変形が生じる。特に、高温の圧縮気体が流れる吐出流路48の周辺部分の熱変形が大きくなるので、吐出流路48の近く配置されている雄ロータ2側の吐出側軸受7、8と雌ロータ3側の吐出側軸受との相対距離が拡がってしまうことがある。当該相対距離の拡大によって、図2に示す雄雌両ロータ2、3の噛合い部間の隙間が大きくなると、当該隙間を介した圧縮気体の内部漏洩が増大してしまう。 The temperature around the discharge passage 48 and around the working chamber C (accommodating chamber 46) in the casing 4 shown in FIG. This heat transfer causes the casing 4 to be thermally deformed. In particular, the thermal deformation of the peripheral portion of the discharge passage 48 through which the high-temperature compressed gas flows becomes large. The relative distance to the discharge-side bearing may increase. If the gap between the meshing portions of the male and female rotors 2 and 3 shown in FIG. 2 becomes large due to the increase in the relative distance, internal leakage of the compressed gas increases through the gap.
 そこで、本実施の形態においては、図1及び図3に示すように、雄雌両ロータ2、3の軸方向における吐出流路48と吐出側軸受7、8との間の位置であって雄雌両ロータ2、3の吐出側のシャフト部23、33の径方向外側の位置に、冷却流路60を設けている。具体的には、冷却流路60は、例えば図1~図3に示すように、ケーシング4の外部の外部冷却系統100から供給される冷却材(潤滑油)をケーシング4に導入する導入流路61と、ケーシング4を冷却した冷却材をケーシング4の外部の外部冷却系統100に排出する排出流路62と、導入流路61から二又に分岐する第1分岐流路63及び第2分岐流路64と、収容室46の径方向外側に配設されている第3分岐流路65とで構成されている。 Therefore, in this embodiment, as shown in FIGS. Cooling passages 60 are provided at radially outer positions of the shaft portions 23 and 33 on the discharge side of the female rotors 2 and 3 . Specifically, the cooling flow path 60 is an introduction flow path for introducing a coolant (lubricating oil) supplied from an external cooling system 100 outside the casing 4 into the casing 4, as shown in FIGS. 1 to 3, for example. 61, a discharge channel 62 that discharges the coolant that has cooled the casing 4 to the external cooling system 100 outside the casing 4, a first branch channel 63 that branches from the introduction channel 61, and a second branch flow It is composed of a channel 64 and a third branch channel 65 arranged radially outside the accommodation chamber 46 .
 導入流路61は、外部冷却系統100に直接的に又は接続管を介して接続される導入口61aを上流端に有すると共に、第1分岐流路63と第2分岐流路64とに二又に分岐する分岐部61bを下流端部に有している。導入口61a及び分岐部61bを含む導入流路61は、雄雌両ロータ2、3の軸方向において吐出流路48と吐出側軸受7、8との間の位置に配置されていると共に、吐出流路48を雄雌両ロータ2、3の軸方向に投影した領域48pと重なる位置に配置されている。 The introduction channel 61 has an introduction port 61a at its upstream end that is connected directly or via a connecting pipe to the external cooling system 100, and is bifurcated into a first branch channel 63 and a second branch channel 64. has a branching portion 61b at the downstream end. An introduction passage 61 including an introduction port 61a and a branch portion 61b is arranged at a position between the discharge passage 48 and the discharge- side bearings 7, 8 in the axial direction of the male and female rotors 2, 3. It is arranged at a position overlapping with a region 48p obtained by projecting the flow path 48 in the axial direction of both the male and female rotors 2 and 3 .
 排出流路62は、外部冷却系統100に直接的に又は接続管を介して間接的に接続される排出口62aを下流端に有すると共に、第1分岐流路63と第2分岐流路64との2つの流路が合流する合流部62bを上流端部に有している。排出口62a及び合流部62bを含む排出流路62は、雄雌両ロータ2、3の軸方向において収容室46と吐出側軸受7、8との間の位置に配置されていると共に、雄ロータ2の中心軸線A1と雌ロータ3の中心軸線A2とを含む平面Pを境界として導入流路61の反対側に配置されている。 The discharge channel 62 has a discharge port 62a at its downstream end that is directly or indirectly connected to the external cooling system 100 via a connecting pipe, and has a first branch channel 63 and a second branch channel 64. has a confluence portion 62b at the upstream end where the two flow paths merge. A discharge passage 62 including a discharge port 62a and a merging portion 62b is arranged at a position between the housing chamber 46 and the discharge side bearings 7, 8 in the axial direction of the male and female rotors 2, 3. 2 and the center axis A2 of the female rotor 3 on the opposite side of the introduction passage 61 .
 第1分岐流路63及び第2分岐流路64は、上流の導入流路61における分岐部61bから2つに分岐し、ケーシング4の周方向に沿って互いに反対方向に向かって延在し、排出流路62における合流部62bにて合流するように構成されている。第1分岐流路63は、雄ロータ2の吐出側のシャフト部23よりも径方向外側の部分において周方向に沿って延在している。第2分岐流路64は、雌ロータ3の吐出側のシャフト部33よりも径方向外側の部分において周方向に沿って延在している。すなわち、第1分岐流路63及び第2分岐流路64は、雄雌両ロータ2、3の軸方向の吐出流路48と吐出側軸受7、8との間の位置において、雄雌両ロータ2、3の吐出側のシャフト部23、33を径方向外側から囲むように設けられている。第1分岐流路63及び第2分岐流路64並びにその分岐部61b及び合流部62bは、高温の圧縮気体が流れる吐出流路48と吐出側軸受7、8との間のケーシング部分を冷却するものである。 The first branch channel 63 and the second branch channel 64 branch into two from the branch portion 61b in the upstream introduction channel 61 and extend in opposite directions along the circumferential direction of the casing 4, It is configured to merge at a confluence portion 62 b in the discharge flow path 62 . The first branch flow path 63 extends along the circumferential direction at a portion radially outside the shaft portion 23 on the discharge side of the male rotor 2 . The second branch flow path 64 extends along the circumferential direction at a portion radially outside the shaft portion 33 on the discharge side of the female rotor 3 . That is, the first branch flow path 63 and the second branch flow path 64 are arranged at positions between the axial discharge flow paths 48 of the male and female rotors 2 and 3 and the discharge side bearings 7 and 8. 2 and 3 are provided so as to surround the shaft portions 23 and 33 on the discharge side from the outside in the radial direction. The first branched flow path 63 and the second branched flow path 64 and their branching portion 61b and merging portion 62b cool the casing portion between the discharge flow path 48 through which the high-temperature compressed gas flows and the discharge side bearings 7 and 8. It is.
 第3分岐流路65は、第1分岐流路63及び第2分岐流路64の少なくとも一方に連通するものであり、図2に示すように、収容室46よりも径方向外側においてケーシング4の周方向に延在している。第3分岐流路65は、雄雌両ロータ2、3の歯先と対向しているケーシング4の内周面(収容室46の壁面)の周辺部分を冷却するものである。 The third branch flow path 65 communicates with at least one of the first branch flow path 63 and the second branch flow path 64, and as shown in FIG. It extends in the circumferential direction. The third branch flow path 65 cools the peripheral portion of the inner peripheral surface of the casing 4 (the wall surface of the accommodation chamber 46 ) facing the tips of the male and female rotors 2 and 3 .
 このように、本実施の形態においては、ケーシング4の冷却流路60が上流から下流に向かって二又に分岐した後に再び合流するように構成されている。この冷却流路60の分岐部61bは、雄雌両ロータ2、3の軸方向における吐出流路48と吐出側軸受7、8との間に位置にあると共に、吐出流路48を雄雌両ロータ2、3の軸方向に投影した領域48pと重なる位置にある。発明者は、冷却流路60の分岐部61bを上述の位置に配置することで、吐出流路48及び吐出側軸受7、8の近傍に位置する分岐部61b及びその周辺部分の熱伝達率が向上することを見出した。 Thus, in the present embodiment, the cooling flow path 60 of the casing 4 is configured to bifurcate from upstream to downstream and then merge again. The branch portion 61b of the cooling channel 60 is positioned between the discharge channel 48 and the discharge side bearings 7 and 8 in the axial direction of the male and female rotors 2 and 3, It is located at a position overlapping the axially projected area 48p of the rotors 2,3. By arranging the branch portion 61b of the cooling channel 60 at the position described above, the inventors found that the heat transfer coefficient of the branch portion 61b located near the discharge channel 48 and the discharge- side bearings 7 and 8 and the peripheral portion thereof is found to improve.
 次に、第1の実施の形態に係るスクリュー圧縮機における冷却流路の作用及び効果を図1~図5を用いて説明する。図4は本発明の第1の実施の形態に係るスクリュー圧縮機を図3に示すIV-IV矢視から見たときの冷却流路内の流れ(二次流れ)を示す概略図である。図5は本発明の第1の実施の形態に係るスクリュー圧縮機におけるケーシングと冷却流路内の冷却材との間の熱伝達率の分布の解析結果を示す図である。図3及び図5中、白抜き矢印は冷却材(潤滑油)の流れの方向を示している。図4中、矢印は冷却材(潤滑油)の二次流れの向きを示している。 Next, the action and effect of the cooling passage in the screw compressor according to the first embodiment will be explained using FIGS. 1 to 5. FIG. FIG. 4 is a schematic diagram showing the flow (secondary flow) in the cooling channel when the screw compressor according to the first embodiment of the present invention is viewed from the IV-IV arrows shown in FIG. FIG. 5 is a diagram showing analysis results of distribution of heat transfer coefficient between the casing and the coolant in the cooling flow path in the screw compressor according to the first embodiment of the present invention. In FIGS. 3 and 5, white arrows indicate the direction of flow of the coolant (lubricating oil). In FIG. 4, arrows indicate the direction of the secondary flow of the coolant (lubricating oil).
