JPS63147114A - Waveguide type optical phase plate - Google Patents
Waveguide type optical phase plateInfo
- Publication number
- JPS63147114A JPS63147114A JP29522786A JP29522786A JPS63147114A JP S63147114 A JPS63147114 A JP S63147114A JP 29522786 A JP29522786 A JP 29522786A JP 29522786 A JP29522786 A JP 29522786A JP S63147114 A JPS63147114 A JP S63147114A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- optical
- core part
- waveguide
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 66
- 239000000758 substrate Substances 0.000 claims abstract description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 239000010703 silicon Substances 0.000 claims abstract description 13
- 238000005253 cladding Methods 0.000 claims description 12
- 239000013078 crystal Substances 0.000 abstract description 8
- 239000011521 glass Substances 0.000 abstract description 7
- 239000010453 quartz Substances 0.000 abstract description 2
- 230000010287 polarization Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 210000003323 beak Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 210000000538 tail Anatomy 0.000 description 1
Landscapes
- Light Guides In General And Applications Therefor (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光通信や光センザ分野で光信号の偏波面制御
用に用いる導波形光位相板に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a waveguide optical phase plate used for controlling the polarization plane of an optical signal in the fields of optical communications and optical sensors.
光通信や光センサ等の技術分野では、信号光の偏波面を
制郊するための位相板と呼ばれる光素子がしばしば用い
られている。従来、位相板としては、複屈折性結晶板が
用いられている。In technical fields such as optical communications and optical sensors, optical elements called phase plates are often used to control the polarization plane of signal light. Conventionally, a birefringent crystal plate has been used as a phase plate.
第7図は172波長板と呼ばれる従来の位相板の構成原
理図である。複屈折性結晶板1の複屈折主軸方向2に角
度θだけ傾けて直線偏光3を入射させて透過させると、
前記主1袖方向2とぞれに垂直な方向との2つの偏波成
分に分れて、一方の光波の位相が他方に比べて遅れて進
行し、出射する際にはその両者が合成した偏光状態の光
どなる。その位相の遅れをリターデーションと言い、R
で表わす。複屈折値を81板の厚みをjとすると、Rは
B−Jで与えられ、通常波長の単位で表わ1”。FIG. 7 is a diagram showing the principle of construction of a conventional phase plate called a 172-wave plate. When linearly polarized light 3 is incident and transmitted by tilting the birefringent crystal plate 1 by an angle θ in the birefringent principal axis direction 2,
The light wave is divided into two polarized components, one in the main direction, the other in the direction perpendicular to each other, and the phase of one light wave advances later than the other, and the two are combined when emitted. Polarized light roars. This phase delay is called retardation, and R
It is expressed as If the birefringence value is 81 and the thickness of the plate is j, then R is given by B-J and is usually expressed in units of wavelength 1".
リターデーションが入射光の波長λの172の場合を1
72波長板と言い、172波長板に入用した直線偏光は
、2θ傾いた直線偏光4として出射することが良く知ら
れている。1 when the retardation is 172 of the wavelength λ of the incident light
It is well known that linearly polarized light used in a 172-wave plate, called a 72-wave plate, is emitted as linearly polarized light 4 tilted by 2θ.
しかし、第7図の構成では、入用光3を結晶板1に対し
て垂直に入射させるためのレンズ系が必要であり、位相
板を組み込んで目的とする光学装置を構成するに際して
、小形化が弁しい、光波が空間を伝播するための安定性
に欠ける、等の問題点があった。However, the configuration shown in FIG. 7 requires a lens system to make the input light 3 incident perpendicularly to the crystal plate 1, and when constructing the intended optical device by incorporating a phase plate, it is difficult to miniaturize the optical device. There were problems such as the lack of stability for light waves to propagate through space.
