JPS6116961B2 - - Google Patents

Info

Publication number
JPS6116961B2
JPS6116961B2 JP54024193A JP2419379A JPS6116961B2 JP S6116961 B2 JPS6116961 B2 JP S6116961B2 JP 54024193 A JP54024193 A JP 54024193A JP 2419379 A JP2419379 A JP 2419379A JP S6116961 B2 JPS6116961 B2 JP S6116961B2
Authority
JP
Japan
Prior art keywords
light
polarization
axis direction
optical
circuit element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54024193A
Other languages
Japanese (ja)
Other versions
JPS55117108A (en
Inventor
Shojiro Kawakami
Haruhiko Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2419379A priority Critical patent/JPS55117108A/en
Publication of JPS55117108A publication Critical patent/JPS55117108A/en
Publication of JPS6116961B2 publication Critical patent/JPS6116961B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は光偏光回路素子に関する。[Detailed description of the invention] The present invention relates to an optical polarization circuit element.

従来の光偏光回路素子は、光学結晶より製出さ
れたプリズム体でなるを普通としていた。
Conventional optical polarization circuit elements have generally been made of prism bodies made from optical crystals.

然し乍ら斯る光偏光回路素子の場合それ自体を
得るのが容易であるとは云えないものであつた。
又上述せる従来の光偏光回路素子はこれが光集積
回路装置を構成する他の光集積回路素子と親和性
が良いとは云えず、この為上述せる従来の光偏光
回路素子を含んで光集積回路装置を構成せんとし
てもそれを小型、安定、低損失なものとして容易
に構成し得ないものであつた等の欠点を有してい
た。
However, it cannot be said that it is easy to obtain such an optical polarization circuit element.
Furthermore, the conventional optical polarization circuit element described above cannot be said to have good compatibility with other optical integrated circuit elements constituting the optical integrated circuit device, and therefore, it cannot be said that the conventional optical polarization circuit element described above has good compatibility with other optical integrated circuit elements constituting the optical integrated circuit device. Even if a device could not be constructed, it had drawbacks such as the fact that it could not be easily constructed as a small, stable, and low-loss device.

依つて本発明は上述せる欠点のない新規な光偏
光回路素子を提案せんとするもので、以下詳述す
る所より明らかとなるであろう。
Therefore, the present invention aims to propose a novel optical polarization circuit element free from the above-mentioned drawbacks, which will become clear from the detailed description below.