 上述の構成を備えたスクリュー圧縮機1では、図1に示すモータ90により雄ロータ2が駆動されると、雄ロータ2がタイミングギア10を介して図2に示す雌ロータ3を回転駆動する。これにより、図1及び図2に示す作動室Cが雄雌両ロータ2、3の回転に伴って軸方向に移動する。このとき、作動室Cは、その容積を増加させることでケーシング4の外部から図1に示す吸込流路47を介して気体(例えば、空気)を吸い込み、その容積を縮小させることで気体を所定の圧力まで圧縮する。当該作動室Cが吐出流路48に連通すると、作動室C内の圧縮気体が吐出流路48を通過してケーシング4の外部へ吐出される。気体は圧縮されると温度上昇するので、気体の熱がケーシング4に伝達される。 In the screw compressor 1 having the above configuration, when the male rotor 2 is driven by the motor 90 shown in FIG. 1, the male rotor 2 rotates the female rotor 3 shown in FIG. As a result, the working chamber C shown in FIGS. 1 and 2 moves axially as the male and female rotors 2 and 3 rotate. At this time, the working chamber C sucks gas (for example, air) from the outside of the casing 4 through the suction passage 47 shown in FIG. Compress to a pressure of When the working chamber C communicates with the discharge passage 48 , the compressed gas in the working chamber C passes through the discharge passage 48 and is discharged to the outside of the casing 4 . As the gas heats up when compressed, the heat of the gas is transferred to the casing 4 .
 そこで、本実施の形態に係るスクリュー圧縮機1では、図1に示す外部冷却系統100から潤滑油が冷却材としてケーシング4の冷却流路60に供給される。ケーシング4を冷却して温度上昇した冷却材は、冷却流路60から外部冷却系統100へ排出される。外部冷却系統100へ排出された冷却材は、外部冷却系統100のポンプ101によって冷却器102に送出され、冷却器102にて冷却される。冷却器102により温度の低下した冷却材は、補機103及び冷却材供給管路104aを介して再び冷却流路60に導入される。 Therefore, in the screw compressor 1 according to the present embodiment, lubricating oil is supplied from the external cooling system 100 shown in FIG. The coolant that cools the casing 4 and rises in temperature is discharged from the cooling flow path 60 to the external cooling system 100 . The coolant discharged to the external cooling system 100 is sent to the cooler 102 by the pump 101 of the external cooling system 100 and cooled by the cooler 102 . The coolant whose temperature has been lowered by the cooler 102 is again introduced into the cooling flow path 60 via the auxiliary machine 103 and the coolant supply pipe line 104a.
 ところで、ケーシング4に対する冷却能力を向上させる方策の1つとして、ケーシング4の冷却材の温度を下げることが考えられる。しかし、この場合、外部冷却系統100の冷却器102を大型化する必要があるので、その分、コストが増加する。加えて、冷却器102が空冷式である場合には、冷却材の温度が外気温度以上に制約されるので、冷却材の温度を下げることによって冷却能力を向上させることは難しい。 By the way, as one of measures to improve the cooling capacity for the casing 4, it is conceivable to lower the temperature of the coolant in the casing 4. However, in this case, the size of the cooler 102 of the external cooling system 100 needs to be increased, which increases the cost. In addition, if the cooler 102 is an air-cooled type, the temperature of the coolant is restricted to be higher than the outside air temperature, so it is difficult to improve the cooling capacity by lowering the temperature of the coolant.
 冷却能力を向上させる別の方策として、ケーシング4の冷却材の流量を増やすことが考えられる。これにより、冷却材の流速が上昇して冷却流路60の当該壁面近傍における熱伝達率が向上する。しかし、この場合、外部冷却系統100のポンプ101を大型化する必要があり、その分、ポンプ101の動力が増加する。結果として、圧縮機システムの全体の動力が増加することがある。 Another measure to improve the cooling capacity is to increase the flow rate of the coolant in the casing 4. As a result, the flow velocity of the coolant increases, and the heat transfer coefficient in the vicinity of the wall surface of the cooling channel 60 improves. However, in this case, it is necessary to increase the size of the pump 101 of the external cooling system 100, and the power of the pump 101 increases accordingly. As a result, the overall power of the compressor system may increase.
 それに対して、本実施の形態においては、図3に示すように、ケーシング4の冷却流路60を上流の導入流路61から分岐部61bを介して下流の第1分岐流路63と第2分岐流路64とに二又に分岐するように構成したものである。すなわち、ケーシング4の冷却材の温度や流量を従前の場合と同等に設定する場合であっても、冷却流路60の構造の特徴部によってケーシング4に対する冷却能力の向上を図るものである。 On the other hand, in the present embodiment, as shown in FIG. 3, the cooling flow path 60 of the casing 4 is divided from the upstream introduction flow path 61 via the branch portion 61b to the downstream first branch flow path 63 and the second flow path. It is configured to be bifurcated with the branch flow path 64 . In other words, even when the temperature and flow rate of the coolant in the casing 4 are set to the same values as in the conventional case, the characteristic part of the structure of the cooling flow path 60 is intended to improve the cooling performance for the casing 4 .
 導入流路61を流れる冷却材の主流の向きは、第1分岐流路63と第2分岐流路64との分岐によって転向される。このため、分岐部61b並びにその直下流の第1分岐流路63及び第2分岐流路64の領域において、冷却材の主流に対して遠心力が作用して圧力勾配が生じる。これにより、分岐部61b並びにその直下流の第1分岐流路63及び第2分岐流路64の領域では、冷却材の主流に直交する断面において、図4に示すような二次流れが発生する。二次流れの発生によって、当該領域の壁面近傍における冷却材の温度境界層が薄くなるので、当該領域の壁面と冷却材との間の熱伝達率が高まる。図5に示す解析結果からも、分岐部61b並びにその直下流の第1分岐流路63及び第2分岐流路64の領域において、熱伝達率が向上することがわかる。図5中、白黒の濃淡は熱伝達率の高低を表しており、白から黒に近づくにつれて熱伝達率が大きくなることを示している。熱伝達率が向上すると、ケーシング4における冷却流路60の壁面と冷却流路60を流れる冷却材との交換熱量が増加するので、運転時のケーシング4の温度上昇を抑制することができる。 The main direction of the coolant flowing through the introduction channel 61 is changed by the branching of the first branch channel 63 and the second branch channel 64 . For this reason, centrifugal force acts on the main stream of the coolant to generate a pressure gradient in the region of the branching portion 61b and the first branching flow channel 63 and the second branching flow channel 64 immediately downstream thereof. As a result, in the region of the branched portion 61b and the first branched flow passage 63 and the second branched flow passage 64 immediately downstream thereof, a secondary flow as shown in FIG. . The generation of the secondary flow thins the thermal boundary layer of the coolant near the wall surface of the region, thereby increasing the heat transfer coefficient between the wall surface of the region and the coolant. From the analysis results shown in FIG. 5 as well, it can be seen that the heat transfer coefficient is improved in the region of the branch portion 61b and the first branch channel 63 and the second branch channel 64 immediately downstream thereof. In FIG. 5, black and white shading indicates the level of the heat transfer coefficient, and indicates that the heat transfer coefficient increases as the color approaches black from white. When the heat transfer coefficient is improved, the amount of heat exchanged between the wall surfaces of the cooling passages 60 in the casing 4 and the coolant flowing through the cooling passages 60 increases, so it is possible to suppress the temperature rise of the casing 4 during operation.
 本実施の形態においては、熱伝達率が向上するケーシング4の冷却流路60の分岐部61bを雄雌両ロータ2、3の軸方向における吐出流路48と吐出側軸受7、8との間の位置かつ吐出流路48を軸方向に投影した領域48pに重なる位置に配置している。これにより、ケーシング4に供給する冷却材の温度や流量を従前と同等に設定しても、ケーシング4のうち最も高温となる吐出流路48と吐出側軸受7、8との間の部分に対する冷却能力が向上するので、ケーシング4の当該部分の熱変形を抑制することができる。このため、ケーシング4の熱変形に起因する雄ロータ2側の吐出側軸受7、8と雌ロータ3側の吐出側軸受との相対距離の拡大が抑制されるので、雄雌両ロータ2、3の噛合い部間の隙間の拡大の抑制によりスクリュー圧縮機1の内部漏洩が低減される。その結果、圧縮機効率が向上する。 In the present embodiment, the branch portion 61b of the cooling passage 60 of the casing 4, which has an improved heat transfer coefficient, is arranged between the discharge passage 48 and the discharge side bearings 7, 8 in the axial direction of the male and female rotors 2, 3. and a position overlapping a region 48p where the discharge flow path 48 is projected in the axial direction. As a result, even if the temperature and flow rate of the coolant supplied to the casing 4 are set to be the same as before, the portion between the discharge passage 48 and the discharge side bearings 7 and 8, which is at the highest temperature in the casing 4, can be cooled. Since the capacity is improved, thermal deformation of the relevant portion of the casing 4 can be suppressed. Therefore, expansion of the relative distance between the discharge side bearings 7, 8 on the male rotor 2 side and the discharge side bearings on the female rotor 3 side due to thermal deformation of the casing 4 is suppressed. Internal leakage of the screw compressor 1 is reduced by suppressing expansion of the gap between the meshing portions. As a result, compressor efficiency is improved.