一方、最近の光通信用や光センサ用の光学装置の技術開
発動向は、小形化、安定化、経済化を追求して、レンズ
系やプリズムを組み合わせた、いわゆるバルク形光部品
から、平面基板上に形成した先導波路を基本とする導波
形光部品や光集積回路へと移行する傾向にある。特に、
光ファイバとの整合性を考慮すると、光導波路どして、
光ファイバと同質の材料により形成される石英系光導波
路を用いることが実用上の利点が多い。On the other hand, recent trends in the technological development of optical devices for optical communications and optical sensors have shifted from so-called bulk optical components that combine lens systems and prisms to planar substrates in pursuit of miniaturization, stability, and economy. There is a trend toward waveguide-type optical components and optical integrated circuits that are based on guiding waveguides formed above. especially,
Considering the compatibility with optical fiber, optical waveguide etc.
There are many practical advantages to using a silica-based optical waveguide made of the same material as the optical fiber.
第8図には、シリコン基板21上に形成された石英系ガ
ラス単一モード先導波路の断面構造説明図を示す。この
光導波路は、シリコン基板21上に内層にコア部22を
埋設したクラッド層23が形成されることにより構成さ
れたものである。前記クラッド層23の厚さは50μ辺
程度であり、コア部22の断面寸法は単一モード光ファ
イバのコア径に合わせて6〜12μm程度に選定されて
いる。この光導波路においては、信号光はコア部22に
閉じ込められて、シリコン基板21上を伝播するため、
光導波路構造を適切に選ぶことにより、光分岐、結合等
の光回路機能を得ることができる。FIG. 8 shows an explanatory diagram of a cross-sectional structure of a silica-based glass single mode guiding waveguide formed on a silicon substrate 21. This optical waveguide is constructed by forming on a silicon substrate 21 a cladding layer 23 in which a core portion 22 is embedded in the inner layer. The thickness of the cladding layer 23 is approximately 50 μm, and the cross-sectional dimension of the core portion 22 is selected to be approximately 6 to 12 μm in accordance with the core diameter of the single mode optical fiber. In this optical waveguide, the signal light is confined in the core part 22 and propagates on the silicon substrate 21.
By appropriately selecting the optical waveguide structure, optical circuit functions such as optical branching and coupling can be obtained.
第8図においては、石英系ガラス光導波路とシリコン基
板21との熱膨張計数差により、コア部22にはIj板
面に平行な方向に圧縮応力が発生しており、光弾性効果
により、先導波路は複屈折性を呈している。なお、かか
る光導波路において、複屈折主軸方向は基板面に垂直な
方向24aと平行な方向24bとの2方向に存在すると
いうことは、周知の通りである。複屈折主軸24aある
いは24bに平行な入射直線偏光は、偏波方向が保存さ
れたまま光導波路のコア部22に沿って伝播するが、第
8図に例示した従来の光導波路m造では、偏波方向を光
導波路の途中で回転させる172波長板等の機能を付与
することが困難であった。In FIG. 8, compressive stress is generated in the core portion 22 in a direction parallel to the Ij plate surface due to the difference in thermal expansion coefficient between the silica-based glass optical waveguide and the silicon substrate 21, and due to the photoelastic effect, the leading The wave path exhibits birefringence. It is well known that in such an optical waveguide, the principal axis directions of birefringence exist in two directions: a direction 24a perpendicular to the substrate surface and a direction 24b parallel to the substrate surface. Incident linearly polarized light parallel to the principal axis of birefringence 24a or 24b propagates along the core portion 22 of the optical waveguide with its polarization direction preserved, but in the conventional optical waveguide structure illustrated in FIG. It was difficult to provide a function such as a 172-wave plate that rotates the wave direction midway along the optical waveguide.
その理由は、従来の光導波路構造では、複屈折主軸方向
が基板面に垂直、平行の2方向に限定されていたことに
起因している。The reason for this is that in conventional optical waveguide structures, the principal axis directions of birefringence are limited to two directions, perpendicular and parallel to the substrate surface.