本発明者等は、誘電体層(誘電率を複素量で表
わすものとした場合実数部が正でありその実数部
に対して虚数部が無視し得るという誘電率を有す
る誘電体層)を以つてすれば、光をそれに含まれ
る如何なる偏光方向の偏光成分に関してもそれに
殆んど減衰を与えることなしに伝送せしめる導波
路構成を得ることが出来ること、然し乍ら複素誘
電体層(実数部とそれに対して無視し得ない量の
虚数部とよりなる複素量又は実数部が負である複
素量(虚数部が0である場合を含む)で表わされ
る、誘電率を有する誘電体層)を以つてすれば、
光をそれに含まれる全ての偏光方向の偏光成分に
関しそれに比較的大なる減衰を与えて伝送せしめ
得る導波路構成を得ることがで出来ることに鑑
み、誘電体層と複素誘電体層との組合せを以つて
すれば、光偏光回路素子としての機能が得られる
のではないかということで種々の考察・実験をな
した結果、第1図に示す如く、偏光せんとする光
の波長λに比し小なる厚さD1を有する誘電体層
1と、同様に偏光せんとする光の波長λに比し小
なる厚さD2を有し且誘電体層1の誘電率ε
比し十分大なる誘電率εを有する複素誘電体層
2とが交互順次に積層されてなる積層体3でな
り、その積層体3の互に平行に相対向する積層端
面4及び5(積層体3を構成せる誘電体層1及び
複素誘電体層2の面と垂直な面、すなわち積層体
3の上面と垂直な面)を偏光せんとする光の入出
射面P1及びP2としてなるという誘電体層と複
素誘電体層との組合せ構成による場合、今その積
層体3の積層端面4及び5即ち光入出射面P1及
びP2と平行な面内での積層体3を構成せる誘電
体層1及び複素誘電体層2の積層方向をy軸方
向、積層体3の積層端面4と平行な面内でのy軸
方向と直交する方向をx軸方向、y軸方向及びx
軸方向の双方向に直交する方向をz軸方向とし
て、その積層体3内にその例えば光入出射面P1
より偏光方向がy軸方向である偏光成分(所謂
TM波成分)と偏光方向がx軸方向である偏光成
分(所謂TE波成分)とを含む光を入射光として
入射せしめれば、一般に偏光方向がy軸方向であ
る偏光成分と偏光方向がx軸方向である偏光成分
とを含む光が積層体3の光入出射面P2より出射
光として得られるるものであるが、この場合積層
体3内に入射された光はその積層体3内で偏光方
向がx軸方向である偏光成分に関し偏光方向がy
軸方向である偏光成分に比しより大なる減衰定数
を以つて減衰を受けたこと、又斯る偏光方向が、
x軸方向である偏光成分に関し偏光方向がy軸方
向である偏光成分に比し大なる減衰定数を以つて
減衰を受けるとする、その偏光方向がx軸方向で
ある偏光成分及びy軸方向である偏光成分に関す
る減衰定数を夫々αx及びαyとするとき、それ等
減衰定数αx及びαyが誘電体層1及び複素誘電体
層2の誘電率ε及びεとの関係で、近似的に αy/αx=|ε/ε で与えられること、従つて複素誘電体層2の誘電
率εが誘電体層1のそれεに比し十分大であ
ることにより、光入出射面P2より得られる出射
光をその偏光方向がx軸方向である偏光成分をし
て偏光方向がy軸方向である偏光成分に対して無
視し得るものとして得ることが出来ること、依つ
て光偏光回路素子としての機能を得ることが出来
ることを確認するに到つた。
The present inventors have developed a dielectric layer (a dielectric layer having a dielectric constant such that when the dielectric constant is expressed as a complex quantity, the real part is positive and the imaginary part can be ignored with respect to the real part) as follows. By doing so, it is possible to obtain a waveguide configuration that allows light to be transmitted with almost no attenuation for any polarization component in any polarization direction contained therein. A dielectric layer having a dielectric constant expressed by a complex quantity with a non-negligible imaginary part, or a complex quantity whose real part is negative (including the case where the imaginary part is 0). Ba,
In view of the fact that it is possible to obtain a waveguide structure that can transmit light while imparting relatively large attenuation to polarization components in all polarization directions contained therein, a combination of a dielectric layer and a complex dielectric layer is proposed. As a result of various considerations and experiments, we found that the wavelength λ of the light to be polarized is as shown in Figure 1. A dielectric layer 1 having a small thickness D 1 and a thickness D 2 which is also small compared to the wavelength λ of the light to be polarized and sufficiently compared to the dielectric constant ε 1 of the dielectric layer 1. It consists of a laminate 3 in which complex dielectric layers 2 having a large dielectric constant ε 2 are laminated in alternating order. The dielectric layer is such that the plane perpendicular to the planes of the dielectric layer 1 and the complex dielectric layer 2, that is, the plane perpendicular to the top surface of the laminate 3, serves as the input/output planes P1 and P2 of light to be polarized. In the case of a combination configuration with a complex dielectric layer, the dielectric layer 1 and the complex dielectric layer constituting the laminate 3 in a plane parallel to the laminate end faces 4 and 5 of the laminate 3, that is, the light input/output surfaces P1 and P2. The stacking direction of the body layer 2 is the y-axis direction, and the direction orthogonal to the y-axis direction in a plane parallel to the stacked end surface 4 of the laminate 3 is the x-axis direction, and the y-axis direction and x
The direction perpendicular to both directions of the axis is defined as the z-axis direction.
A polarized light component whose polarization direction is in the y-axis direction (so-called
If light containing a polarization component (TM wave component) and a polarization component (so-called TE wave component) whose polarization direction is in the x-axis direction is incident as incident light, generally speaking, a polarization component whose polarization direction is in the y-axis direction and a polarization component whose polarization direction is in the x-axis direction are incident. Light containing a polarized component in the axial direction is obtained as emitted light from the light input/output surface P2 of the laminate 3, but in this case, the light incident into the laminate 3 is polarized within the laminate 3. Regarding the polarization component whose polarization direction is the x-axis direction, the polarization direction is the y-axis direction.
The polarization component is attenuated with a larger attenuation constant than the polarization component in the axial direction, and the polarization direction is
Assuming that a polarized light component whose polarization direction is in the x-axis direction is attenuated with a larger attenuation constant than a polarized light component whose polarization direction is in the y-axis direction, When the attenuation constants for a certain polarization component are α x and α y , respectively, the relationship between the attenuation constants α x and α y with the dielectric constants ε 1 and ε 2 of the dielectric layer 1 and the complex dielectric layer 2 is as follows. Approximately given by α yx = |ε 12 | 2 , therefore, the dielectric constant ε 2 of the complex dielectric layer 2 is sufficiently larger than that of the dielectric layer 1 ε 1 By doing this, it is possible to obtain a polarized light component whose polarization direction is in the x-axis direction from the output light obtained from the light input/output surface P2, which can be ignored with respect to a polarized light component whose polarization direction is in the y-axis direction. In fact, we have confirmed that it is possible to obtain a function as an optical polarization circuit element.