 上述した本実施の形態のスクリュー圧縮機1は、噛み合うように回転する雄ロータ2及び雌ロータ3(複数のスクリューロータ)と、雄ロータ2及び雌ロータ3(複数のスクリューロータ)の各々の軸方向の吐出側(一方側)を回転自在に支持する吐出側軸受7、8と、雄ロータ2及び雌ロータ3(複数のスクリューロータ)を収容する収容室46を有し、収容室46よりも軸方向の吐出側(一方側)の位置に吐出側軸受7、8が配置され、雄ロータ2及び雌ロータ3(複数のスクリューロータ)と共に作動室Cを形成するケーシング4とを備える。ケーシング4は、収容室46における軸方向の吐出側(一方側)に連通し、作動室C内の圧縮気体をケーシング4の外部へ導く吐出流路48を有すると共に、ケーシング4の外部から供給される冷却材が循環する冷却流路60を有する。冷却流路60は、分岐部61bにおいて上流から下流に向かって分岐する。分岐部61bは、軸方向における吐出流路48と吐出側軸受7、8との間の位置にあり、且つ、吐出流路48を軸方向に投影した領域48pに重なる位置にある。 The screw compressor 1 of the present embodiment described above includes the male rotor 2 and the female rotor 3 (plurality of screw rotors) that rotate so as to mesh with each other, and the shafts of the male rotor 2 and the female rotor 3 (plurality of screw rotors). It has discharge side bearings 7 and 8 that rotatably support the discharge side (one side) of the direction, and an accommodation chamber 46 that accommodates the male rotor 2 and the female rotor 3 (a plurality of screw rotors). Discharge- side bearings 7 and 8 are arranged at positions on the discharge side (one side) in the axial direction. The casing 4 has a discharge passage 48 that communicates with the discharge side (one side) of the housing chamber 46 in the axial direction and guides the compressed gas in the working chamber C to the outside of the casing 4 . It has a cooling channel 60 through which a coolant circulates. The cooling channel 60 branches from upstream to downstream at a branch portion 61b. The branching portion 61b is located between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction, and overlaps a region 48p where the discharge flow path 48 is projected in the axial direction.
 この構成によれば、軸方向における吐出流路48と吐出側軸受7、8との間の位置かつ吐出流路48を軸方向に投影した領域48pに重なる位置にある分岐部61bにおいて冷却流路60を分岐させることで、冷却流路60の分岐部61b及びその直下流の領域において熱伝達率が向上する。これにより、ケーシング4に対する冷却材の冷却能力が向上する。つまり、ケーシング4における吐出側軸受7、8の周辺部分に対する冷却能力が高まるので、ケーシング4の熱変形に起因する吐出側軸受7、8間の相対距離の拡大が抑制され、圧縮機効率の向上を図ることができる。 According to this configuration, the cooling flow path is formed at the branch portion 61b located between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction and overlapping the area 48p where the discharge flow path 48 is projected in the axial direction. By branching the cooling channel 60, the heat transfer coefficient is improved in the branched portion 61b of the cooling channel 60 and the region immediately downstream thereof. Thereby, the cooling ability of the coolant to the casing 4 is improved. That is, since the cooling capacity of the casing 4 around the discharge side bearings 7 and 8 is enhanced, the increase in the relative distance between the discharge side bearings 7 and 8 due to thermal deformation of the casing 4 is suppressed, and the efficiency of the compressor is improved. can be achieved.
 また、本実施の形態に係るケーシング4の冷却流路60は、ケーシング4の外部から冷却材を導入する導入口61aを上流端に有し導入口61aから分岐部61b(所定の位置)まで延在する導入流路61を含んでいる。導入流路61は、軸方向における吐出流路48と吐出側軸受7、8との間の位置かつ吐出流路48を軸方向に投影した領域48pと重なる位置に配置されている。 Further, the cooling flow path 60 of the casing 4 according to the present embodiment has an introduction port 61a for introducing a coolant from the outside of the casing 4 at its upstream end and extends from the introduction port 61a to a branch portion 61b (predetermined position). It includes an existing inlet channel 61 . The introduction flow path 61 is arranged at a position between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction and at a position overlapping a region 48p where the discharge flow path 48 is projected in the axial direction.
 この構成によると、ケーシング4の外部から導入口61aを介して導入された冷却材が高温になる吐出流路48と吐出側軸受7、8との間の領域を流れるので、吐出側軸受7、8の周辺のケーシングの熱変形を抑制することができる。 According to this configuration, the coolant introduced from the outside of the casing 4 through the introduction port 61a flows through the region between the discharge flow path 48 and the discharge side bearings 7, 8, which becomes hot. Thermal deformation of the casing around 8 can be suppressed.
 また、本実施の形態に係る冷却流路60は、分岐部61bで二又に分岐する第1分岐流路63と第2分岐流路64とを含む。第1分岐流路63と第2分岐流路64は、分岐部61bからケーシング4の周方向に沿って互いに反対方向に向かって延在するように構成されている。 Further, the cooling channel 60 according to the present embodiment includes a first branch channel 63 and a second branch channel 64 that are bifurcated at the branch portion 61b. The first branched flow path 63 and the second branched flow path 64 are configured to extend in opposite directions from each other along the circumferential direction of the casing 4 from the branched portion 61b.
 この構成によれば、第1分岐流路63と第2分岐流路64を分岐部61bからケーシング4の周方向に沿って互いに反対方向に向かって延在させることで、吐出側軸受7、8の周辺部分における外周が冷却されるので、ケーシング4の熱変形に起因する雄ロータ2の吐出側軸受7、8と雌ロータ3の吐出側軸受との相対距離の拡大を抑制することができる。したがって、雄ロータ2及び雌ロータ3(複数のスクリューロータ)の噛合い部の隙間の拡大が抑制されるので、圧縮機効率を改善することができる。 According to this configuration, the first branch flow path 63 and the second branch flow path 64 are extended from the branch portion 61b in opposite directions along the circumferential direction of the casing 4, so that the discharge side bearings 7 and 8 is cooled, it is possible to suppress expansion of the relative distance between the discharge side bearings 7 and 8 of the male rotor 2 and the discharge side bearing of the female rotor 3 due to thermal deformation of the casing 4 . Therefore, expansion of the gap between the meshing portions of the male rotor 2 and the female rotor 3 (plurality of screw rotors) is suppressed, so that the efficiency of the compressor can be improved.
 [第2の実施の形態]
  第2の実施の形態に係るスクリュー圧縮機について例示説明する。まず、第2の実施の形態に係るスクリュー圧縮機の構成及び構造について図6を用いて説明する。図6は本発明の第2の実施の形態に係るスクリュー圧縮機の概略構造を示す断面図である。なお、図6において、図1~図5に示す符号と同符号のものは、同様な部分であるので、その詳細な説明は省略する。
[Second embodiment]
A screw compressor according to a second embodiment will be described by way of illustration. First, the configuration and structure of a screw compressor according to the second embodiment will be described with reference to FIG. FIG. 6 is a sectional view showing a schematic structure of a screw compressor according to a second embodiment of the invention. In FIG. 6, parts having the same reference numerals as those shown in FIGS. 1 to 5 are the same parts, and detailed description thereof will be omitted.
 図6に示す第2の実施の形態によるスクリュー圧縮機1Aが第1の実施の形態と異なる点は、ケーシング4の冷却流路60が接続管としての曲がり管66を介して外部冷却系統100(図1参照)に接続にされていることである。曲がり管66は、冷却材の主流の流れ方向を転向させて冷却材の流れの剥離を生じさせる曲げ流路を含むものである。本実施の形態においては、冷却流路60の分岐部61b(図3参照)の上流の或る範囲内に曲げ流路を配置するものである。 A screw compressor 1A according to the second embodiment shown in FIG. (See Fig. 1). The bent tube 66 includes a bent channel that turns the flow direction of the main flow of coolant and causes separation of the coolant flow. In this embodiment, the bent flow path is arranged within a certain range upstream of the branch portion 61b (see FIG. 3) of the cooling flow path 60. FIG.
 具体的には、曲がり管66は、流路が直線状に延びる第1直管部66aと、流路が直線状に延び、第1直管部66aよりも下流側に位置する第2直管部66bと、第1直管部66aと第2直管部66bとを繋ぐ曲げ部66cとで構成されている。第1直管部66aは、外部冷却系統100側に接続される部分である。第2直管部66bは、ケーシング4の冷却流路60の導入口61aに接続される部分である。曲げ部66cは、冷却材の主流の流れ方向を転向させて流れの剥離を発生させる曲げ流路として機能する部分である。 Specifically, the bent pipe 66 includes a first straight pipe portion 66a having a linearly extending flow path and a second straight pipe having a linearly extending flow path located downstream of the first straight pipe portion 66a. and a bent portion 66c connecting the first straight pipe portion 66a and the second straight pipe portion 66b. The first straight pipe portion 66a is a portion connected to the external cooling system 100 side. The second straight pipe portion 66b is a portion connected to the introduction port 61a of the cooling channel 60 of the casing 4. As shown in FIG. The bent portion 66c is a portion that functions as a bent flow path that turns the flow direction of the main flow of the coolant to cause flow separation.