本発明の目的は、上記の問題点を解決した尋波形の光位
相板を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a wide-wave optical phase plate that solves the above-mentioned problems.
〔問題点を解決するための手段]
本発明は、先導波路コア部近傍のクラッド層の一部に応
力解放溝を設け、これによって光導波路の複屈折主軸方
向を基板面に垂直あるいは平行な方向から傾け、実効的
に複屈折性結晶板の機能を与えることを最も主要な特徴
とする。本発明の光位相板は、バルク形でなりト)波形
として位相板を構成し、光導波路の一部に連続的に組み
込める点で、従来技術と全く責なっている。[Means for Solving the Problems] The present invention provides a stress relief groove in a part of the cladding layer near the guiding waveguide core, thereby changing the principal axis of birefringence of the optical waveguide in a direction perpendicular or parallel to the substrate surface. Its most important feature is that it effectively functions as a birefringent crystal plate. The optical phase plate of the present invention is completely different from the prior art in that it is a bulk type phase plate, and can be constructed as a waveform and continuously incorporated into a part of an optical waveguide.
以下、本発明を実施例によりさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.
第1図は、本発明の原理説明図であって、21はシリコ
ン3.(板、22は石英系ガラスtg−モード光導波路
コア部、23はクラッド層、31はコア部22の片側の
クラッド層にコア部に沿って設けられた溝、である。本
発明者らはシリコン基板2゛1から光導波路に作用して
いた応力の一部が溝31によって解放されるので、コア
部22を中心とする左右対称性がくずれ、複屈折主軸3
4a、34bは応力解放溝31がない場合に比べて角度
θだけ傾くことを見出したものである。したがって、片
側に応力解放溝31を設けた光導波路は、第7図に示し
た複屈折結晶板と同等の役割を果たすことができるので
ある。FIG. 1 is a diagram illustrating the principle of the present invention, in which reference numeral 21 denotes silicon 3. (The plate, 22 is a silica-based glass TG-mode optical waveguide core part, 23 is a cladding layer, and 31 is a groove provided in the cladding layer on one side of the core part 22 along the core part. Part of the stress that was acting on the optical waveguide from the silicon substrate 2'1 is released by the groove 31, so the left-right symmetry about the core part 22 is broken, and the birefringent principal axis 3
4a and 34b were found to be tilted by an angle θ compared to the case without the stress release groove 31. Therefore, the optical waveguide provided with the stress release groove 31 on one side can play the same role as the birefringent crystal plate shown in FIG. 7.
前記角度θは、クラッド層23の厚さ、コア部22の高
さ、応力解放溝31までの距九lSによって主に規定さ
れる。The angle θ is mainly defined by the thickness of the cladding layer 23, the height of the core portion 22, and the distance 9lS to the stress release groove 31.
第2図は、主軸角θと溝路1111sとの関係曲線の一
例を示すものである。第2図の結果は、有限要素法の手
法で計締したものであり、クラッド層23の厚さ50μ
m、コア部22中心の基板面からの高さ25μmを仮定
したものである。嵩距離Sが小さくなるにつれて、主軸
角θが増大することがわかる。また、第2図には、主軸
方向34a。FIG. 2 shows an example of a relationship curve between the main shaft angle θ and the groove path 1111s. The results shown in Figure 2 were measured using the finite element method, and the thickness of the cladding layer 23 was 50 μm.
m, and the height of the center of the core portion 22 from the substrate surface is assumed to be 25 μm. It can be seen that as the bulk distance S becomes smaller, the principal axis angle θ increases. Further, in FIG. 2, the main axis direction 34a is shown.
34b間の屈折率差すなわち複屈折値Bを、応力解放溝
31を設けない場合、あるいは3 ==oの場合の複屈
折値Soで規格化した形で示した。S。The refractive index difference between 34b, that is, the birefringence value B, is shown in a form normalized by the birefringence value So when the stress release groove 31 is not provided or when 3==o. S.
