JPS6336085A - Screw type vacuum pump - Google Patents

Screw type vacuum pump

Info

Publication number
JPS6336085A
JPS6336085A JP17774686A JP17774686A JPS6336085A JP S6336085 A JPS6336085 A JP S6336085A JP 17774686 A JP17774686 A JP 17774686A JP 17774686 A JP17774686 A JP 17774686A JP S6336085 A JPS6336085 A JP S6336085A
Authority
JP
Japan
Prior art keywords
casing
rotor
rotors
vacuum pump
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17774686A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
吉村 將士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIKO KIKAI KOGYO KK
Original Assignee
TAIKO KIKAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIKO KIKAI KOGYO KK filed Critical TAIKO KIKAI KOGYO KK
Priority to JP17774686A priority Critical patent/JPS6336085A/en
Publication of JPS6336085A publication Critical patent/JPS6336085A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent the occurrence of a seizure accident in a screw type vacuum pump by setting the screw part length of rotors at 2 or more pitches and providing a cooling air port on the inner wall surface of a casing at the intermediate chamber of three chambers formed with the rotors. CONSTITUTION:The screw part length of rotors 2 and 3 is taken at 2 or more pitches and a rotor screw stowage space formed with the inner wall surface of a casing 1 is divided into three chambers 'E', 'F' and 'G' with screw threads. Among the three chambers 'E', 'F' and 'G', the inner wall surface of the casing 1 where the intermediate chamber 'F' is located, is provided with a cooling air port 'C' for the supply of fresh air or cooling gas. According to the aforesaid constitution, fresh air or cooling gas is introduced to the intermediate chamber 'F' not continuous to an intake port 'A' and a delivery port 'B', via the cooling air port 'C' and the rotors 2 and 3 and the casing 1 are cooled without deteriorating the efficiency of a vacuum pump thereby preventing the occurrence of a serizure trouble.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスクリュウ型の真空ポンプにおいて、ロータ収
容室の冷却を気体にて行い、しかも単段にて高圧力比を
とることのできる真空ポンプに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a screw-type vacuum pump that uses gas to cool the rotor housing chamber and that can achieve a high pressure ratio in a single stage. Regarding.

〔従来技術と問題点〕[Conventional technology and problems]

従来のスクリュウ型の真空ポンプは単段で高圧力比(例
えば圧力比を3以上)にすると、圧縮熱等によりロータ
及びロータ収容室が高温となりロータの熱膨張に伴って
ロータとロータを収容するケイシングとの隙間が減少し
てやがてロータとケイシングが接触し焼付を生ずるため
、連続運転は不可能であった。
In conventional screw-type vacuum pumps, when the pressure ratio is high in a single stage (for example, the pressure ratio is 3 or more), the rotor and rotor accommodation chamber become high temperature due to heat of compression, etc., and the rotor and rotor are accommodated as the rotor thermally expands. Continuous operation was impossible because the gap between the rotor and the casing decreased and the rotor and casing eventually came into contact, causing seizure.

従って、最近ではロータの軸の内部に冷却水又冷却油を
通してロータを冷却すると同時に、ロータを収容するケ
イシングにもジャケットを設けてジャケット内の冷却水
にてケイシングを冷却して収容室に発生する圧縮熱を奪
い、ロータの焼付を防止しているのが現状である。
Therefore, recently, cooling water or cooling oil is passed inside the rotor shaft to cool the rotor, and at the same time, a jacket is also provided on the casing that houses the rotor, and the cooling water inside the jacket cools the casing and generates water in the housing chamber. Currently, it removes compression heat and prevents rotor seizure.

しかしながら、ロータシャフトに冷却液を流す方法は、
冷却水送給用のポンプ、冷却器及びポンプ駆動装置が大
がかりとなり、しかも冷却液通路用の孔加工等も複雑と
なりポンプの価格が高価となる。
However, the method of flowing coolant to the rotor shaft is
The pump for supplying cooling water, the cooler, and the pump drive device are large-scale, and the hole machining for the cooling liquid passage is also complicated, which increases the price of the pump.

又、冷却水による場合には水道代などの維持費も嵩むこ
とになる。
Furthermore, if cooling water is used, maintenance costs such as water charges will also increase.