 なお、ケーシング4の冷却流路60の構成や構造、位置などは第1の実施の形態のものと同様である(図3参照)。すなわち、冷却流路60は、上流の導入流路61から分岐部61bを介して下流の第1分岐流路63と第2分岐流路64とに二又に分岐するように構成されている。さらに、当該分岐部61bは、雄雌両ロータ2、3の軸方向における吐出流路48と吐出側軸受7、8との間の位置にあると共に、吐出流路48を雄雌両ロータ2、3の軸方向に投影した領域48pと重なる位置にある。 The configuration, structure, position, etc. of the cooling channel 60 of the casing 4 are the same as those of the first embodiment (see FIG. 3). That is, the cooling channel 60 is configured to bifurcate from an upstream introduction channel 61 into a downstream first branch channel 63 and a second branch channel 64 via a branch portion 61b. Further, the branch portion 61b is located between the discharge flow passage 48 and the discharge side bearings 7 and 8 in the axial direction of the male and female rotors 2 and 3, 3 overlaps the axially projected area 48p.
 次に、曲がり管を介してケーシングの冷却流路に冷却材を導入する本実施の形態における作用及び効果について図7を用いて説明する。図7は本発明の第2の実施の形態に係るスクリュー圧縮機におけるケーシングの冷却流路に接続された曲がり管内の冷却材の流速分布の解析結果を示す図である。図7中、白黒の濃淡は冷却材の流速の高低を表しており、白から黒に近づくにつれて流速が高くなることを示している。また、白抜き矢印は冷却材の主流の方向を示している。 Next, the action and effect of this embodiment in which the coolant is introduced into the cooling flow path of the casing through the bent pipe will be described with reference to FIG. FIG. 7 is a diagram showing analysis results of the flow velocity distribution of the coolant in the bent pipe connected to the cooling flow path of the casing in the screw compressor according to the second embodiment of the present invention. In FIG. 7, black and white shading represents the level of the flow velocity of the coolant, and indicates that the flow velocity increases as the color approaches black from white. In addition, the white arrow indicates the direction of the mainstream of the coolant.
 曲がり管66内を流れる冷却材の流速は、図7に示すように、曲げ部66c(曲げ流路)の下流側の第2直管部66b内の流速が上流側の第1直管部66a内の流速よりも大きくなる。したがって、曲がり管66を介してケーシング4の冷却流路60に冷却材を導入すると、冷却流路60に導入される冷却材の流速が増速する。このため、冷却流路60の分岐部61b並びにその直下流の第1分岐流路63及び第2分岐流路64の領域(図3参照)における冷却材の主流の流速も増速する。これにより、冷却材の主流に直交する断面内の二次流れの発生が促進され、ケーシング4の当該領域の壁面と冷却材との間の熱伝達率が更に高まる。したがって、ケーシング4に対する冷却材の冷却能力が更に向上するので、ケーシング4の熱変形が更に抑制され、ケーシング4の熱変形に起因する雄ロータ2側の吐出側軸受7、8と雌ロータ3側の吐出側軸受との相対距離の拡大を更に抑制することができる。 As shown in FIG. 7, the flow velocity of the coolant flowing through the bent pipe 66 is such that the flow velocity in the second straight pipe portion 66b on the downstream side of the bent portion 66c (bent flow path) is the same as that in the first straight pipe portion 66a on the upstream side. greater than the flow velocity inside Therefore, when the coolant is introduced into the cooling channel 60 of the casing 4 via the bent pipe 66, the flow velocity of the coolant introduced into the cooling channel 60 increases. Therefore, the flow velocity of the main flow of the coolant also increases in the region of the branch portion 61b of the cooling channel 60 and the first branch channel 63 and the second branch channel 64 immediately downstream thereof (see FIG. 3). This facilitates the generation of a secondary flow in the cross-section perpendicular to the main flow of coolant, further increasing the heat transfer coefficient between the coolant and the wall surface of that region of the casing 4 . Therefore, since the cooling ability of the coolant for the casing 4 is further improved, the thermal deformation of the casing 4 is further suppressed, and the discharge side bearings 7 and 8 on the male rotor 2 side and the female rotor 3 side due to the thermal deformation of the casing 4 are reduced. expansion of the relative distance from the discharge side bearing can be further suppressed.
 ここで、曲がり管66内の冷却材の流速が増速する原理を説明する。曲がり管66の曲げ部66c(曲げ流路)の下流側では、冷却材の流れの剥離によって流速が著しく小さいよどみ領域が発生する。曲げ部66cの下流側の第2直管部66b内では、冷却材の流れ(流量)がよどみ領域以外の領域に集中するので、冷却材の流速が増加する。図7中、白い部分がよどみ領域に相当する。 Here, the principle of increasing the flow velocity of the coolant inside the bent tube 66 will be explained. On the downstream side of the bent portion 66c (bent flow path) of the bent pipe 66, a stagnation region where the flow velocity is remarkably low is generated due to separation of the flow of the coolant. In the second straight pipe portion 66b on the downstream side of the bent portion 66c, the coolant flow (flow rate) is concentrated in a region other than the stagnation region, so the flow velocity of the coolant increases. In FIG. 7, the white portion corresponds to the stagnation area.
 曲がり管66において流れの剥離を生じさせるためには、冷却材の流れ方向をある程度急激に転向させる必要がある。すなわち、流れの剥離を生じさせる曲げ流路は、その方向を急激に転向させる必要がある。ここで、流路の方向について説明する。流路の断面積が最小となる断面内の重心点を結んだ線を流路の中心線とする。中心線が曲線である場合には、当該曲線上の各点における接線を中心線として中心線の向く方向を流路の方向と定義する。流れの剥離により下流側が上流側よりも流れが増速する曲げ流路の条件としては、例えば、曲げ流路の曲線状の中心線の長さがケーシング4の冷却流路60の導入口61aの直径又は水力直径以下となる範囲内において、当該流路の方向が上流から下流に向かって45°以上90°以下の範囲内で変化することが望ましい。なお、曲げ流路の方向(中心線の向く方向)が上流から見て45°変化したときの中心線の位置を曲げ点と定義する。曲げ流路の条件として、流路の方向(中心線の向く方向)を90°以下とする理由は、曲げ流路の方向を90°よりも大きく変化させると、曲げ流路の長さが長くなって流れの圧力損失が増加するからである。 In order to cause flow separation in the bent pipe 66, it is necessary to change the flow direction of the coolant abruptly to some extent. That is, a curved channel that causes flow separation must change its direction abruptly. Here, the direction of the flow path will be explained. The centerline of the channel is defined as a line connecting the center of gravity points in the cross section where the cross-sectional area of the channel is the smallest. When the center line is a curve, the direction in which the center line faces is defined as the direction of the flow channel, with the tangent line at each point on the curve being the center line. As a condition of the curved channel in which the flow speed is increased on the downstream side than on the upstream side due to flow separation, for example, the length of the curved center line of the curved channel is the length of the inlet 61a of the cooling channel 60 of the casing 4. It is desirable that the direction of the flow path changes from upstream to downstream within a range of 45° or more and 90° or less within the range of diameter or hydraulic diameter or less. The bending point is defined as the position of the center line when the direction of the curved flow path (the direction in which the center line faces) changes by 45° viewed from the upstream. As a condition of the curved channel, the direction of the channel (the direction in which the center line faces) is set to 90° or less. This is because the pressure loss of the flow increases.
 曲げ流路によって増速された冷却材が下流側の直線状の流路内を流れ続けると、よどみ領域が消失して曲げ流路の上流側の流速に戻ってしまう。すなわち、曲がり管66の第2直管部66bの長さが長すぎると、曲げ部66cによる冷却材の増速効果が消滅してしまう。そこで、曲がり管66の曲げ部66c(曲げ点)からケーシング4の冷却流路60の分岐部61bまでの距離、または、曲がり管66の第2直管部66bの長さをある程度の範囲内に限定する必要がある。 When the coolant accelerated by the curved channel continues to flow in the downstream straight channel, the stagnation area disappears and the flow velocity returns to the upstream side of the curved channel. That is, if the length of the second straight pipe portion 66b of the bent pipe 66 is too long, the effect of accelerating the coolant by the bent portion 66c disappears. Therefore, the distance from the bent portion 66c (bending point) of the bent pipe 66 to the branch portion 61b of the cooling flow path 60 of the casing 4 or the length of the second straight pipe portion 66b of the bent pipe 66 is set within a certain range. need to be limited.
 ここで、曲げ流路としての曲がり管66の曲げ部66cからケーシング4の冷却流路60の分岐部61bまでの距離の設定範囲について図8を用いて説明する。図8は本発明の第2の実施の形態に係るスクリュー圧縮機におけるケーシングの冷却流路に接続された曲がり管の曲げ部(曲げ流路)からの距離と当該位置の冷却材の流速との関係の解析結果を示す図である。図8中、横軸L/dは冷却流路60の導入口61aの直径に対する曲がり管66の曲げ部66c(曲げ点)から下流側に向かう距離の比を、縦軸V/V0は曲がり管66における曲げ部66cよりも上流側の第1直管部66a内の冷却材の主流速度に対する下流側の第2直管部66b内の冷却材の主流流度の比を表している。 Here, the setting range of the distance from the bent portion 66c of the bent pipe 66 as the bent channel to the branch portion 61b of the cooling channel 60 of the casing 4 will be described with reference to FIG. FIG. 8 shows the relationship between the distance from the bent portion (bent flow path) of the bent tube connected to the cooling flow path of the casing and the flow velocity of the coolant at that position in the screw compressor according to the second embodiment of the present invention. It is a figure which shows the analysis result of relationship. In FIG. 8, the horizontal axis L/d represents the ratio of the distance downstream from the bent portion 66c (bending point) of the bent pipe 66 to the diameter of the inlet 61a of the cooling channel 60, and the vertical axis V/V0 represents the ratio of the bent pipe. 66 represents the ratio of the main flow rate of the coolant in the second straight pipe portion 66b on the downstream side to the main flow velocity of the coolant in the first straight pipe portion 66a on the upstream side of the bent portion 66c.