の値は、光導波路を構成する石英系ガラスの組成によっ
ても多少変化するが、通常B。#4X10−程度である
。The value of B varies somewhat depending on the composition of the silica glass that constitutes the optical waveguide, but is usually B. It is about #4×10-.
次に、具体的な例を示す。Next, a specific example will be shown.
(実施例1)
第3図は、本発明の一実施例を示す説明図であり、1ノ
2波長板の平面図である。厚さ0.7Mのシリコン基板
21上に形成された厚さ50μ肌の石英系ガラスクラッ
ド層23に埋設されたコア部22に近接して応力解放溝
31が設けられている。(Example 1) FIG. 3 is an explanatory diagram showing an example of the present invention, and is a plan view of a 1/2 wavelength plate. A stress release groove 31 is provided in the vicinity of a core portion 22 embedded in a silica-based glass cladding layer 23 with a thickness of 50 μm formed on a silicon substrate 21 with a thickness of 0.7M.
コア部22の寸法は8μm角、クラッド層との比屈折率
差は0.25%とした。第3図おいては、第1図で説明
した溝路l11tSは、主軸角0が22.5°になるよ
うに、第2図の関係を利用してS”;35μmに設定し
た。応力解放溝31の幅は200μm程度とした。この
時、8/EL = 0.63であり、BO#4X10’
を考慮して3# 2.5X 10″4の傾いた主軸角θ
−225°の複屈折を得ることができる。応力解放溝3
1の長さ1はBi=1/2λとなるように、すなわち、
使用波長λ=1.3μmで、J=2.6mとなるように
設定した。この様な光導波路と応力解放溝の構造は、S
i C14,Tice<等のガラス形成原料ガスの火炎
加水分解反応によるガラス膜の堆積技術と、反応性イオ
ンエツチング法を代表例とするドライエツチングプロセ
スとの組み合わしによる周知の加工方法で形成すること
ができる。The dimensions of the core portion 22 were 8 μm square, and the relative refractive index difference with the cladding layer was 0.25%. In Fig. 3, the groove path l11tS explained in Fig. 1 is set to S''; 35 μm using the relationship in Fig. 2 so that the main axis angle 0 is 22.5°. Stress release The width of the groove 31 was approximately 200 μm. At this time, 8/EL = 0.63, and BO#4X10'
Taking into consideration the tilted main axis angle θ of 3# 2.5X 10″4
A birefringence of −225° can be obtained. Stress release groove 3
The length 1 of 1 is Bi = 1/2λ, that is,
The wavelength used was λ=1.3 μm, and J=2.6 m. The structure of such an optical waveguide and stress release groove is S
Formed by a well-known processing method that combines a glass film deposition technique using a flame hydrolysis reaction of a glass-forming raw material gas such as iC14, Tice<, etc., and a dry etching process of which reactive ion etching is a typical example. I can do it.
第3図において、基板面に垂直な直線偏光(TM波)を
左方からコア部22に入射した所、応力解放溝31形成
部、すなわら導波形172波長板部を通過することによ
り、偏波面が20=45°回転することが確認された。In FIG. 3, when linearly polarized light (TM wave) perpendicular to the substrate surface is incident on the core part 22 from the left, it passes through the stress release groove 31 forming part, that is, the waveguide 172 wavelength plate part, It was confirmed that the plane of polarization was rotated by 20=45 degrees.
実際には、第3図において、偏光は、172波長板部通
過後引き続いて応力解放fRs3iのない通常の光導波
路領域に入るので、複屈折率値Boで決まるビート長を
周期どして直線偏光状態と円偏光状態を繰り返しつつ、
コア部22を伝播する現象が観察され、応力解放溝31
が形成部の172波長板作用がmgされた。Actually, in FIG. 3, after passing through the 172-wavelength plate, the polarized light enters the normal optical waveguide region without stress release fRs3i, so the linearly polarized light is While repeating the state and circularly polarized state,
A phenomenon propagating through the core portion 22 was observed, and the stress release groove 31
However, the 172 wavelength plate action of the forming part was mg.