以上のような経済的な問題点のみならず、技術面におい
ても次のような問題がある。
In addition to the economic problems mentioned above, there are also the following technical problems.

即ち、ロータシャフトに冷却水通路を穿設する場合、ロ
ータシャフトの強度上の問題から大きな孔を明けること
が出来ないため伝熱面積が小さくなり冷却効果が少く、
しかも、最も冷却を必要とするねじ部外表面と冷却孔と
の距離が大となるため更に冷却効果が微々たるものにな
る。
That is, when drilling a cooling water passage in the rotor shaft, it is not possible to make a large hole due to problems with the strength of the rotor shaft, so the heat transfer area becomes small and the cooling effect is small.
Moreover, since the distance between the outer surface of the threaded portion and the cooling hole, which requires the most cooling, becomes large, the cooling effect becomes even more negligible.

このように液冷の効果が期待できないため、ロータの焼
付防止対策として、ロータ相互間及びロータとケイシン
グ内壁面との隙間を拡大したり、或はロータの外表面域
は内壁面に耐焼付性を高くする表面処理をする場合もあ
る。
In this way, the effect of liquid cooling cannot be expected, so as a measure to prevent rotor seizure, the gap between the rotors and between the rotor and the inner wall of the casing must be enlarged, or the outer surface area of the rotor may have anti-seizure properties on the inner wall surface. In some cases, surface treatment is applied to increase the

しかしながら、ロータ相互間及びロータとケイシング内
壁面の間の隙間を拡げることはリーク量が大となりポン
プの性能を低下させることになる。
However, widening the gaps between the rotors and between the rotors and the inner wall surface of the casing increases the amount of leakage and reduces the performance of the pump.

以上のような技術的諸問題に対して、ロータに焼付を生
ずることなくポンプ性能を高度に維持し、しかも、乾式
(冷却液を用いない)で高圧力比を確保することは極め
て困難なことであった。
In response to the technical problems mentioned above, it is extremely difficult to maintain high pump performance without causing seizure of the rotor and to ensure a high pressure ratio in a dry system (without using a cooling liquid). Met.

本発明は隙間を拡大する所謂隙間管理という複雑な経験
技術を必要とせず、又、冷却液や冷却液ポンプ及び冷却
装置等を必要とせず、しかも、簡単な機構を設けて高圧
力比(15以上)を達成することのできるスクリュウ型
真空ポンプを提供するものである。
The present invention does not require complicated empirical technology of so-called gap management to enlarge the gap, does not require coolant, coolant pump, cooling device, etc., and has a simple mechanism to achieve high pressure ratio (15 The present invention provides a screw type vacuum pump that can achieve the above).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、スクリュウ型真空ポンプのロータのねじ部長
さを2ピッチ以上とすることにより、ケイシング内壁面
によって構成されるロータねじ部収容空間をねじ山によ
って3つの室に区分すると共に、該3つの室の中間の室
のケイシング内壁面に冷却気体を導入する冷気ポートを
設けたことにある。
The present invention provides a screw type vacuum pump with a rotor having a thread length of 2 pitches or more, thereby dividing the rotor thread housing space formed by the inner wall surface of the casing into three chambers by the threads, and dividing the space between the three chambers. A cold air port for introducing cooling gas is provided on the inner wall surface of the casing in the middle chamber.

〔作 用〕[For production]

以上のような構成で、ロータねじ部数容室は吸込側、中
間、吐出側の3つの室に仕切られ、中間室に送風される
冷気は吸気ポートを有する吸込側に進入することなく、
従って、ポンプ効率を落すことなく中間室を冷却し圧t
?3熱を吸収せしめる。
With the above configuration, the rotor screw volume chamber is partitioned into three chambers: suction side, intermediate chamber, and discharge side, and the cold air blown into the intermediate chamber does not enter the suction side having the suction port.
Therefore, the intermediate chamber can be cooled without reducing pump efficiency and the pressure t
? 3 Absorbs heat.

〔実施例〕〔Example〕

本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第3図はスクリュウ型真空ポンプを示し、ケイシング1
は右及び左ねじのロータ2,3のねじ部を収容する。
Figure 3 shows a screw type vacuum pump, with casing 1
accommodates the threaded portions of the rotors 2, 3 with right-handed and left-handed threads.