 第2直管部66b内の冷却材の主流速度は、図8に示すように、曲げ部66c(曲げ流路)から下流側に向かうにつれて徐々に増加し、或る位置(図8中、約1程度)において最大となる。その後、第2直管部66b内の冷却材の主流速度は、下流に行くほど低下する。曲げ部66c(曲げ流路)からの距離が冷却流路60の導入口61aの直径の約10倍となる位置において、曲げ部66cの上流側の第1直管部66a内の冷却材の主流速度と同じ速度となる。 As shown in FIG. 8, the main stream velocity of the coolant in the second straight pipe portion 66b gradually increases from the bent portion 66c (bent flow path) toward the downstream side, and reaches a certain position (approximately 1). After that, the flow velocity of the coolant in the second straight pipe portion 66b decreases as it goes downstream. At a position where the distance from the bent portion 66c (bent flow path) is about 10 times the diameter of the introduction port 61a of the cooling flow path 60, the main stream of coolant in the first straight pipe portion 66a on the upstream side of the bent portion 66c Same speed as speed.
 このことから、曲がり管66の曲げ部66c(曲げ流路)の曲げ点から冷却流路60の分岐部61bまでの流路の最大の長さを冷却流路60の導入口61aの直径又は水力直径の10倍未満に設定することで、曲がり管66の曲げ部66c(曲げ流路)による冷却材の増速効果を得ることができる。なお、本実施の形態のように、曲がり管66の曲げ部66c(曲げ流路)の曲げ点から冷却流路60の分岐部61bに向かう流路が雄ロータ2及び雌ロータ3の軸方向でなく径方向の場合には、雄ロータ2の中心軸線A1及び雌ロータ3の中心軸線A2を含む平面Pと曲がり管66の曲げ部66cの曲げ点との間の最短距離を冷却流路60の導入口61aの直径又は水力直径に対して10倍以下に設定することも可能である。当該最短距離は、曲がり管66の曲げ部66c(曲げ流路)の曲げ点から冷却流路60の分岐部61bまでの流路長よりも確実に長くなるので、冷却流路60の分岐部61bにおいて、曲がり管66の曲げ部66c(曲げ流路)による冷却材の増速効果を確実に得ることができる。 From this, the maximum length of the flow path from the bending point of the bent portion 66c (bent flow path) of the bent tube 66 to the branching portion 61b of the cooling flow path 60 is determined by the diameter of the inlet 61a of the cooling flow path 60 or hydraulic power. By setting the diameter to less than 10 times the diameter, it is possible to obtain the effect of accelerating the coolant by the bent portion 66c (bent flow path) of the bent pipe 66 . Note that, as in the present embodiment, the flow path from the bending point of the bent portion 66c (bent flow path) of the bent tube 66 to the branching portion 61b of the cooling flow path 60 is in the axial direction of the male rotor 2 and the female rotor 3. In the case of the radial direction, the shortest distance between the plane P including the central axis A1 of the male rotor 2 and the central axis A2 of the female rotor 3 and the bending point of the bent portion 66c of the bent pipe 66 is defined as It is also possible to set the diameter to 10 times or less the diameter of the inlet 61a or the hydraulic diameter. Since the shortest distance is definitely longer than the length of the flow path from the bending point of the bent portion 66c (bent flow path) of the bent pipe 66 to the branched portion 61b of the cooling flow path 60, the branched portion 61b of the cooling flow path 60 , the effect of accelerating the coolant by the bent portion 66c (bent flow path) of the bent tube 66 can be reliably obtained.
 なお、本実施の形態においては、曲がり管66をケーシング4に接続することで、冷却流路60の分岐部61bの上流側に曲げ流路を配置した構成の例を示した。しかし、曲がり管66をケーシング4に接続する代わりに、ケーシング4の内部に曲げ流路を設ける構成も可能である。すなわち、ケーシング4の内部における冷却流路60の分岐部61bよりも上流側の所定の範囲内の位置に曲げ流路を配置する。これにより、冷却流路60内の曲げ流路によって冷却材の増速効果を得ることができ、冷却流路60の分岐部61bにおける熱伝達率が向上する。 In addition, in the present embodiment, an example of a configuration in which the bent pipe 66 is connected to the casing 4 to arrange the bent flow path upstream of the branch portion 61b of the cooling flow path 60 is shown. However, instead of connecting the bent tube 66 to the casing 4 , it is also possible to provide a bent channel inside the casing 4 . That is, the bent flow path is arranged at a position within a predetermined range on the upstream side of the branch portion 61b of the cooling flow path 60 inside the casing 4 . As a result, the curved flow path in the cooling flow path 60 can increase the speed of the coolant, and the heat transfer coefficient at the branch portion 61b of the cooling flow path 60 is improved.
 上述した第2の実施の形態においては、第1の実施の形態と同様に、軸方向における吐出流路48と吐出側軸受7、8との間の位置かつ吐出流路48を軸方向に投影した領域48pに重なる位置にある分岐部61bにおいて冷却流路60を分岐させることで、冷却流路60の分岐部61b及びその直下流の領域において熱伝達率が向上する。これにより、ケーシング4に対する冷却材の冷却能力が向上する。つまり、ケーシング4における吐出側軸受7、8の周辺部分に対する冷却能力が高まるので、ケーシング4の熱変形に起因する吐出側軸受7、8間の相対距離の拡大が抑制され、圧縮機効率の向上を図ることができる。 In the second embodiment described above, similarly to the first embodiment, the position between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction and the projection of the discharge flow path 48 in the axial direction By branching the cooling channel 60 at the branching portion 61b that overlaps the region 48p, the heat transfer coefficient is improved in the branching portion 61b of the cooling channel 60 and the region immediately downstream thereof. Thereby, the cooling ability of the coolant to the casing 4 is improved. That is, since the cooling capacity of the casing 4 around the discharge side bearings 7 and 8 is enhanced, the increase in the relative distance between the discharge side bearings 7 and 8 due to thermal deformation of the casing 4 is suppressed, and the efficiency of the compressor is improved. can be achieved.
 また、本実施の形態に係るスクリュー圧縮機1Aにおいては、冷却材の流れ方向を転向させる曲げ流路としての曲がり管66の曲げ部66cが冷却流路60の分岐部61bよりも上流側に配置され、冷却流路60がケーシング4の外部から冷却材を導入する導入口61aを有する。曲げ流路は、その中心線の長さが導入口61aの直径又は水力直径以下の範囲内において、その中心線の向きが上流から下流に向かって45°以上90°以下の範囲内で変化するように構成されている。曲げ流路の曲げ点から冷却流路60の分岐部61bまでの流路の最大長さは、導入口61aの直径又は水力直径の10倍未満に設定されている。 Further, in the screw compressor 1A according to the present embodiment, the bent portion 66c of the bent pipe 66 as a bent passage for turning the flow direction of the coolant is arranged upstream of the branch portion 61b of the cooling passage 60. , and the cooling channel 60 has an inlet 61 a through which the coolant is introduced from the outside of the casing 4 . The curved flow path has a centerline length within a range equal to or less than the diameter of the inlet 61a or the hydraulic diameter, and the direction of the centerline changes from upstream to downstream within a range of 45° or more and 90° or less. is configured as The maximum length of the channel from the bending point of the curved channel to the branch portion 61b of the cooling channel 60 is set to be less than 10 times the diameter or hydraulic diameter of the inlet 61a.
 この構成によれば、曲げ流路としての曲がり管66の曲げ部66cによって冷却流路60の分岐部61bにおける冷却材の主流速度が曲げ流路(曲げ部66c)よりも上流の冷却材の主流速度よりも速くなる。冷却材の主流の増速分、当該分岐部61b及びその直下流の熱伝達率が向上するので、ケーシング4に対する冷却材の冷却効果が向上する。 According to this configuration, due to the bent portion 66c of the bent pipe 66 as the bent channel, the main stream velocity of the coolant in the branch portion 61b of the cooling channel 60 is increased to the upper stream speed of the coolant upstream of the bent channel (bent portion 66c). Faster than speed. The cooling effect of the coolant on the casing 4 is improved because the heat transfer coefficient of the branched portion 61b and its immediate downstream side is improved by the speed increase of the main stream of the coolant.
 また、本実施の形態に係るスクリュー圧縮機1Aは、ケーシング4の導入口61aに接続された曲がり管66を更に備える。曲がり管66は、流路が直線状に延びる第1直管部66aと、流路が直線状に延び、第1直管部66aよりも下流側に位置して導入口61aに接続される第2直管部66bと、第1直管部66aと第2直管部66bとを繋ぐ曲げ部66cとを有する。曲げ部66cの流路は上述の条件の曲げ流路として構成されている。 Further, the screw compressor 1A according to the present embodiment further includes a bent pipe 66 connected to the introduction port 61a of the casing 4. The bent pipe 66 includes a first straight pipe portion 66a having a linearly extending flow path, and a second straight pipe portion 66a having a linearly extending flow path and positioned downstream of the first straight pipe portion 66a and connected to the inlet 61a. It has two straight pipe portions 66b and a bent portion 66c connecting the first straight pipe portion 66a and the second straight pipe portion 66b. The flow path of the bent portion 66c is configured as a bent flow path that satisfies the conditions described above.