(実施例2)
第4図は、本発明の第2の実施例を示す光導波路平面図
である。第3図に示した実施例1の場合と異なり、2つ
の応力解放溝41.42がコア部22の両側に連続して
形成されている。それぞれの応力解放溝41.42は実
施例1と同一の満距離Sおよび長さノを持っている。(Example 2) FIG. 4 is a plan view of an optical waveguide showing a second example of the present invention. Unlike the case of the first embodiment shown in FIG. 3, two stress release grooves 41 and 42 are continuously formed on both sides of the core portion 22. Each stress relief groove 41, 42 has the same full distance S and length as in the first embodiment.
先導波路コア部22に入射D’522 aから入射した
り板面に垂直な直線偏光(TM波)は、応力解放溝41
を設けた領域を通過することにより偏波面が45°傾い
た直線偏光となり、さらに応力解放溝42を設けた領域
を通過すると、さらに450偏波面が傾き、基板21に
平行な直線偏光(TE波)となって出射端22bから出
射することが確認された。逆に入射@22aにTE波を
入射すると、出射端22bにはTM波が得られ、第4図
の構成はTE/TMモード交換器として機能することが
確認された。The linearly polarized light (TM wave) that enters the leading waveguide core part 22 from the input D'522a or is perpendicular to the plate surface is transmitted through the stress release groove 41.
When passing through the area provided with the stress release groove 42, the plane of polarization becomes linearly polarized light with a tilt of 45°.When passing through the area provided with the stress release groove 42, the plane of polarization is further inclined by 450 degrees, and the plane of polarization becomes linearly polarized light (TE wave) parallel to the substrate 21. ) and was confirmed to be emitted from the emission end 22b. Conversely, when a TE wave is input to the input terminal 22a, a TM wave is obtained at the output end 22b, confirming that the configuration shown in FIG. 4 functions as a TE/TM mode exchanger.
以上の実施例では、172波長板とその組み合わせにつ
いて説明したが、本発明はこれらに限定されず、応力解
放)j4の距PaS、艮ざノ、形状等を制゛御すること
により、174波長板をはじめとする多様な光位相板偏
波面制@素子を構成できることはもちろんである。In the above embodiments, a 172-wavelength plate and its combination have been described, but the present invention is not limited thereto. Of course, it is possible to construct various optical phase plate polarization control elements including plates.
(実施例3)
第5図は、本発明の第3の実施例を示す説明図であり、
応力解放1f451を設けた単一モード光導波路の平面
図である。本実施例の応力解放溝51では、溝路msは
光導波路コア部22の長手方向にそってゆるやかに変化
している点に特徴がある。(Example 3) FIG. 5 is an explanatory diagram showing a third example of the present invention,
FIG. 4 is a plan view of a single mode optical waveguide provided with stress relief 1f451. The stress release groove 51 of this embodiment is characterized in that the groove path ms gradually changes along the longitudinal direction of the optical waveguide core portion 22.
すなわち、満距離Sが大きい領域51aでは、コア部2
2の複屈折主軸方向は、基板面に垂直(平行)であるが
、溝路離Sが小さくなる領域51bに向かうにつれて、
複屈折主軸方向は徐々に傾いてくる。このような構造に
おいて、例えばTM波が左方から通過すると、直線偏波
状態を保ちながら偏波方向を徐々に回転させることがで
き、偏波面の−1,I+ 1211手段として有用であ
る。That is, in the region 51a where the full distance S is large, the core portion 2
The principal axis direction of birefringence in No. 2 is perpendicular (parallel) to the substrate surface, but as the groove distance S decreases toward the region 51b,
The direction of the principal axis of birefringence gradually tilts. In such a structure, for example, when a TM wave passes from the left, the polarization direction can be gradually rotated while maintaining a linearly polarized state, and is useful as a means for -1, I+ 1211 polarization planes.