符号4は上記のねじ部を収容する空間の吐出側の仕切り
璧となるサイドケースである。
Reference numeral 4 designates a side case that serves as a partition wall on the discharge side of the space that accommodates the above-mentioned threaded portion.

サイドケース4の内周面にはベアリングホルダー5が挿
入され、ベアリングホルダー5はロータ2及び3の吐出
側の軸2a及び3aを支承するボールヘアリング6及び
軸2a及び3aをシールする軸封7を支持する。
A bearing holder 5 is inserted into the inner peripheral surface of the side case 4, and the bearing holder 5 includes a ball hair ring 6 that supports the shafts 2a and 3a on the discharge side of the rotors 2 and 3, and a shaft seal 7 that seals the shafts 2a and 3a. support.

サイドケース4の左側端面にはモータフレーム8が維付
けられる。
A motor frame 8 is maintained on the left end surface of the side case 4.

符号9はモータ軸で、軸接手10を介して回転駆動力を
ロータ2に伝達する。
Reference numeral 9 denotes a motor shaft, which transmits rotational driving force to the rotor 2 via a shaft joint 10.

ケイシング1の右側端面にはロータ2,3のねじ部を収
容する空間の吸込側仕切壁となるサイドケース11が維
付けられる。
A side case 11 is maintained on the right end surface of the casing 1 and serves as a suction side partition wall of a space that accommodates the threaded portions of the rotors 2 and 3.

サイドケース11の内周面にはヘアリングホルダー12
が嵌挿され、ベアリングホルダー12はローター2及び
3の吸込側の軸2b及び3bを支承するボールベアリン
グ13及び軸2b及び3bをシールする軸封14を支持
する。
A hair ring holder 12 is installed on the inner peripheral surface of the side case 11.
The bearing holder 12 supports a ball bearing 13 that supports the shafts 2b and 3b on the suction side of the rotors 2 and 3, and a shaft seal 14 that seals the shafts 2b and 3b.

軸2bの端部には固定ギヤ15がキー止めされ固定ギヤ
15は軸3bに固着されるギヤ16と噛み合う。
A fixed gear 15 is keyed to the end of the shaft 2b, and the fixed gear 15 meshes with a gear 16 fixed to the shaft 3b.

従って、ロータ2の回転駆動力はギヤ15,16を経て
ロータ3に伝達される。
Therefore, the rotational driving force of the rotor 2 is transmitted to the rotor 3 via the gears 15 and 16.

符号17は、ギヤケースである。Reference numeral 17 is a gear case.

ケイシング1の内周壁面の一側に吸込ポートAが開口し
、他側のねし収容空間仕切壁となるサイドケース4の壁
面に吐出ポー1− Bが設けられる。
A suction port A is opened on one side of the inner circumferential wall surface of the casing 1, and a discharge port 1-B is provided on the other side of the wall surface of the side case 4, which serves as a partition wall for the cage housing space.

吐出ポートBはサイドケース4の吐出口B1に連通ずる
The discharge port B communicates with the discharge port B1 of the side case 4.

又、ケイシングの内周壁面には、冷気ポートCが開口し
、大気又は冷却気体がケイラング1内に送りこまれる(
第2図参照)。
In addition, a cold air port C is opened on the inner peripheral wall surface of the casing, and atmospheric air or cooling gas is sent into the keirung 1 (
(See Figure 2).

冷却気体は、第4図(イ)に示すように、吐出口B1に
接続する排気路りに分岐管D1及び分岐管D1の中間に
クーラー18を設け、吐出排気の一部を冷却した上で冷
気ポートCに送給するものであってもよいし、或は、第
4図(ロ)に示すように、大気をサイレンサー19を通
して冷気ポートCに送給するものであってもよい。
As shown in FIG. 4 (a), the cooling gas is cooled by installing a cooler 18 between the branch pipe D1 and the branch pipe D1 in the exhaust path connected to the discharge port B1, and cooling a part of the discharged exhaust gas. The air may be fed to the cold air port C, or the air may be fed to the cold air port C through the silencer 19, as shown in FIG. 4(b).

いずれにしても、冷気ポートCの設けられている中間室
は、大気圧及び排気路りよりも低圧であるため、送給ポ
ンプを使用しなくても冷気は中間室に供給される。
In any case, since the intermediate chamber in which the cold air port C is provided has a pressure lower than the atmospheric pressure and the exhaust path, cold air can be supplied to the intermediate chamber without using a feed pump.

符号Sは吸込ポートAに接続する吸込側の管路を示す。Symbol S indicates a suction side pipe line connected to suction port A.

ケイシング1とロータ2,3によりねじ収容室は、第2
図に示すように、吸込室E1中間室F及び吐出室Gに仕
切られる。
The casing 1 and rotors 2 and 3 form a screw storage chamber in the second
As shown in the figure, the suction chamber E1 is partitioned into an intermediate chamber F and a discharge chamber G.

吸込室Eは常に吸込ポートAを含み、中間室Fは冷気ボ
ー)Cを含む場合が多く、吐出室Gは吐出ポートBを含
む。
The suction chamber E always contains the suction port A, the intermediate chamber F often contains the cold air bow), and the discharge chamber G contains the discharge port B.

そして3つの室E、F及びGはロータ2,3の回転に伴
って相互の境界線が移動し、中間室Fは一定容積のまま
移動するに従って吐出室に変更する。
The boundaries between the three chambers E, F, and G move as the rotors 2 and 3 rotate, and the intermediate chamber F changes into a discharge chamber as it moves while maintaining a constant volume.

第1図(イ)及び第2図(イ)はロータ3のねじ部端面
が吐出ポートBを閉鎖し、閉鎖状態から特に開こうとし
ている状態にあり、冷気ポートCもロータ2及び3のね
じ市外周縁により閉じられた状態にある。
In Figures 1 (a) and 2 (a), the threaded end face of the rotor 3 is closing the discharge port B and is in a state where it is about to open from the closed state, and the cold air port C is also in the state where the threaded end face of the rotor 3 is closing the discharge port B. It is closed off by the outer periphery of the city.

ロータ2及び3の回転に伴って、第1図(ロ)及び第2
図(ロ)に示すように、吐出ボー1− Bは開き吐出室
Gの容積縮小に伴って吐出室G内の空気を吐出ポートB
に排出する。
As the rotors 2 and 3 rotate, the
As shown in Figure (B), the discharge port 1-B opens and as the volume of the discharge chamber G decreases, the air in the discharge chamber G is transferred to the discharge port B.
to be discharged.

又、中間室Fは一定容積のまま吐出ポー)B側に移動し
冷気ポートCを開放する。
Further, the intermediate chamber F moves to the discharge port B side while maintaining a constant volume, and the cold air port C is opened.

冷気ポートCからは冷却気体又は大気が中間室F内に流
入し、中間室F内の気体、ロータ2及び3の外表面及び
ケイシング1の内壁面を冷却する。
Cooling gas or atmospheric air flows into the intermediate chamber F from the cold air port C, cooling the gas within the intermediate chamber F, the outer surfaces of the rotors 2 and 3, and the inner wall surface of the casing 1.

吸込ポー)Aは吸込室Eに連通し、吸込室Eの容積増加
に伴って吸込ポートAより空気を吸込み左方向に移動し
て中間室Fとなると共に新たな吸込室が生じるが、吸込
室Eと中間室Fは壁絶され冷気ポートCからの冷気が吸
込室Eに通じることはなく、真空ポンプの効率を落とす
ことはない。
Suction port) A communicates with suction chamber E, and as the volume of suction chamber E increases, air is sucked in from suction port A and moves to the left to become intermediate chamber F and a new suction chamber is created. E and the intermediate chamber F are separated, and the cold air from the cold air port C does not flow into the suction chamber E, so that the efficiency of the vacuum pump is not reduced.

又、中間室Fは負圧でありく真空ポンプだから)冷却ポ
ートCから冷却気体をか吸い込まれる。
Also, cooling gas is sucked into the intermediate chamber F from the cooling port C (since the intermediate chamber F has a negative pressure and is a vacuum pump).