 この構成によれば、スクリュー圧縮機1Aのケーシング4の冷却流路60に対して曲がり管66を介して冷却材を導入することで、分岐部61bにおける冷却材の主流の増速効果を簡素な構成によって得ることができる。 According to this configuration, by introducing the coolant into the cooling flow path 60 of the casing 4 of the screw compressor 1A through the bent pipe 66, the effect of increasing the speed of the main flow of the coolant at the branch portion 61b can be simplified. can be obtained by configuration.
 [第3の実施の形態]
  第3の実施の形態に係るスクリュー圧縮機について例示説明する。まず、第3の実施の形態に係るスクリュー圧縮機の構成及び構造について図9を用いて説明する。図9は本発明の第3の実施の形態に係るスクリュー圧縮機の概略構造を示す断面図である。なお、図9において、図1~図8に示す符号と同符号のものは、同様な部分であるので、その詳細な説明は省略する。
[Third embodiment]
A screw compressor according to the third embodiment will be described by way of illustration. First, the configuration and structure of a screw compressor according to the third embodiment will be described with reference to FIG. FIG. 9 is a sectional view showing a schematic structure of a screw compressor according to a third embodiment of the invention. In FIG. 9, parts having the same reference numerals as those shown in FIGS. 1 to 8 are the same parts, and detailed description thereof will be omitted.
 図9に示す第3の実施の形態によるスクリュー圧縮機1Bが第1の実施の形態と異なる点は、ケーシング4の冷却流路60が接続管としての縮小管67を介して外部冷却系統100(図1参照)に接続にされていることである。縮小管67の流路は、上流から下流に向かって流路断面積が縮小する縮小流路として構成されるものである。本実施の形態においては、冷却流路60の分岐部61b(図3参照)の上流側に縮小流路を配置するものである。 The screw compressor 1B according to the third embodiment shown in FIG. 9 differs from the first embodiment in that the cooling flow path 60 of the casing 4 is connected to the external cooling system 100 ( (See Fig. 1). The channel of the contraction tube 67 is configured as a contraction channel in which the channel cross-sectional area decreases from upstream to downstream. In the present embodiment, a reduced flow path is arranged on the upstream side of the branch portion 61b (see FIG. 3) of the cooling flow path 60. As shown in FIG.
 具体的には、縮小管67は、外部冷却系統100に接続される大径管部67aと、ケーシング4の冷却流路60の導入口61aに接続される小径管部67bと、大径管部67aと小径管部67bとを繋ぐテーパ管部67cとで構成されている。大径管部67a及び小径管部67bは流路断面積が一定の直線状に延びる直管部であり、大径管部67aの流路断面積は小径管部67bの流路断面積よりも大きくなるように設定されている。テーパ管部67cは、流路断面積が上流から下流に向かって減少する部分である。なお、縮小管67は、テーパ管部67cを介さずに、大径管部67aと小径管部67bとを直接的に繋げる構成も可能である。 Specifically, the reduced pipe 67 includes a large-diameter pipe portion 67a connected to the external cooling system 100, a small-diameter pipe portion 67b connected to the inlet 61a of the cooling flow path 60 of the casing 4, and a large-diameter pipe portion 67a and a tapered tube portion 67c connecting the small-diameter tube portion 67b. The large-diameter pipe portion 67a and the small-diameter pipe portion 67b are straight pipe portions extending linearly with a constant flow passage cross-sectional area. set to be large. The tapered pipe portion 67c is a portion in which the channel cross-sectional area decreases from upstream to downstream. It should be noted that the reduction tube 67 can also be configured to directly connect the large-diameter tube portion 67a and the small-diameter tube portion 67b without passing through the tapered tube portion 67c.
 なお、ケーシング4の冷却流路60の構成や構造、位置などは第1の実施の形態のものと同様である(図3参照)。すなわち、冷却流路60は、上流の導入流路61から分岐部61bを介して下流の第1分岐流路63と第2分岐流路64とに二又に分岐するように構成されている。さらに、当該分岐部61bは、雄雌両ロータ2、3の軸方向における吐出流路48と吐出側軸受7、8との間の位置にあると共に、吐出流路48を雄雌両ロータ2、3の軸方向に投影した領域48pと重なる位置にある。 The configuration, structure, position, etc. of the cooling channel 60 of the casing 4 are the same as those of the first embodiment (see FIG. 3). That is, the cooling channel 60 is configured to bifurcate from an upstream introduction channel 61 into a downstream first branch channel 63 and a second branch channel 64 via a branch portion 61b. Further, the branch portion 61b is located between the discharge flow passage 48 and the discharge side bearings 7 and 8 in the axial direction of the male and female rotors 2 and 3, 3 overlaps the axially projected area 48p.
 次に、縮小管を介してケーシングの冷却流路に冷却材を導入する本実施の形態における作用及び効果について図10を用いて説明する。図10は本発明の第3の実施の形態に係るスクリュー圧縮機におけるケーシングの冷却流路に接続された縮小管内の冷却材の流速分布の解析結果を示す図である。図10中、白黒の濃淡は冷却材の流速の高低を表しており、白から黒に近づくにつれて流速が高くなることを示している。また、白抜き矢印は、冷却材の主流の方向を示している。 Next, the action and effect of this embodiment in which the coolant is introduced into the cooling flow path of the casing through the contraction tube will be described with reference to FIG. FIG. 10 is a diagram showing analysis results of the flow velocity distribution of the coolant in the contraction tube connected to the cooling flow path of the casing in the screw compressor according to the third embodiment of the present invention. In FIG. 10, black and white shading represents the level of the flow velocity of the coolant, and indicates that the flow velocity increases as the color approaches black from white. In addition, the white arrow indicates the direction of the mainstream of the coolant.
 縮小管67内を流れる冷却材の流速は、図10に示すように、テーパ管部67cの下流側の小径管部67b内の流速が上流側の大径管部67a内の流速よりも大きくなる。これは、断面積が絞られた流路に冷却材の流量が集中するからである。したがって、縮小管67を介してケーシング4の冷却流路60に冷却材を導入すると、冷却流路60に導入される冷却材の流速が増速する。このため、冷却流路60の分岐部61b並びにその直下流の第1分岐流路63及び第2分岐流路64の領域(図3参照)における冷却材の主流の流速も増速する。これにより、冷却材の主流に直交する断面内の二次流れの発生が促進され、ケーシング4の当該領域の壁面と冷却材との間の熱伝達率が更に高まる。したがって、ケーシング4に対する冷却材の冷却能力が更に向上するので、ケーシング4の熱変形が更に抑制され、ケーシング4の熱変形に起因する雄ロータ2側の吐出側軸受7、8と雌ロータ3側の吐出側軸受との相対距離の拡大を更に抑制することができる。 As shown in FIG. 10, the flow velocity of the coolant flowing through the contraction pipe 67 is such that the flow velocity in the small diameter pipe portion 67b on the downstream side of the tapered pipe portion 67c is higher than the flow speed in the upstream large diameter pipe portion 67a. . This is because the flow rate of the coolant concentrates in the flow path with the narrowed cross-sectional area. Therefore, when the coolant is introduced into the cooling channel 60 of the casing 4 via the contraction tube 67, the flow velocity of the coolant introduced into the cooling channel 60 increases. Therefore, the flow velocity of the main flow of the coolant also increases in the region of the branch portion 61b of the cooling channel 60 and the first branch channel 63 and the second branch channel 64 immediately downstream thereof (see FIG. 3). This facilitates the generation of a secondary flow in the cross-section perpendicular to the main flow of coolant, further increasing the heat transfer coefficient between the coolant and the wall surface of that region of the casing 4 . Therefore, since the cooling ability of the coolant for the casing 4 is further improved, the thermal deformation of the casing 4 is further suppressed, and the discharge side bearings 7 and 8 on the male rotor 2 side and the female rotor 3 side due to the thermal deformation of the casing 4 are reduced. expansion of the relative distance from the discharge side bearing can be further suppressed.
 ただし、縮小管67のテーパ管部67cよりも下流側の流路が分岐していると、冷却材が分岐した流路に分流してしまうので、分岐した各流路における流速が低下してしまう。そのため、縮小管67のテーパ管部67cとケーシング4の冷却流路60の導入口61aとの間で流路が分岐しない構成とする必要がある。すなわち、小径管部67bを分岐させないことが要求される。 However, if the flow path on the downstream side of the tapered tube portion 67c of the contraction tube 67 is branched, the coolant is divided into the branched flow paths, so the flow velocity in each branched flow path is reduced. . Therefore, it is necessary to provide a configuration in which the flow path does not branch between the tapered tube portion 67c of the contraction tube 67 and the introduction port 61a of the cooling flow path 60 of the casing 4. FIG. That is, it is required not to branch the small-diameter tube portion 67b.
 本実施の形態においては、ケーシング4の冷却流路60に接続する縮小管67が第2の実施の形態におけるケーシング4の冷却流路60に接続する曲がり管66に比べて省スペースである。このため、スクリュー圧縮機1Bやモータ90などを収容するパッケージ内のスペースが限られている場合に、第2の実施の形態よりも有利である。 In this embodiment, the reduced pipe 67 connected to the cooling flow path 60 of the casing 4 is space-saving compared to the bent pipe 66 connected to the cooling flow path 60 of the casing 4 in the second embodiment. Therefore, it is more advantageous than the second embodiment when the space in the package containing the screw compressor 1B, the motor 90, etc. is limited.