この場合、急檄な主軸角θの変化には、偏波面が追随で
きないので、領l[151aから領域51bまでには、
比較的長い距離、たとえば5M長程度以上に設定するこ
とが17策である。In this case, since the polarization plane cannot follow the sudden change in the principal axis angle θ, from region l[151a to region 51b,
The 17th measure is to set the distance to be relatively long, for example, about 5M or more.
(実施例4)
以上の各実施例では、応力解放溝はいずれも基板面にま
で達していたが、場合によっては、第6図に例示したよ
うに、応力解放溝61の底部をクラッド層23の深さ方
向中間に設定し、コーナー。(Example 4) In each of the above examples, the stress relief grooves all reached the substrate surface, but in some cases, as illustrated in FIG. Set the depth in the middle and corner.
部61aを起点として発生する強力な応力複屈折を利用
しで、コア部22の複屈折主軸を傾ける手法を採用する
こともできる。It is also possible to adopt a method of tilting the principal axis of birefringence of the core portion 22 by utilizing the strong stress birefringence generated starting from the portion 61a.
以上、シリコン基板上の石英系ス光導波路を例に、本発
明の詳細な説明したが、本発明は前記した基板と光導波
路の組み合わせに限定されず、基板からの応力複屈折を
受けている先導波路であれば、他種基板や仲種材料の光
導波路系にも適用できる。The present invention has been described in detail using a quartz-based optical waveguide on a silicon substrate as an example, but the present invention is not limited to the above-described combination of a substrate and an optical waveguide, and is capable of receiving stress birefringence from the substrate. As long as it is a guiding waveguide, it can also be applied to optical waveguide systems made of other types of substrates or intermediate materials.
以上説明したように、本発明によれば、光導波路に沿っ
て応力解放溝を設けることにより平面基板面に垂直ある
いは平行な方向に固定されていた先導波路の複屈折主軸
方向を変化させることができ、導波形光部品や光集積回
路との整合性に優れた導波形光位相板や偏波面制御素子
を提供できる。As explained above, according to the present invention, by providing stress release grooves along the optical waveguide, it is possible to change the principal axis of birefringence of the leading waveguide, which was fixed in a direction perpendicular or parallel to the plane substrate surface. Therefore, it is possible to provide a waveguide optical phase plate and a polarization plane control element that have excellent compatibility with waveguide optical components and optical integrated circuits.
さらに、本発明の光位相板を、偏波制御が重大な関心事
である単一モード光通信や光センサ、光情報処理分野に
応用すれば、光学装置の小形化、安定化、経済化等の利
点を得ることができる。Furthermore, if the optical phase plate of the present invention is applied to fields such as single-mode optical communication, optical sensors, and optical information processing where polarization control is a serious concern, optical devices can be made smaller, more stable, and more economical. You can get the benefits of
第1図は本発明の原理説明図、第2図は本発明における
応力解放溝の作用を示す説明図、第3図は本発明の第1
実施例、第4図はM2の実施例、第5図は第3の実施例
、第6図は第4の実施例をそれぞれ示す説明図、第7図
は従来のバルク形光位相板(172波長板)の作用を示
す説明図、第8図はシリコン基板上の従来の石英系ガラ
ス単一モード光導波路構造の説明図である。
1・・・・・・複屈折性結晶板、2・・・・・・複屈折
主軸方向、3.4・・・・・・直線偏光、21・・・・
・・シリコン基板、22・・・・・・コア部、23・・
・・・・クラッド層、24a、24b・・・・・・複屈
折主軸、31・・・・・・応力解放溝、
34a、34b・・・・・・複屈折主軸、41.42・
・・・・・応力解放溝、
51.61・・・・・・応力解放溝。
出願人 日本電信電話株式会社
21−−−シ)コ〉11反
22−一一フ7刊
23−一−クラ・・)層
3+−−−5嘴 (成・ガ島そ寛ジ嘴)31−−− U
s切叶゛喫濱
主寧由角e (度)
す児ネ謬イll−イシ石Eよη−B/B。
第6図
22−171−9 6i−−−e?1st
;*第8図
2スFig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is an explanatory diagram showing the action of the stress release groove in the present invention, and Fig. 3 is an explanatory diagram of the principle of the present invention.