従って、最も温度上昇の大きいロータ2,3の外表面及
びケイシング1の内壁面は効率的に冷却され、熱膨張に
よる隙間減少に起因する滑り接触面の焼付事故は防止さ
れる。
Therefore, the outer surfaces of the rotors 2 and 3 and the inner wall surface of the casing 1, which have the largest temperature rise, are efficiently cooled, and an accidental seizure of the sliding contact surface due to a reduction in the gap due to thermal expansion is prevented.

しかも、真空ポンプから排出される気体量も中間室Fに
吸い込まれた量だけ増加し、ポンプ外に送出される熱力
も増え、冷却効果を倍増することになる。
Moreover, the amount of gas discharged from the vacuum pump increases by the amount sucked into the intermediate chamber F, and the thermal power sent out to the outside of the pump also increases, doubling the cooling effect.

ロータ2,3の回転に伴って第1図及び第2図は(イ)
→(ロ)=(ハ)→(ニ)と変化して再び(イ)に戻る
As the rotors 2 and 3 rotate, Figures 1 and 2 are (a)
→ Changes to (b) = (c) → (d) and returns to (b) again.

本実施例は3室を確保する最小限のロータねし長を示す
ものであり、吸込及び吐出行程間に若干の圧縮行程が入
るものであるが、本発明が目的としている真空域く圧力
比が1.7以上)では、中間室は負圧が発生し、本目的
を充分に果し得るものである。
This example shows the minimum rotor thread length to ensure three chambers, and a slight compression stroke is included between the suction and discharge strokes, but the pressure ratio in the vacuum region targeted by the present invention is 1.7 or more), a negative pressure is generated in the intermediate chamber, and this purpose can be sufficiently achieved.

〔効 果〕〔effect〕

本発明を実施することにより、滑り摩擦面が効果的に冷
却され焼付事故を生ずることがないため、圧力、比が1
.7〜2程度しかとれなかったものが、1段当り15以
上の高圧力比がとれることとなった。
By implementing the present invention, the sliding friction surface is effectively cooled and seizure accidents do not occur, so that the pressure and ratio are reduced to 1.
.. The pressure ratio was only about 7 to 2, but now a high pressure ratio of 15 or more per stage can be achieved.

又、冷却機構は極めて簡単であり、故障を生ずる虞れも
なく又費用も低廉である。
Further, the cooling mechanism is extremely simple, has no risk of failure, and is inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例を示し、第1図はロー
タ及びケイシングの要部縦断面図、第2図は同上XX断
面図、第3図は真空ポンプの縦断面図、第4図は管路図
である。 1・・・ケイシング、2,3・・・ロータ、4,11・
・・サイドケース、A・・・吸込ポート、B・・・吐出
ポート、C・・・冷気ポート、D・・・排気路、E・・
・吸込室、F・・・中間室、G・・・吐出室、18・・
・クーラー、19・・・ザイレンサー。 第1図    第2図 (イ) 第4図
1 to 3 show embodiments of the present invention, FIG. 1 is a longitudinal sectional view of the main parts of the rotor and casing, FIG. 2 is a XX sectional view of the same as above, and FIG. 3 is a longitudinal sectional view of the vacuum pump. FIG. 4 is a pipe diagram. 1... Casing, 2, 3... Rotor, 4, 11.
...Side case, A...Suction port, B...Discharge port, C...Cold air port, D...Exhaust path, E...
・Suction chamber, F... intermediate chamber, G... discharge chamber, 18...
・Cooler, 19...Xylencer. Figure 1 Figure 2 (a) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一対の左右ねじのロータを有するスクリュウ型真空ポン
プに於いて、上記ロータのねじ部長さを2ピッチ以上と
することにより、ケイシング内壁面によって構成される
ロータねじ部収容空間をねじ山によって3つの室に区分
すると共に、該3つの室の中間の室のケイシング内壁面
に外気又は冷却気体を導入する冷気ポートを設けたこと
を特徴とするスクリュウ型真空ポンプ。
In a screw type vacuum pump having a pair of left and right threaded rotors, by making the length of the threaded portion of the rotor at least two pitches, the rotor threaded portion housing space constituted by the inner wall surface of the casing can be divided into three chambers by the threads. 1. A screw-type vacuum pump characterized in that a cold air port for introducing outside air or cooling gas is provided on the inner wall surface of a casing in a middle chamber of the three chambers.
JP17774686A 1986-07-30 1986-07-30 Screw type vacuum pump Pending JPS6336085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17774686A JPS6336085A (en) 1986-07-30 1986-07-30 Screw type vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17774686A JPS6336085A (en) 1986-07-30 1986-07-30 Screw type vacuum pump

Publications (1)

Publication Number Publication Date
JPS6336085A true JPS6336085A (en) 1988-02-16

Family

ID=16036402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17774686A Pending JPS6336085A (en) 1986-07-30 1986-07-30 Screw type vacuum pump

Country Status (1)

Country Link
JP (1) JPS6336085A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412092A (en) * 1987-07-01 1989-01-17 Kobe Steel Ltd Vacuum pump of screw type
JPH02126089U (en) * 1989-03-27 1990-10-17
JPH02149893U (en) * 1989-05-23 1990-12-21
WO1998057067A1 (en) * 1997-06-11 1998-12-17 Sterling Fluid Systems (Germany) Gmbh Screw spindle vacuum pump and operating method
DE10197270B4 (en) * 2001-09-27 2008-01-24 Taiko Kikai Industries Co., Ltd. vacuum pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019772A (en) * 1973-06-06 1975-03-01
JPS5675994A (en) * 1979-11-21 1981-06-23 Hitachi Ltd Multieffect screw compressor
JPS60216089A (en) * 1984-04-11 1985-10-29 Hitachi Ltd Screw vacuum pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019772A (en) * 1973-06-06 1975-03-01
JPS5675994A (en) * 1979-11-21 1981-06-23 Hitachi Ltd Multieffect screw compressor
JPS60216089A (en) * 1984-04-11 1985-10-29 Hitachi Ltd Screw vacuum pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412092A (en) * 1987-07-01 1989-01-17 Kobe Steel Ltd Vacuum pump of screw type
JPH045836B2 (en) * 1987-07-01 1992-02-03 Kobe Steel Ltd
JPH02126089U (en) * 1989-03-27 1990-10-17
JPH02149893U (en) * 1989-05-23 1990-12-21
JPH089437Y2 (en) * 1989-05-23 1996-03-21 株式会社神戸製鋼所 Oil-free screw type vacuum pump
WO1998057067A1 (en) * 1997-06-11 1998-12-17 Sterling Fluid Systems (Germany) Gmbh Screw spindle vacuum pump and operating method
DE10197270B4 (en) * 2001-09-27 2008-01-24 Taiko Kikai Industries Co., Ltd. vacuum pump

Similar Documents

Publication Publication Date Title
US6544020B1 (en) Cooled screw vacuum pump
JPS643786Y2 (en)
JPS6449799A (en) Lubricating system for compressor assembly
US11053942B2 (en) Screw compressor
US20210348609A1 (en) Screw compressor with sliding bearings
JPH10159764A (en) Screw compressor
US6663366B2 (en) Compressor having cooling passage integrally formed therein
US5413467A (en) Oil-free type screw compressor device
JPS6336085A (en) Screw type vacuum pump
KR100470542B1 (en) Refrigeration chiller, apparatus for pumping both refrigerant and lubricant in a refrigeration chiller, and a method for cooling the compressor drive motor in a refrigeration chiller and for delivering lubricant to a surface therein that requires lubrication
US6093007A (en) Multi-rotor helical-screw compressor with thrust balance device
KR20050042067A (en) Cooled screw-type vacuum pump
US2306632A (en) Refrigerating apparatus
JPS6166889A (en) Rotary air compressor
JPH0243038B2 (en)
US11428228B2 (en) Screw compressor having a different pressure of the fluid applied to the seal ring on the delivery side shaft sealing unit
JPS62153526A (en) Cooling system of rotating-piston internal combustion engine
JPH11294358A (en) Double shaft vacuum pump
CS207321B2 (en) Compressor set
JPH03213688A (en) Screw vacuum pump
KR100293096B1 (en) An apparatus for cooling a screw vacuum pump
JP2001329985A (en) Cooling structure for vacuum pump
KR100298424B1 (en) A water-cooled cooling device of screw type of a vacuum pump
JPH0447189A (en) Dry screw vacuum pump
JPS588288A (en) Screw compressor