 なお、本実施の形態においては、縮小管67をケーシング4に接続することで、冷却流路60の分岐部61bの上流側に縮小流路を配置した構成の例を示した。しかし、縮小管67をケーシング4に接続する代わりに、ケーシング4の内部に縮小流路を設ける構成も可能である。すなわち、ケーシング4の内部における冷却流路60の分岐部61bよりも上流側の位置に縮小流路を配置する。これにより、冷却流路60内の縮小流路によって冷却材の増速効果を得ることができ、冷却流路60の分岐部61bにおける熱伝達率が向上する。 In addition, in the present embodiment, an example of a configuration in which the contraction pipe 67 is connected to the casing 4 to arrange the contraction passage on the upstream side of the branch portion 61b of the cooling passage 60 is shown. However, instead of connecting the contraction tube 67 to the casing 4 , a configuration is also possible in which a contraction flow path is provided inside the casing 4 . That is, the reduced flow path is arranged at a position upstream of the branch portion 61 b of the cooling flow path 60 inside the casing 4 . As a result, the reduced flow path in the cooling flow path 60 can increase the speed of the coolant, and the heat transfer coefficient at the branch portion 61b of the cooling flow path 60 is improved.
 上述した第3の実施の形態においては、第1の実施の形態と同様に、雄ロータ2及び雌ロータ3の軸方向における吐出流路48と吐出側軸受7、8との間の位置かつ吐出流路48を軸方向に投影した領域48pに重なる位置にある分岐部61bにおいて冷却流路60を分岐させることで、冷却流路60の分岐部61b及びその直下流の領域において熱伝達率が向上する。これにより、ケーシング4に対する冷却材の冷却能力が向上する。つまり、ケーシング4における吐出側軸受7、8の周辺部分に対する冷却能力が高まるので、ケーシング4の熱変形に起因する吐出側軸受7、8間の相対距離の拡大が抑制され、圧縮機効率の向上を図ることができる。 In the third embodiment described above, similarly to the first embodiment, the position between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction of the male rotor 2 and the female rotor 3 and the discharge By branching the cooling channel 60 at the branching portion 61b that overlaps with the region 48p projected in the axial direction of the channel 48, the heat transfer coefficient is improved in the branching portion 61b of the cooling channel 60 and the region immediately downstream thereof. do. Thereby, the cooling ability of the coolant to the casing 4 is improved. That is, since the cooling capacity of the casing 4 around the discharge side bearings 7 and 8 is enhanced, the increase in the relative distance between the discharge side bearings 7 and 8 due to thermal deformation of the casing 4 is suppressed, and the efficiency of the compressor is improved. can be achieved.
 また、本実施の形態に係るスクリュー圧縮機1Bにおいては、上流から下流に向かって流路断面積が縮小する縮小流路としての縮小管67が冷却流路60の分岐部61bよりも上流側に配置され、縮小流路から冷却流路60の分岐部61bまでの間の流路は、分岐の無い一本の流路によって構成されている。 Further, in the screw compressor 1B according to the present embodiment, the contraction pipe 67 as a contraction passage whose passage cross-sectional area decreases from upstream to downstream is located upstream of the branch portion 61b of the cooling passage 60. The flow path between the reduced flow path and the branch portion 61b of the cooling flow path 60 is configured by a single flow path without branching.
 この構成によれば、縮小流路としての縮小管67によって冷却流路60の分岐部61bにおける冷却材の主流速度が縮小流路(縮小管67のテーパ管部67c)よりも上流側の冷却材の主流速度よりも速くなる。冷却材の主流の増速分、当該分岐部61b及びその直下流の熱伝達率が向上するので、ケーシング4に対する冷却材の冷却効果が向上する。 According to this configuration, the main stream velocity of the coolant in the branch portion 61b of the cooling channel 60 is reduced by the contraction pipe 67 as the contraction channel so that the coolant upstream of the contraction channel (the tapered pipe portion 67c of the contraction pipe 67) faster than the mainstream speed of The cooling effect of the coolant on the casing 4 is improved because the heat transfer coefficient of the branched portion 61b and its immediate downstream side is improved by the speed increase of the main stream of the coolant.
 また、本実施の形態においては、冷却流路60がケーシング4の外部から冷却材を導入する導入口61aを有し、スクリュー圧縮機1Bがケーシング4の導入口61aに接続された縮小管67を更に備える。縮小管67の流路は、縮小流路として構成されている。 Further, in the present embodiment, the cooling flow path 60 has an inlet 61a for introducing a coolant from the outside of the casing 4, and the screw compressor 1B has a reduction pipe 67 connected to the inlet 61a of the casing 4. Prepare more. The channel of the contraction tube 67 is configured as a contraction channel.
 この構成によれば、スクリュー圧縮機1Bのケーシング4の冷却流路60に対して縮小管67を介して冷却材を導入することで、分岐部61bにおける冷却材の主流の増速効果を簡素な構成によって得ることができる。 According to this configuration, by introducing the coolant into the cooling flow path 60 of the casing 4 of the screw compressor 1B through the contraction pipe 67, the effect of increasing the speed of the main flow of the coolant at the branch portion 61b can be simplified. can be obtained by configuration.
 [その他の実施の形態]
  なお、本発明は、上述した実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。すなわち、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
[Other embodiments]
In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. That is, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 上述した第1~第3の実施の形態においては、無給油式のスクリュー圧縮機1、1A、1Bを例に挙げて説明したが、油や水などの液体を作動室Cに供給する給液式のスクリュー圧縮機にも本発明を適用することができる。 In the first to third embodiments described above, the oil- free screw compressors 1, 1A, and 1B have been described as examples. The present invention can also be applied to a type screw compressor.
 また、上述した実施の形態においては、一対のスクリューロータを備えるツインスクリュー式のスクリュー圧縮機1、1A、1Bを例に挙げて説明したが、3つ以上のスクリューロータを備えるマルチスクリュー式のスクリュー圧縮機にも本発明を適用することができる。 Further, in the above-described embodiments, the twin-screw type screw compressors 1, 1A, and 1B provided with a pair of screw rotors have been described as examples, but multi-screw type screw compressors provided with three or more screw rotors The present invention can also be applied to compressors.
 また、上述した実施の形態においては、ケーシング4の冷却流路60が導入流路61から第1分岐流路63と第2分岐流路64とに二又に分岐する構成の例を示した。しかし、冷却流路は、導入流路61から3以上の複数の分岐流路に分岐する構成も可能である。このような構成であっても、複数の分岐流路が分岐する分岐部61bを、雄雌両ロータ2、3の軸方向において吐出流路48と吐出側軸受7、8との間の位置に配置すると共に、吐出流路48を雄雌両ロータ2、3の軸方向に投影した領域48pと重なる位置に配置することで、ケーシング4のうち吐出流路48と吐出側軸受7、8との間の高温部分の領域の冷却の促進を図ることができる。 Further, in the embodiment described above, an example of a configuration in which the cooling channel 60 of the casing 4 bifurcates from the introduction channel 61 into the first branch channel 63 and the second branch channel 64 is shown. However, the cooling channel can also be configured to branch from the introduction channel 61 into a plurality of branch channels of three or more. Even with such a configuration, the branching portion 61b where the plurality of branched flow paths branch is positioned between the discharge flow path 48 and the discharge side bearings 7 and 8 in the axial direction of the male and female rotors 2 and 3. In addition, by arranging the discharge passage 48 at a position overlapping with the region 48p projected in the axial direction of the male and female rotors 2 and 3, the discharge passage 48 and the discharge side bearings 7 and 8 in the casing 4 are separated from each other. It is possible to promote cooling of the region of the hot part in between.
 また、上述した第3の実施の形態における縮小管67の下流側に第2の実施の形態における曲がり管66を配置する構成も可能である。すなわち、冷却流路60の分岐部61bよりも上流において、断面積が下流側に向かって縮小する流路の下流側に曲げ流路を配置する構成が可能である。この構成では、縮小流路による冷却材の増速効果に加えて曲げ流路による増速効果を得ることで、冷却流路60の分岐部61bの熱伝達率の向上効果を高めることができる。 It is also possible to arrange the bent tube 66 of the second embodiment on the downstream side of the contraction tube 67 of the third embodiment described above. In other words, it is possible to arrange the curved flow path downstream of the flow path whose cross-sectional area decreases toward the downstream side upstream of the branch portion 61 b of the cooling flow path 60 . In this configuration, the effect of improving the heat transfer coefficient of the branch portion 61b of the cooling channel 60 can be enhanced by obtaining the speed-increasing effect of the curved channel in addition to the speed-increasing effect of the coolant by the contracted channel.