依つて此処に特許請求の範囲所載の本発明によ
る新規な光偏光回路素子を提案するに到つたもの
で、その1つの実施例は第1図にて上述せる構成
を有し、実際上その構成は例えば石英ガラスでな
る基板を用い、その上に例えばスパツタリングに
より誘電体層を附し、次でその誘電体層上に例え
ば蒸着により複素誘電体層を附すことを繰返すこ
とによつて基板上に誘電体層と複素誘電体層とが
順次交互に積層されてなる積層体を得、これを基
板より得ることによつて得ることが出来るもので
ある。
Therefore, we have here proposed a novel optical polarization circuit element according to the present invention as set forth in the claims, one embodiment of which has the configuration described above in FIG. The structure uses a substrate made of quartz glass, for example, and then attaches a dielectric layer thereon by, for example, sputtering, and then attaches a complex dielectric layer on top of the dielectric layer, for example, by vapor deposition. This can be obtained by obtaining a laminate on which dielectric layers and complex dielectric layers are sequentially and alternately stacked, and then obtaining this from a substrate.

以上にて本発明による光偏光回路素子の1つの
実施例の構成が明らかとなつたが、斯る構成によ
れば、それにて、前述せる所より明らかな如く、
光偏光回路素子としての機能を得ることが出来る
ものである。因みに積層体3を構成せる誘電体層
1が、波長λが1μmである光に対して誘電率ε
がε≒2を呈するシリカでなり、又複素誘電
体層2が、波長λが同じ1μmである光に対して
誘電率εが(ε≒−61.9−j23.2)を呈する
アルミニウムでなるものとした場合、前述せるα
y/αx=|ε/εの値が0.9×10-3で得
られるので、積層体3の光入出射面P2より得ら
れる出射光が殆んど偏光方向がx軸方向である偏
光成分を含まず殆んど偏光方向がy軸方向である
偏光成分よりなる光として得られる態様を以つて
光偏光回路素子としての機能が得られるものであ
る。
The structure of one embodiment of the optical polarization circuit element according to the present invention has been clarified above, and according to this structure, as is clear from the above,
It is possible to obtain a function as an optical polarization circuit element. Incidentally, the dielectric layer 1 constituting the laminate 3 has a dielectric constant ε for light with a wavelength λ of 1 μm.
1 is made of silica exhibiting ε 1 ≒2, and complex dielectric layer 2 is made of aluminum exhibiting a dielectric constant ε 2 of (ε 2 ≈−61.9−j23.2) for light having the same wavelength λ of 1 μm. If α is assumed to be
Since the value of yx = |ε 12 | 2 is obtained as 0.9×10 -3 , the polarization direction of most of the output light obtained from the light input/output surface P2 of the laminate 3 is in the x-axis direction. The function as an optical polarization circuit element can be obtained by obtaining light that does not contain any polarization component and is composed of a polarization component whose polarization direction is mostly in the y-axis direction.