Example, FIG. 4 is an explanatory diagram showing an example of M2, FIG. 5 is a third example, and FIG. 6 is an explanatory diagram showing a fourth example. FIG. FIG. 8 is an explanatory diagram showing the effect of a conventional silica-based glass single-mode optical waveguide structure on a silicon substrate. 1... Birefringent crystal plate, 2... Birefringence principal axis direction, 3.4... Linearly polarized light, 21...
...Silicon substrate, 22...Core part, 23...
... Cladding layer, 24a, 24b ... Birefringence main axis, 31 ... Stress release groove, 34a, 34b ... Birefringence main axis, 41.42.
...Stress release groove, 51.61...Stress release groove. Applicant: Nippon Telegraph and Telephone Corporation 21--C) 11 anti-22-11f 7th edition 23-1-kura...) layer 3+----5 beak (Nari Gashima Sohiroji beak) 31 ---U
scut leaf゛cutting beach main angle e (degrees)゛ - B/B. Fig. 6 22-171-9 6i---e? 1st
;*Figure 8 2s
Claims (2)
れてなる単一モード光導波路の前記クラッド層の一部に
前記光導波路の複屈折主軸方向が基板面に垂直あるいは
平行な方向から傾くように前記コア部に沿って所定長さ
の応力解放溝が形成されてなることを特徴とする導波形
光位相板。(1) A part of the cladding layer of a single mode optical waveguide in which a core portion is embedded in a cladding layer formed on a substrate is arranged so that the birefringent principal axis direction of the optical waveguide is perpendicular or parallel to the substrate surface. A waveguide optical phase plate characterized in that a stress release groove of a predetermined length is formed along the core portion so as to be inclined.
が石英系ガラス単一モード光導波路であることを特徴と
する特許請求の範囲第1項記載の導波形光位相板。(2) The waveguide optical phase plate according to claim 1, wherein the substrate is a silicon substrate and the single mode optical waveguide is a silica glass single mode optical waveguide.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29522786A JPH0677087B2 (en) | 1986-12-11 | 1986-12-11 | Waveguide type optical phase plate |
US07/049,387 US4781424A (en) | 1986-07-28 | 1987-05-13 | Single mode channel optical waveguide with a stress-induced birefringence control region |
CA000537436A CA1294161C (en) | 1986-07-28 | 1987-05-19 | Single mode optical waveguide |
EP87306341A EP0255270B1 (en) | 1986-07-28 | 1987-07-17 | Single mode optical waveguide |
DE87306341T DE3785105T2 (en) | 1986-07-28 | 1987-07-17 | Optical single-mode waveguide. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29522786A JPH0677087B2 (en) | 1986-12-11 | 1986-12-11 | Waveguide type optical phase plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63147114A true JPS63147114A (en) | 1988-06-20 |
JPH0677087B2 JPH0677087B2 (en) | 1994-09-28 |
Family
ID=17817858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29522786A Expired - Lifetime JPH0677087B2 (en) | 1986-07-28 | 1986-12-11 | Waveguide type optical phase plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0677087B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0375605A (en) * | 1989-08-17 | 1991-03-29 | Nippon Telegr & Teleph Corp <Ntt> | Waveguide type optical isolator |
JPH04241304A (en) * | 1991-01-14 | 1992-08-28 | Nippon Telegr & Teleph Corp <Ntt> | Polarization independent waveguide type optical device |
US6847772B2 (en) | 2002-02-14 | 2005-01-25 | Fujitsu Limited | Planar optical waveguide device |