 1、1A、1B…スクリュー圧縮機、 2…雄ロータ(スクリューロータ)、 3…雌ロータ(スクリューロータ)、 4…ケーシング、 7、8…吐出側軸受、 46…収容室、 48…吐出流路、 48p…吐出流路を軸方向に投影した領域、 60…冷却流路、 61…導入流路、 61a…導入口、 61b…分岐部、 63…第1分岐流路、 64…第2分岐流路、 66…曲がり管、 66a…第1直管路、 66b…第2直管路、 66c…曲げ部(曲げ流路)、 67…縮小管(縮小流路)、 C…作動室 1, 1A, 1B... screw compressor, 2... male rotor (screw rotor), 3... female rotor (screw rotor), 4... casing, 7, 8... discharge side bearing, 46... storage chamber, 48... discharge flow path 48p... area where the discharge channel is projected in the axial direction, 60... cooling channel, 61... introduction channel, 61a... introduction port, 61b... branch portion, 63... first branch channel, 64... second branch flow Path, 66... curved pipe, 66a... first straight pipe line, 66b... second straight pipe line, 66c... bent portion (bent flow path), 67... reduced pipe (reduced flow path), C... working chamber

Claims (7)

  1.  噛み合うように回転する複数のスクリューロータと、
     前記複数のスクリューロータの各々の軸方向の一方側を回転自在に支持する吐出側軸受と、
     前記複数のスクリューロータを収容する収容室を有し、前記収容室よりも前記軸方向の前記一方側の位置に前記吐出側軸受が配置され、前記複数のスクリューロータと共に作動室を形成するケーシングとを備え、
     前記ケーシングは、
     前記収容室における前記軸方向の前記一方側に連通し、前記作動室内の圧縮気体を前記ケーシングの外部へ導く吐出流路を有すると共に、
     前記ケーシングの外部から供給される冷却材が循環する冷却流路を有し、
     前記冷却流路は、分岐部において上流から下流に向かって分岐し、
     前記分岐部は、前記軸方向における前記吐出流路と前記吐出側軸受との間の位置にあり、且つ、前記吐出流路を前記軸方向に投影した領域に重なる位置にある
     スクリュー圧縮機。
    a plurality of screw rotors that rotate to mesh with each other;
    a discharge-side bearing that rotatably supports one axial side of each of the plurality of screw rotors;
    a casing having an accommodation chamber for accommodating the plurality of screw rotors, the discharge-side bearing being arranged at a position on the one side of the accommodation chamber in the axial direction, and forming an operating chamber together with the plurality of screw rotors; with
    The casing is
    having a discharge passage that communicates with the one side of the housing chamber in the axial direction and guides the compressed gas in the working chamber to the outside of the casing;
    Having a cooling channel through which a coolant supplied from the outside of the casing circulates,
    The cooling channel branches from upstream to downstream at the branching portion,
    The branching portion is positioned between the discharge flow path and the discharge-side bearing in the axial direction, and is positioned to overlap a region obtained by projecting the discharge flow path in the axial direction.
  2.  請求項1に記載のスクリュー圧縮機であって、
     前記冷却流路は、前記ケーシングの外部から冷却材を導入する導入口を上流端に有し、前記導入口から前記分岐部まで延在する導入流路を含み、
     前記導入流路は、前記軸方向における前記吐出流路と前記吐出側軸受との間の位置かつ前記吐出流路を前記軸方向に投影した領域と重なる位置に配置されている
     スクリュー圧縮機。
    A screw compressor according to claim 1,
    The cooling channel includes an inlet at an upstream end for introducing a coolant from the outside of the casing, and an inlet channel extending from the inlet to the branch,
    The screw compressor, wherein the introduction passage is arranged at a position between the discharge passage and the discharge-side bearing in the axial direction and at a position overlapping a region obtained by projecting the discharge passage in the axial direction.
  3.  請求項1に記載のスクリュー圧縮機であって、
     前記冷却流路は、前記分岐部で二又に分岐する第1分岐流路と第2分岐流路とを含み、
     前記第1分岐流路と前記第2分岐流路は、前記分岐部から前記ケーシングの周方向に沿って互いに反対方向に向かって延在するように構成されている
     スクリュー圧縮機。
    A screw compressor according to claim 1,
    The cooling channel includes a first branch channel and a second branch channel that are bifurcated at the branching portion,
    The screw compressor, wherein the first branched flow path and the second branched flow path are configured to extend from the branched portion in directions opposite to each other along the circumferential direction of the casing.
  4.  請求項1に記載のスクリュー圧縮機であって、
     前記冷却流路は、前記ケーシングの外部から冷却材を導入する導入口を有し、
     冷却材の流れ方向を転向させる曲げ流路が前記冷却流路の前記分岐部よりも上流側に配置され、
     前記曲げ流路は、その中心線の長さが前記導入口の直径又は水力直径以下の範囲内において、その中心線の向きが上流から下流に向かって45°以上90°以下の範囲内で変化するように構成され、
     前記曲げ流路の曲げ点から前記冷却流路の前記分岐部までの流路の最大長さが、前記導入口の直径又は水力直径の10倍未満に設定されている
     スクリュー圧縮機。
    A screw compressor according to claim 1,
    The cooling channel has an inlet for introducing a coolant from the outside of the casing,
    A curved channel for changing the flow direction of the coolant is arranged upstream of the branch portion of the cooling channel,
    The bent channel has a centerline length within a range equal to or less than the diameter of the inlet port or a hydraulic diameter, and the direction of the centerline changes from upstream to downstream within a range of 45° or more and 90° or less. is configured to
    The screw compressor, wherein the maximum length of the flow path from the bending point of the bending flow path to the bifurcation of the cooling flow path is set to be less than 10 times the diameter or hydraulic diameter of the inlet.
  5.  請求項4に記載のスクリュー圧縮機であって、
     前記ケーシングの前記導入口に接続された曲がり管を更に備え、
     前記曲がり管は、
     流路が直線状に延びる第1直管部と、
     流路が直線状に延び、前記第1直管部よりも下流側に位置して前記導入口に接続される第2直管部と、
     前記第1直管部と前記第2直管部とを繋ぐ曲げ部とを有し、
     前記曲げ部の流路は、前記曲げ流路として構成されている
     スクリュー圧縮機。
    A screw compressor according to claim 4,
    further comprising a bent tube connected to the inlet of the casing;
    The bent tube is
    a first straight pipe portion in which the channel extends linearly;
    a second straight pipe portion having a flow path extending linearly, positioned downstream of the first straight pipe portion and connected to the introduction port;
    a bending portion connecting the first straight pipe portion and the second straight pipe portion;
    The screw compressor, wherein the flow path of the bent portion is configured as the bent flow path.
  6.  請求項1に記載のスクリュー圧縮機であって、
     上流から下流に向かって流路断面積が縮小する縮小流路が前記冷却流路の前記分岐部よりも上流側に配置され、
     前記縮小流路から前記冷却流路の前記分岐部までの間の流路は、分岐の無い一本の流路によって構成されている
     スクリュー圧縮機。
    A screw compressor according to claim 1,
    A reduced flow path whose flow path cross-sectional area decreases from upstream to downstream is arranged upstream of the branch portion of the cooling flow path,
    The screw compressor, wherein a flow path from the reduced flow path to the branched portion of the cooling flow path is composed of a single flow path without branching.
  7.  請求項6に記載のスクリュー圧縮機であって、
     前記冷却流路は、前記ケーシングの外部から冷却材を導入する導入口を有し、
     前記ケーシングの前記導入口に接続された縮小管を更に備え、
     前記縮小管の流路は、前記縮小流路として構成されている
     スクリュー圧縮機。
    A screw compressor according to claim 6,
    The cooling channel has an inlet for introducing a coolant from the outside of the casing,
    further comprising a contraction tube connected to the inlet of the casing;
    The screw compressor, wherein the flow path of the reduction tube is configured as the reduction flow path.
PCT/JP2022/009701 2021-03-31 2022-03-07 Screw compressor WO2022209606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061436A JP2022157302A (en) 2021-03-31 2021-03-31 screw compressor
JP2021-061436 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209606A1 true WO2022209606A1 (en) 2022-10-06

Family

ID=83458621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009701 WO2022209606A1 (en) 2021-03-31 2022-03-07 Screw compressor

Country Status (2)

Country Link
JP (1) JP2022157302A (en)
WO (1) WO2022209606A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169688A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Screw fluid machinery
JPH0749028Y2 (en) * 1989-11-01 1995-11-13 株式会社神戸製鋼所 Screw compressor
US5653585A (en) * 1993-01-11 1997-08-05 Fresco; Anthony N. Apparatus and methods for cooling and sealing rotary helical screw compressors
WO2020003453A1 (en) * 2018-06-28 2020-01-02 株式会社日立産機システム Compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169688A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Screw fluid machinery
JPH0749028Y2 (en) * 1989-11-01 1995-11-13 株式会社神戸製鋼所 Screw compressor
US5653585A (en) * 1993-01-11 1997-08-05 Fresco; Anthony N. Apparatus and methods for cooling and sealing rotary helical screw compressors
WO2020003453A1 (en) * 2018-06-28 2020-01-02 株式会社日立産機システム Compressor

Also Published As

Publication number Publication date
JP2022157302A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
KR100682586B1 (en) Dry-compressing screw pump
JP6986117B2 (en) Fluid machine
JP5491455B2 (en) Compressor and cooling method thereof
US3462072A (en) Screw rotor machine
BRPI0619811A2 (en) screw pump
RU2435985C2 (en) Screw compressor for high capacities of drive
JP5904961B2 (en) Screw compressor
EP2863060B2 (en) Screw Compressor and oil supply method thereof
CN111295518A (en) Liquid-cooled screw compressor
CN103375404B (en) Positive displacement pump assemblies with the removable end plate for rotor cover clearance control
WO2022209606A1 (en) Screw compressor
EP2264319B1 (en) Oil free screw compressor
US4963079A (en) Screw fluid machine with high efficiency bore shape
JP2011069309A (en) Screw compressor
CN111670306B (en) Screw compressor
CN109642573B (en) Screw vacuum pump
US11891996B2 (en) Compressor element with improved oil injector
KR20110046584A (en) Dry pump
US20230086482A1 (en) Lubricant system for a compressor
WO2023084938A1 (en) Screw compressor
US20060029510A1 (en) Motor-driven Roots compressor
WO2022085631A1 (en) Screw compressor and screw rotor
JP6873763B2 (en) Screw fluid machine
WO2024116433A1 (en) Screw compressor
JP2000110760A (en) Oil cooled screw compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779830

Country of ref document: EP

Kind code of ref document: A1