斯く本発明による光偏光回路素子の実施例の構
成によれば、光偏光回路素子としての機能を得る
ことが出来るものであるが、その構成が誘電体層
と複素誘電体層とが順次交互に積層されてなると
いう丈けの積層体構成を有するので、その光偏光
回路素子自体を、上述せる如く例えばスパツタリ
ング、蒸着によつて、従来の光学結晶より製出さ
れたプリズム体でなる光偏光回路素子自体を得る
に比し容易に得ることが出来るものである。
According to the configuration of the embodiment of the optical polarization circuit element according to the present invention, it is possible to obtain the function as an optical polarization circuit element, but the configuration is such that dielectric layers and complex dielectric layers are sequentially and alternately arranged. Since it has a long laminate structure in which layers are stacked, the optical polarization circuit element itself can be used as an optical polarization circuit made of a prism body produced from a conventional optical crystal by, for example, sputtering or vapor deposition, as described above. This can be obtained more easily than obtaining the element itself.

又上述せる本発明の実施例の構成によれば、そ
れが誘電体層と複素誘電体層との順次交互に積層
されてなるという構成を有していることにより、
光集積回路装置を構成する他の光集積回路素子と
の親和性が、従来の光学結晶より製出されたプリ
ズム体でなる光偏光回路素子に比し良いと云える
構成を有し、この為上述せる本発明の実施例の構
成を含んで、従来の光学結晶より製出されたプリ
ズム体でなる光偏光回路素子を含んで構成される
場合に比しより小型、安定、低損失な種々の光集
積回路装置を容易に構成し得るものである。
Further, according to the structure of the embodiment of the present invention described above, since it has a structure in which dielectric layers and complex dielectric layers are sequentially and alternately laminated,
It has a structure that can be said to have better compatibility with other optical integrated circuit elements constituting an optical integrated circuit device than a conventional optical polarization circuit element made of a prism body made from an optical crystal. Including the configuration of the embodiment of the present invention described above, there are various types of devices that are smaller, more stable, and have lower loss than those that include an optical polarization circuit element made of a prism body made from a conventional optical crystal. An optical integrated circuit device can be easily constructed.

更に上述せる本発明による光偏光回路素子の実
施例の構成によれば、その光偏光回路素子(以下
これを光偏光回路素子Aと称す)を、第2図に示
す如く、その光入出射面P1及びP2を残してク
ラツド層B内に埋設せしめることにより、光偏光
回路素子Aに導波路としての機能を兼備せしめ
得、従つて斯くすることにより、前述せる光偏光
回路素子としての機能がより効果的に得られるこ
とになると共に、光偏光回路素子A内への光入出
射面P1よりの光の入射及び光偏光回路素子Aの
光入出射面P2よりの光の出射を、光入出射面P
1及びP2に夫々例えば光フアイバの如き光伝送
路を結合してなすものとする場合、その結合が容
易となり、依つて光偏光回路素子A内への光の入
射及びこれよりの光出射を損失少なくなし得るこ
とになるものである。
Further, according to the structure of the embodiment of the optical polarization circuit element according to the present invention described above, the optical polarization circuit element (hereinafter referred to as optical polarization circuit element A) has a light input/output surface as shown in FIG. By leaving P1 and P2 and embedding them in the cladding layer B, the optical polarization circuit element A can also have the function of a waveguide. In addition, the incidence of light into the light polarization circuit element A from the light input/output surface P1 and the exit of light from the light input/output surface P2 of the light polarization circuit element A are controlled by the light input/output ratio. Face P
When optical transmission lines such as optical fibers are coupled to 1 and P2, respectively, the coupling becomes easy, and the incidence of light into the optical polarization circuit element A and the light output therefrom are prevented from being lost. This is something that can be done less.

又第1図にて上述せる本発明による光偏光回路
素子Aの構成によれば、その2つをそのまま又は
第2図にて上述せる如くにクラツド層Bにて埋設
された態様を以つてA1及びA2として用い、而
してその一方の光偏光回路素子A1を、第3図に
示す如く磁石11より所要の磁界が与えられてい
る状態で入射される偏光に対して45゜回転せる偏
光を出射せしめる様に構成された磁気光学効果素
子(フアラデー効果素子)12の一方の光入出射
面13に、必要に応じてレンズ14を介して対向
して配し、又他方の光偏光回路素子A2を光偏光
回路素子A1に対して45゜回転せる関係を以つて
磁気光学効果素子12の他方の光入出射面15に
対向して配し、一方光偏光回路素子A1及びA2
に夫々磁気光学効果素子12側とは反対側に於て
光フアイバF1及びF2を結合せしめることによ
り、光フアイバF1に光偏光回路素子A1の光入
出射面上でみて偏光方向がy軸方向である偏光成
分を有する光を光偏光回路素子A1側に向つて伝
送せしめれば、その光の偏光方向がy軸方向であ
る偏光成分をして光偏光回路素子A1−レンズ1
4−磁気光学効果素子12−光偏光回路素子A2
を介して光フアイバF2に入射してこれに伝送せ
しめられる態様を以つて光フアイバF1よりの光
を光フアイバF2に伝送せしめるも、光フアイバ
F2に光偏光回路素子A2の光入出射面P上でみ
て偏光方向がy軸方向である偏光成分を有する光
を光偏光回路素子A2側に向つて伝送せしめて
も、その光の如何なる偏光方向の偏光成分をも光
フアイバF1に入射することにはならず従つて光
フアイバF2よりの光が光フアイバF1に伝送さ
れることにはならないという光アイソレータとし
ての機能の得られる構成が容易に得られることと
なり、且この場合光フアイバF1及びF2の光偏
光回路素子A1及びA2への夫々の結合を光フア
イバの端面を光偏光回路素子の光入出射面に密着
せしめることにより達成し得るので、この場合の
光アイソレータとしての機能がより効果的に得ら
れることになる等の大なる特徴を有するものであ
る。
Further, according to the structure of the optical polarization circuit element A according to the present invention as described above in FIG. and A2, and one of the optical polarization circuit elements A1 is rotated by 45 degrees with respect to the incident polarized light while the required magnetic field is applied from the magnet 11 as shown in FIG. A magneto-optical effect element (Faraday effect element) 12 configured to emit light is arranged to face one light input/output surface 13 with a lens 14 interposed therebetween, if necessary, and the other light polarization circuit element A2. is arranged facing the other light input/output surface 15 of the magneto-optic effect element 12 in a relationship rotated by 45 degrees with respect to the light polarization circuit element A1, while the light polarization circuit elements A1 and A2
By coupling the optical fibers F1 and F2 on the side opposite to the magneto-optic effect element 12, the polarization direction of the optical fiber F1 is in the y-axis direction when viewed on the light input/output surface of the optical polarization circuit element A1. When light having a certain polarization component is transmitted toward the light polarization circuit element A1 side, the polarization direction of the light is the y-axis direction and the polarization component is transmitted to the light polarization circuit element A1-lens 1.
4-Magneto-optic effect element 12-Optical polarization circuit element A2
Although the light from the optical fiber F1 is transmitted to the optical fiber F2 by entering the optical fiber F2 through the optical fiber F2, the light enters the optical fiber F2 and is transmitted to the optical fiber F2. Therefore, even if light having a polarization component whose polarization direction is in the y-axis direction is transmitted toward the optical polarization circuit element A2, it is impossible for any polarization component of that light to enter the optical fiber F1. Therefore, it is easy to obtain a configuration that can function as an optical isolator in which the light from the optical fiber F2 is not transmitted to the optical fiber F1, and in this case, the light from the optical fibers F1 and F2 is not transmitted to the optical fiber F1. Since the respective couplings to the polarization circuit elements A1 and A2 can be achieved by bringing the end faces of the optical fibers into close contact with the light input/output surfaces of the optical polarization circuit elements, the function as an optical isolator in this case can be achieved more effectively. It has great features such as:

尚本発明による光偏光回路素子の1つの実施例
を示している第1図に於ては、積層体3を、その
光入出射面P1及びP2となる相対向する積層端
面4及び5の形状が方形であるという構成を有し
ているものとして示しているが、第4図に示す如
く積層体3を、その光入出射面P1及びP2とな
る相対向する積層端面4及び5の形状が円形であ
るという構成とし、そして斯る構成を以つて本発
明による光偏光回路素子の他の1つの実施例とす
ることも出来るものである。尚斯る第4図に示す
本発明による光偏光回路素子の他の実施例の構成
によれば、その光入出射面P1及びP2の形状が
通常の光フアイバの端面の形状と同じ形状を有す
ることにより、第4図に示す本発明による光偏光
回路素子の他の実施例の構成への光の入射及びこ
れよりの光出射を第1図にて上述せる本発明によ
る光偏光回路素子の実施例の場合に比しより損失
なくより効果的になし得ることとなる特徴を有
し、このことは第5図に示す如く、第2図にて上
述せるに準じて第4図にて上述せる本発明による
光偏光回路素子の他の実施例の構成をクラツド層
B内に埋設せしめて用いれば尚更となるものであ
る。
In FIG. 1, which shows one embodiment of the optical polarization circuit element according to the present invention, the stacked body 3 is shown in the shape of the stacked end faces 4 and 5 facing each other, which are the light input/output surfaces P1 and P2. Although the laminate 3 is shown as having a rectangular configuration, as shown in FIG. It is also possible to use a circular configuration and use this configuration as another embodiment of the optical polarization circuit element according to the present invention. According to the structure of another embodiment of the optical polarization circuit element according to the present invention shown in FIG. Accordingly, the incidence of light into and the light output from the structure of another embodiment of the light polarization circuit element according to the present invention shown in FIG. As shown in FIG. 5, this is described above in FIG. 4 in the same way as described in FIG. 2 above. It will be even more advantageous if the structure of the other embodiment of the optical polarization circuit element according to the present invention is embedded in the cladding layer B.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光偏光回路素子の一例を
示す略線的斜視図、第2図はその使用態様の一例
を示す略線的斜視図、第3図は本発明による光偏
光回路素子の適用例を示す略線的側面図、第4図
は本発明による光偏光回路素子の他の例を示す略
線的斜視図、第5図はその使用態様の一例を示す
略線的斜視図である。 図中1は誘電体層、2は複素誘電体層、3は積
層体、4及び5は積層端面、P1及びP2は光入
出射面、A,A1及びA2は光偏光回路素子、B
はクラツド層、11は磁石、12は磁気光学効果
素子、13及び15は光入出射面、14はレン
ズ、F1及びF2は光フアイバを夫夫示す。
FIG. 1 is a schematic perspective view showing an example of the optical polarization circuit element according to the present invention, FIG. 2 is a schematic perspective view showing an example of its usage, and FIG. 3 is a schematic perspective view showing an example of the optical polarization circuit element according to the invention. FIG. 4 is a schematic side view showing an example of application, FIG. 4 is a schematic perspective view showing another example of the optical polarization circuit element according to the present invention, and FIG. 5 is a schematic perspective view showing an example of its usage. be. In the figure, 1 is a dielectric layer, 2 is a complex dielectric layer, 3 is a laminate, 4 and 5 are end faces of the laminate, P1 and P2 are light input/output surfaces, A, A1, and A2 are optical polarization circuit elements, and B
11 is a cladding layer, 11 is a magnet, 12 is a magneto-optic effect element, 13 and 15 are light incident/exit surfaces, 14 is a lens, and F1 and F2 are optical fibers.

Claims (1)

【特許請求の範囲】 1 偏光せんとする光の波長に比し小なる厚さを
有する誘電体層と、 上記偏光せんとする光の波長に比し小なる厚さ
を有し且つ上記誘電体層に比し十分大なる誘電率
を有する複素誘電体層とが交互順次に積層されて
なる積層体でなり、 上記積層体の上面と垂直な上記積層体の互に平
行に相対向する積層端面を上記偏光せんとする光
の入出射面とし、 上記入出射面と平行な面内での上記積層体の上
面と垂直な方向をy軸方向、上記入出射面と平行
な面内での上記y軸方向と直交する方向をx軸方
向として、偏光方向が上記y軸方向である偏波成
分と、偏波方向が上記x軸方向である偏光成分と
を含む偏光せんとする光を、上記積層体に、その
上記入出射面の一方側から入射させた場合、上記
入出射面の他方から得られる出射光が、偏光方向
が上記x軸方向である偏波成分をして、偏光方向
が上記y軸方向である偏波成分に対して無視し得
るものとして得られるように構成されていること
を特徴とする光偏光回路素子。
[Scope of Claims] 1. A dielectric layer having a thickness smaller than the wavelength of the light to be polarized; and the dielectric layer having a thickness smaller than the wavelength of the light to be polarized. complex dielectric layers having a dielectric constant sufficiently larger than that of the laminate, the end faces of the laminate facing each other parallel to each other and perpendicular to the upper surface of the laminate; is the input/output plane of the light to be polarized, the direction perpendicular to the top surface of the laminate in a plane parallel to the input/output plane is the y-axis direction, and the above in a plane parallel to the input/output plane is the y-axis direction. The direction perpendicular to the y-axis direction is the x-axis direction, and the polarized light includes a polarized component whose polarization direction is in the y-axis direction and a polarized component whose polarization direction is in the x-axis direction. When entering the laminate from one side of the input/output surface, the output light obtained from the other side of the input/output surface has a polarization component whose polarization direction is the x-axis direction, and the polarization direction is the x-axis direction. An optical polarization circuit element, characterized in that it is configured so that the polarization component in the y-axis direction can be ignored.
JP2419379A 1979-03-02 1979-03-02 Light polarizing circuit element Granted JPS55117108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419379A JPS55117108A (en) 1979-03-02 1979-03-02 Light polarizing circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419379A JPS55117108A (en) 1979-03-02 1979-03-02 Light polarizing circuit element

Publications (2)

Publication Number Publication Date
JPS55117108A JPS55117108A (en) 1980-09-09
JPS6116961B2 true JPS6116961B2 (en) 1986-05-02

Family

ID=12131481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419379A Granted JPS55117108A (en) 1979-03-02 1979-03-02 Light polarizing circuit element

Country Status (1)

Country Link
JP (1) JPS55117108A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3047290A1 (en) * 1980-12-16 1982-07-29 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt "WAVE GUIDE AND A METHOD FOR THE PRODUCTION THEREOF"
JPS6097304A (en) * 1983-11-01 1985-05-31 Shojiro Kawakami Polarizer
JPH02123321A (en) * 1988-11-02 1990-05-10 Shojiro Kawakami Manufacture of optical isolator and polarizing element array used for said manufacture and optical module obtained by forming as one body optical isolator obtained by said manufacture
JP2532650B2 (en) * 1989-03-27 1996-09-11 松下電器産業株式会社 Method for manufacturing laminated polarizer
JPH0980364A (en) * 1995-09-13 1997-03-28 Nec Corp Waveguide type optical device
CN1922670A (en) 2004-05-14 2007-02-28 富士通株式会社 Light struck head, information-storing device, light struck head design device and light struck head design procedure

Also Published As

Publication number Publication date
JPS55117108A (en) 1980-09-09

Similar Documents

Publication Publication Date Title
US4272159A (en) Optical circulator
US5204771A (en) Optical circulator
US4795233A (en) Fiber optic polarizer
JP2710451B2 (en) Polarization independent optical isolator
EP0383923B1 (en) Polarizing isolation apparatus and optical isolator using the same
Fujii High-isolation polarization-independent optical circulator coupled with single-mode fibers
US5377040A (en) Polarization independent optical device
JPS6116961B2 (en)
JPH03288104A (en) Unidirectional mode converter and optical isolator using the same
JP2572627B2 (en) Optical isolator and optical circulator
JPS63147114A (en) Waveguide type optical phase plate
JP2758457B2 (en) Waveguide type optical circulator
JP2721879B2 (en) Self-temperature compensated optical isolator
JP2000180789A (en) Optical isolator
US6549686B2 (en) Reflective optical circulator
JPS61279806A (en) Thin film type optical isolator
JP2846382B2 (en) Optical isolator
JP3166583B2 (en) Optical isolator and semiconductor laser module
JP2003172901A (en) Optical nonreciprocity device
JPH04125602A (en) Optical waveguide type polarizer
JP2775499B2 (en) Optical isolator
JPS6111683Y2 (en)
JPH02199406A (en) Waveguide type optical isolator
JPH09292528A (en) Nonreciprocal optical device and its production
JPH04140709A (en) Optical isolator