JP2007036080A (en) * | 2005-07-29 | 2007-02-08 | Mitsubishi Electric Corp | Laser annealing device |
WO2009088089A1 (en) * | 2008-01-10 | 2009-07-16 | Nippon Telegraph And Telephone Corporation | Optical delay interference circuit |
JP2017146543A (en) * | 2016-02-19 | 2017-08-24 | Nttエレクトロニクス株式会社 | Optical waveguide device |
WO2024038494A1 (en) * | 2022-08-15 | 2024-02-22 | 日本電信電話株式会社 | Gain equalizer |
WO2024042588A1 (en) * | 2022-08-22 | 2024-02-29 | 日本電信電話株式会社 | Optical waveguide |
-
1986
- 1986-12-11 JP JP29522786A patent/JPH0677087B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0375605A (en) * | 1989-08-17 | 1991-03-29 | Nippon Telegr & Teleph Corp <Ntt> | Waveguide type optical isolator |
JPH04241304A (en) * | 1991-01-14 | 1992-08-28 | Nippon Telegr & Teleph Corp <Ntt> | Polarization independent waveguide type optical device |
US6847772B2 (en) | 2002-02-14 | 2005-01-25 | Fujitsu Limited | Planar optical waveguide device |
JP2007036080A (en) * | 2005-07-29 | 2007-02-08 | Mitsubishi Electric Corp | Laser annealing device |
WO2009088089A1 (en) * | 2008-01-10 | 2009-07-16 | Nippon Telegraph And Telephone Corporation | Optical delay interference circuit |
US7899279B2 (en) | 2008-01-10 | 2011-03-01 | Nippon Telegraph And Telephone Corporation | Optical delay line interferometer |
JP2017146543A (en) * | 2016-02-19 | 2017-08-24 | Nttエレクトロニクス株式会社 | Optical waveguide device |
WO2024038494A1 (en) * | 2022-08-15 | 2024-02-22 | 日本電信電話株式会社 | Gain equalizer |
WO2024042588A1 (en) * | 2022-08-22 | 2024-02-29 | 日本電信電話株式会社 | Optical waveguide |
Also Published As
Publication number | Publication date |
---|---|
JPH0677087B2 (en) | 1994-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0387704A (en) | Optical circuit | |
US5838842A (en) | Self-imaging waveguide optical polarization or wavelength splitters | |
US5852691A (en) | Self-imaging waveguide optical polarization or wavelength splitters | |
JPH0749427A (en) | Optical nonreciprocal circuit | |
JPS63147114A (en) | Waveguide type optical phase plate | |
US5999313A (en) | Optical device having function of optical circulator | |
JP2758457B2 (en) | Waveguide type optical circulator | |
JPH07281041A (en) | Waveguide and mach-zehnder type optical circuit using it | |
US12019274B2 (en) | Polarization rotator | |
JP5302260B2 (en) | Planar lightwave circuit | |
JP2728421B2 (en) | Optical waveguide | |
JP2856525B2 (en) | Optical waveguide polarizer | |
JPS6116961B2 (en) | ||
WO2024042588A1 (en) | Optical waveguide | |
JPS63182608A (en) | Waveguide type polarized light separating element | |
JP3540826B2 (en) | Fiber type optical isolator | |
JP2862630B2 (en) | Waveguide type optical isolator | |
JPS6236608A (en) | Waveguide typemode splitter | |
JP2641238B2 (en) | Polarizer | |
JP2004226599A (en) | Polarized light separating and composing device | |
JP2784496B2 (en) | Waveguide type optical isolator | |
JPH0868965A (en) | Optical non-reciprocal circuit | |
WO1999012061A1 (en) | Multiport non-reciprocal optical device | |
JPS6283731A (en) | Optical switch | |
JP2004145246A (en) | Plane type two-dimensional waveguide and two-dimensional waveguide type optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |