JPS61169049A - Digital communication system - Google Patents

Digital communication system

Info

Publication number
JPS61169049A
JPS61169049A JP1055585A JP1055585A JPS61169049A JP S61169049 A JPS61169049 A JP S61169049A JP 1055585 A JP1055585 A JP 1055585A JP 1055585 A JP1055585 A JP 1055585A JP S61169049 A JPS61169049 A JP S61169049A
Authority
JP
Japan
Prior art keywords
signal
time slot
binary information
symbol
dsk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1055585A
Other languages
Japanese (ja)
Other versions
JPH0225306B2 (en
Inventor
Fumio Ikegami
池上 文夫
Susumu Yoshida
進 吉田
Tsutomu Takeuchi
勉 竹内
Ariyauishitakun Shirikiyatsuto
シリキヤツト・アリヤウイシタクン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1055585A priority Critical patent/JPS61169049A/en
Priority to US06/768,551 priority patent/US4726038A/en
Priority to CA000489287A priority patent/CA1254622A/en
Publication of JPS61169049A publication Critical patent/JPS61169049A/en
Publication of JPH0225306B2 publication Critical patent/JPH0225306B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2331Demodulator circuits; Receiver circuits using non-coherent demodulation wherein the received signal is demodulated using one or more delayed versions of itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2085Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states with more than one phase shift per symbol period

Abstract

PURPOSE:To improve the error rate by converting a location of a carrier to a DSK signal where a phase shift of +pi radian or -pi radian per 1 time slot is given in response to a binary information symbol to attain a correct demodu lated output to a symbol subject to multiplex interference. CONSTITUTION:A modulation circuit of the digital communication system consists of a DSK-ENC1, DBMs2,3 and a PC4, and the 1st symbol of the binary information symbol of a prescribed time slot undergoes phase shift by +pi/2 radian each twice consecutively at each 1/2 time slot. Further, the 2nd symbol is phase-shifted twice consecutively by -pi/2 radian each at 1/2 time slot each to attain keying modulation. Furthermore, the demodulation circuit consists of a PD5, a DL6, a DBM7 and an LPF8, the modulated signal is divided into two, one signal is phase-shifted at 1/2 time slot, multiplied and integrated with the other signal to demodulate the original binary information symbol.

Description

【発明の詳細な説明】 この発明は、多重波干渉に強いディジタル通信方式に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a digital communication system that is resistant to multiple wave interference.

〔従来の技術〕[Conventional technology]

従来のディジタル通信方式は、例えば移動無線のように
一つのディジタル情報によって変調された一つのディジ
タル信号が異なる伝送路を経て多重波として受信される
場合の多い通信系ではこれら多重波による相互干渉のた
め、符号誤り率が非常に劣化するという問題があった。
In conventional digital communication systems, for example, in communication systems such as mobile radio, where one digital signal modulated by one piece of digital information is often received as multiple waves via different transmission paths, mutual interference caused by these multiple waves is a problem. Therefore, there was a problem that the code error rate deteriorated significantly.

この符号誤り率の劣化を解決するためには符号誤り率の
程度に応じ各種誤り訂正符号を構成する方法がとられる
In order to solve this deterioration of the code error rate, methods are used to construct various error correction codes depending on the degree of the code error rate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、例えば移動通信においてみられるように
誤りがバースト的に生ずる通信路ではかかる誤り訂正符
号の構成は一般に伝送しようとする符号に比べ非常に大
きなものになり、また復号化のため一旦メモリに蓄えて
処理するため総合の伝送時間が長くなり装置も複雑にな
るという問題があった。
However, in a communication channel where errors occur in bursts, such as in mobile communications, the structure of such an error correction code is generally much larger than the code to be transmitted, and it is temporarily stored in memory for decoding. There is a problem in that the total transmission time becomes longer and the equipment becomes more complex.

この発明は上記のような問題を解消するためになされた
もので、これら誤り訂正符号の構成を行うことなく符号
誤り率の低下の問題を解消して総合の伝送時間の短縮化
及び装置の簡単化をはかるディジタル通信方式を得るこ
とを目的とする。
This invention was made in order to solve the above-mentioned problems, and it solves the problem of a decrease in the code error rate without configuring an error correction code, thereby shortening the overall transmission time and simplifying the device. The purpose is to obtain a digital communication method that will improve the speed of communication.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るディジタル通信方式の変調方式は、シン
ボル送出間隔を1タイムスロツトとすると「0」あるい
は「1」の2進情報シンボルに対応して、搬送波の位相
を1タイムスロット毎2回続けて十五ラジアンあるいは
m=ラジアンずつ変化させ1タイムスロット当り+πラ
ジアン又は−πラジアン位相を変化させるようにしたも
のである。
In the modulation method of the digital communication system according to the present invention, when the symbol transmission interval is one time slot, the phase of the carrier wave is changed twice in each time slot in response to a binary information symbol of "0" or "1". The phase is changed by 15 radians or m=radians to change the phase by +π radians or −π radians per time slot.

また復調方式は、遅延量を百タイムスロット(こ選んだ
遅延検波を用いるものである。
The demodulation method uses delayed detection with a delay amount of 100 time slots.

なお、上記変調方式は2進情報シンボルの1つ1こ対し
2回位相シフトを行うので、Double phase
Shift Keying方式(以下DSK方式)と呼
ぶ。
Note that the above modulation method performs phase shift twice for each binary information symbol, so Double phase
This is called the Shift Keying method (hereinafter referred to as the DSK method).

〔作用〕[Effect]

この発明に係るディジタル通信方式は、その変調方式が
DSK方式であるので多重波干渉があっても2進情報シ
ンボルに対応した正しい復調出力が常に大きくとれ符号
誤り率の大幅な改善が得られる。
In the digital communication system according to the present invention, since the modulation system is the DSK system, even if there is multiple wave interference, the correct demodulated output corresponding to the binary information symbol can always be large, and the code error rate can be greatly improved.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明を図について説明する。 The invention will be explained below with reference to the drawings.

第1図(4)は、この発明に係る変調方式における2値
情報シンボルの「0」汀1」に対応する搬送波の位相遷
移の一例を説明する図、第1図(6)はかかる位相遷移
を行う変調器において、2値情報信号「1,0.IJ 
により変調を行った場合の搬送波の位相変化を示す図で
ある。
FIG. 1 (4) is a diagram illustrating an example of the phase transition of a carrier wave corresponding to "0" and "1" of a binary information symbol in the modulation method according to the present invention, and FIG. 1 (6) is a diagram illustrating such a phase transition. In a modulator that performs
FIG. 3 is a diagram showing a phase change of a carrier wave when modulation is performed by .

第1図(4)において、矢印はその矢印上に示す2値情
報シンボルに対応した位相遷移の方向を示す。
In FIG. 1(4), the arrow indicates the direction of phase transition corresponding to the binary information symbol shown above the arrow.

また第1図面において、(6)は2値情報信号を示す2
値情報シンボルの並び、Iは対応する搬送波の位相変化
をうけた信号(以下DSK信号という)、を示す。また
、Tは1タイムスロツトの長さで、これは単位2値情報
シンボルにおけるシンボル送出間隔に相当する。
In addition, in the first drawing, (6) indicates a binary information signal.
In the arrangement of value information symbols, I indicates a signal (hereinafter referred to as a DSK signal) that has undergone a phase change of a corresponding carrier wave. Further, T is the length of one time slot, which corresponds to the symbol transmission interval in a unit binary information symbol.

まず、DSK信号の生成の仕方を第1図に基すいて説明
する。2値情報信号を構成する第1番目の2値情報シン
ボル「1」に対しては、まず+π/2ラジアンシフトし
、1タイムスロツト経過後さらに+π/2ラジアンシフ
トして合計十πラジアン位相シフトする。次に、第2番
目の2値情報シンボル「0」に対しては前記第1番目の
シンボル対応の最終位相子πラジアンからスタートして
、まず−π/2ラジアンシフトし、−タイムスロット経
過後さらに一1フンアンシフトして合計−πラジアンシ
フトするので初期位相0ラジアンの位置へ戻っている。
First, the method of generating a DSK signal will be explained based on FIG. The first binary information symbol "1" constituting the binary information signal is first shifted by +π/2 radians, and after one time slot has elapsed, it is further shifted by +π/2 radians, resulting in a total phase shift of 1π radians. do. Next, for the second binary information symbol "0", starting from the final retarder π radian corresponding to the first symbol, first shift by -π/2 radian, and after - time slot elapses. Furthermore, the phase is shifted by 11 degrees, resulting in a total shift of -π radians, so that the initial phase returns to the position of 0 radians.

さらに、第8番目の2値情報シンボル「1」に対しては
前記第2番目のシンボル対応の最終位相0ラジアンから
スタートして、まず十医フンアンシフトし、−タイムス
ロット経過後さらに+百フンアンシフトして合計πラジ
アンシフトし初期位相0ラジアンに対し+πラジアンの
位相になる。
Furthermore, for the 8th binary information symbol "1", the final phase corresponding to the second symbol starts from 0 radians, is first unshifted by 10 radians, and then further shifted by 100 radians after the -time slot elapses. Unshifted and shifted by a total of π radians, the phase becomes +π radians with respect to the initial phase of 0 radians.

このようにこの発明に係るディジタル通信方式のDSK
信号は、1つの2値情報シンボルをiタイムスロット毎
シンボルの符号に応じ+π/2ラジアン又は−π/2ラ
ジアンずつ2回シフトさせ十πラジアン又は−πラジア
ンシフトさせる所に特徴がある。
In this way, the DSK of the digital communication system according to the present invention
The signal is characterized in that one binary information symbol is shifted twice by +π/2 radians or −π/2 radians depending on the sign of the symbol every i time slot, and is shifted by 1π radians or −π radians.

次に、1つのDSK信号が遅延時間の異なる通信路を経
て受信された場合における2値情報信号の再生についそ
説明すると共に、このよう暑ζ干渉がある場合にDSK
信号だと従来の2相PSK信号(以下BPSK信号とい
う)に比べどうして符号誤り率がよくなるかにつき説明
する。
Next, we will briefly explain the reproduction of a binary information signal when one DSK signal is received via communication paths with different delay times, and also explain how the DSK
We will explain why the bit error rate of this signal is better than that of a conventional two-phase PSK signal (hereinafter referred to as BPSK signal).

第2図囚は2値情報信号rl # 0 * ’Jに対応
して到着するDSK信号のうち、最初に到着する信号(
以下り波という)と遅れて到着する信号(以下U波とい
う)の位相関係を示す。この図では説明の都合上り波に
対しτだけ遅れて到着する1つのU波を示している。
Figure 2 shows the first arriving signal (
This shows the phase relationship between a signal that arrives late (hereinafter referred to as a U wave) and a signal that arrives late (hereinafter referred to as a U wave). For convenience of explanation, this figure shows one U wave that arrives with a delay of τ with respect to the upstream wave.

第2図(6)はDSK信号の復調回路の系統図を示す。FIG. 2(6) shows a system diagram of a demodulation circuit for a DSK signal.

復調回路は遅延時間を百タイムスロットに設定した遅延
検波回路で構成する。
The demodulation circuit consists of a delay detection circuit with a delay time set to 100 time slots.

受信側においては/D波の他にτだけ遅れてU波が到着
しD波とU波は合成されて復調器へ導びかれる。この合
成波を調べると第2図(ロ)の各々の1タイムスロツト
(℃の間の区間aを除<b+C+dの区間では、D波と
U波の干渉状態の如何にかかわらず常に2値情報信号(
この場合[1,0,I J)を構成する個々の2値情報
シンボルに対応した正しい情報となっている。すなわち
D波とU波は区間す、dでは同相部分、区間Cでは百位
相がシフトした部分、という関係にあり実際に起き得る
条件の元では区間a、b、c、dにおける復調出力は次
のようになる。
On the receiving side, the U wave arrives with a delay of τ in addition to the D wave, and the D wave and U wave are combined and guided to the demodulator. Examining this composite wave, we find that in each one time slot in Figure 2 (b) (excluding the interval a between °C < b + C + d, there is always binary information regardless of the interference state between the D wave and the U wave. signal(
In this case, the correct information corresponds to each binary information symbol forming [1, 0, I J). In other words, the D wave and the U wave are in the interval d, the in-phase part in the interval d, and the part shifted by 100 phase in the interval C. Under conditions that can actually occur, the demodulated output in the intervals a, b, c, and d is as follows. become that way.

ここで、p:U波のD波に対する相対振幅比−二り波と
U波の搬送波位相差 この計算結果かられかるように、復調出力e (t)は
、区間aでは先行ビットのシンボルとの関係かから不確
定であるが、区間す、c、dでは自己のシンボルに対応
してその極性は一意的に定まる。
Here, p: Relative amplitude ratio of U wave to D wave - Carrier phase difference between secondary wave and U wave As can be seen from this calculation result, demodulated output e (t) is equal to the symbol of the preceding bit in interval a. Although it is uncertain due to the relationship between the two, the polarity is uniquely determined in sections S, c, and d corresponding to the own symbol.

またその振幅はD波とU波の振幅比及び位相関係によっ
て変化するという問題はあるが、区間す。
Although there is a problem that the amplitude changes depending on the amplitude ratio and phase relationship between the D wave and the U wave, it is within the interval.

dと区間Cの関係は位相差中の変化に対し一方が小さく
なると他方が大きくなるというように相補、う関係にあ
りいずれかが大きな振幅のま\残る。
The relationship between d and section C is such that when one becomes smaller, the other becomes larger with respect to a change in the phase difference, so that one of them remains at a large amplitude.

従って、いわゆるアイパターンの左右の振れはたかだか
遅延時間τ以下であり、アイパターンが閉じるというこ
とはない。その結果、符号誤り率は極めてよいものにな
る。
Therefore, the so-called horizontal deviation of the eye pattern is at most less than the delay time τ, and the eye pattern does not close. As a result, the code error rate becomes extremely good.

従来の単位シンボルに対応して+π又は−πラジアンシ
フトさせるBPSK方式の場合では、区間Cに相当する
ものがないため符号誤り率はDSK方式に比べ大幅に劣
化することになる。
In the case of the conventional BPSK method in which the unit symbol is shifted by +π or -π radian, there is no equivalent to section C, so the code error rate is significantly worse than in the DSK method.

第8図(4)は本発明に係るDSK信号の場合の符号誤
り特性を示す。比較のため第8図(6)にBPSK信号
の場合の符号誤り特性を示す。第8図で、D波、U波は
共にレーし 分布で変化させている。Pd、Puは各々
D波、U波の平均電力、都は1ビット当りの信号エネル
ギ、Noは単位周波数当りの雑音エネルギ、faはフェ
ージングの読込みの最大周波数である。
FIG. 8(4) shows the code error characteristic in the case of the DSK signal according to the present invention. For comparison, FIG. 8(6) shows the code error characteristics in the case of a BPSK signal. In Figure 8, both the D wave and the U wave are changed by the Ray distribution. Pd and Pu are the average powers of the D wave and U wave, respectively, M is the signal energy per 1 bit, No is the noise energy per unit frequency, and fa is the maximum frequency for fading reading.

BPSK信号の場合の符号誤り率は10−I程度で頭う
ちしているのに対しDSK信号の場合の符号誤り率は1
0−6以上が得られ、DSK方式による改善が極めて大
きいことがわかる。
The bit error rate for BPSK signals peaks out at around 10-I, while the bit error rate for DSK signals is 1.
0-6 or more was obtained, which shows that the improvement achieved by the DSK method is extremely large.

次に、この発明に係るデジタル通信方式艮用いられる変
調回路及び復調回路の具体的構成の一例について説明す
る。
Next, an example of a specific configuration of a modulation circuit and a demodulation circuit used in the digital communication system according to the present invention will be described.

第4図は変調回路の一構成例を示す図である。FIG. 4 is a diagram showing an example of the configuration of a modulation circuit.

図において(1)は符号化回路(以下、DSK−ENC
という)で、2値情報シンボルにより構成される入力情
報信号に対しDSK方式固有の同相成分波形(以下、l
−CH倍信号いう)と直交成分波形(以下、(、!−C
H信号という)を生成するものである。(2)と(3)
は、2重平衝変調器で構成される乗算変調器(発下、D
BMという)で、それぞれl−CH倍信号coswct
 s Q−CH倍信号−sinwct (ただし、−は
搬送波の角周波数)の積をつ(るものである。(4)は
、これら2つの信号を合成する電力合成器(以下、PC
という)であり、その出力としてDSK信号を得る。
In the figure, (1) is an encoding circuit (hereinafter referred to as DSK-ENC).
), the in-phase component waveform (hereinafter referred to as l
-CH double signal) and orthogonal component waveform (hereinafter referred to as (,!-C
This is to generate an H signal). (2) and (3)
is a multiplicative modulator (emission, D
(referred to as BM), respectively l-CH times signal coswct
s Q-CH multiplied signal - sinwct (where - is the angular frequency of the carrier wave). (4) is a power combiner (hereinafter referred to as PC
), and a DSK signal is obtained as its output.

第5図は復調回路の一構成例を示す図である。FIG. 5 is a diagram showing an example of the configuration of a demodulation circuit.

(5)は電力分配器(以下、FDという)で、受信信号
を2分割するものである。(6)は遅延線路(以下、D
Lという)で、その遅延時間は1タイムスロットに設定
される。(7)は乗積変調(以下、DBMという)で、
2重平衝変調器で構成され、2つの信号の積をとるもの
である。(8)は低域フィルタ(以下、LPFという)
で、曲記DBM (7)の出力信号のうち高周波成分を
除去しその出力に所望の2値情報信号に対応する遅延検
波出力を得るものである。
(5) is a power divider (hereinafter referred to as FD) which divides the received signal into two. (6) is the delay line (hereinafter referred to as D
(referred to as L), and its delay time is set to one time slot. (7) is product modulation (hereinafter referred to as DBM),
It consists of a double balance modulator and takes the product of two signals. (8) is a low-pass filter (hereinafter referred to as LPF)
The high frequency component is removed from the output signal of the DBM (7) to obtain a delayed detection output corresponding to a desired binary information signal.

次に、DSK−ENC(1)について第6図を用いて説
明する。第6図(a)は2値情報シンボルで表示された
2値情報信号を示す。第6図(b)は、この2値情報信
号によるDSK信号の位相遷移を、初期値を+1として
示している。DSK信号の初期□値を五の奇数倍とする
と、DBM (2)及びDBM (3)に印加すべき1
−CH倍信号びQ−CH償号は+1及び−1からなる2
値信号に構成でき、上記2値情報信号に対応するl−C
H倍信号第6図(C)、Q−CH倍信号第6図(d)の
ようになる。
Next, DSK-ENC (1) will be explained using FIG. 6. FIG. 6(a) shows a binary information signal represented by binary information symbols. FIG. 6(b) shows the phase transition of the DSK signal due to this binary information signal, with the initial value being +1. If the initial □ value of the DSK signal is an odd multiple of 5, then 1 to be applied to DBM (2) and DBM (3)
-CH multiplication signal and Q-CH compensation code are 2 consisting of +1 and -1.
l-C which can be configured into a value signal and corresponds to the binary information signal.
The H-multiple signal is shown in FIG. 6(C), and the Q-CH-multiple signal is shown in FIG. 6(d).

従って逆に2値情報信号に対応して第6図(c)及び(
d)の波形を生成しこれをl−CH倍信号Q−CH倍信
号してDBM (2)及びDBM (3)にそれぞれ印
加すれば2値情報信号(第6図(a))に対応するDS
K信号を得ることができる。
Therefore, on the contrary, corresponding to the binary information signal, FIGS. 6(c) and (
If the waveform of d) is generated and this is applied as an l-CH multiplied signal and a Q-CH multiplied signal to DBM (2) and DBM (3), it corresponds to a binary information signal (Fig. 6 (a)). DS
K signal can be obtained.

2値情報信号の第n番目の情報シンボルをal、符号化
規則は、以下のように表わされる。
Let al be the n-th information symbol of the binary information signal, and the encoding rule is expressed as follows.

Izn = Q211−tea。Izn = Q211-tea.

I 2fl+1 = Qzne)an Qgn = l2n−Ie)an Q2n+1= I2nΦafi ただし、an=rtJの時+2 ’ +2とソフトさせ
るものとし、an=陶 の時−2’  2とシフトさせ
るものとする。又各成分のサフィックスkが偶数の場合
は前半の1タイムスロツト、kが奇数の及び直交成分を
示す。仁のようにして得られた2値シンボルrlJ  
rOJの系列をDBM (2)、DBM (3)に必要
な電圧r+VJ 、 r−VJの信号にレベルに変換す
るとDBM (2)、DByYe駆動する実際の信号が
得られる。
I2fl+1 = Qzne) an Qgn = l2n-Ie) an Q2n+1 = I2nΦafi However, when an=rtJ, it is softened as +2' +2, and when an=porcelain, it is shifted as -2'2. Further, when the suffix k of each component is an even number, it indicates one time slot in the first half, and when k is an odd number, it indicates an orthogonal component. Binary symbol rlJ obtained like Jin
When the rOJ series is level-converted into voltage r+VJ and r-VJ signals required for DBM (2) and DBM (3), the actual signals for driving DBM (2) and DByYe are obtained.

かかる符号化を行うDSK−ENC(1)としては、例
えば第7図に示すように回路構成をすればよい。
The DSK-ENC (1) that performs such encoding may have a circuit configuration as shown in FIG. 7, for example.

第7図において、@は2値情報シンボルで示される2値
情報信号の入力端子、(121)は第1のD型フリップ
フロップ(以下、FFIという) 、(122)は第1
の排他的論理和ゲート(以下、EXOR1というX(1
2B)は第2の排他的論理和ゲート(以下、EXOR2
という) 、(124)は第2のD型フリップフロップ
(以下、FF2という) 、(125)は第8のD型フ
リップフロップC以下、FF8という) 、 (126
)は第1のレベルコンバータ(以下、LCIという) 
、(127)は第2のレベルコンバータ(以下、 LC
2という)、(128)は−分周器(以下、DIVとい
う)、(至)は同相成分出力端子(以下、ICH出力端
子という)、α◆は直交成分出力端子(以下、QCH出
力端子という入(至)はクロック信号入力端子で、iタ
イムスロットと同じ同期のクロック信号を入力する端子
である。
In FIG. 7, @ is an input terminal for a binary information signal indicated by a binary information symbol, (121) is a first D-type flip-flop (hereinafter referred to as FFI), and (122) is a first
Exclusive OR gate (hereinafter referred to as EXOR1)
2B) is the second exclusive OR gate (hereinafter referred to as EXOR2
), (124) is the second D-type flip-flop (hereinafter referred to as FF2), (125) is the eighth D-type flip-flop C (hereinafter referred to as FF8), (126)
) is the first level converter (hereinafter referred to as LCI)
, (127) is the second level converter (hereinafter referred to as LC
2), (128) is a − frequency divider (hereinafter referred to as DIV), (to) is an in-phase component output terminal (hereinafter referred to as ICH output terminal), and α◆ is a quadrature component output terminal (hereinafter referred to as QCH output terminal). Input (to) is a clock signal input terminal, which is a terminal to which a clock signal of the same synchronization as the i time slot is input.

まず、FFI (121)とDIW128)とにより2
値情報シンボルに対応したan及び5を出力する。この
信号を用い、EXORI (122) 、 EXOR2
(128) 、 FF2 (124) 、 FF8(1
25)のたすきがけ回路により上記afiとIhyQh
の符号化規則による処理を行う。この出力をLCI (
126)。
First, by FFI (121) and DIW128), 2
An and 5 corresponding to the value information symbol are output. Using this signal, EXORI (122), EXOR2
(128), FF2 (124), FF8 (1
25) The above afi and IhyQh are
Processing is performed according to the encoding rules. This output is converted to LCI (
126).

LC2(127)によりレベル変換し、DBM (2)
及びDBM (3)における位相反転制御に必要な電圧
十V及び−■に変化するl−CH倍信号びQ−CH倍信
号発生させる。
Level converted by LC2 (127) and DBM (2)
and a l-CH multiplied signal and a Q-CH multiplied signal which change to a voltage of 10 V and -■ required for phase inversion control in the DBM (3).

復調は、第6図に示す回路を用いて行う。第8図は復調
回路の動作を説明する図である。第8図(a)は入力値
情報信号、第8図(b)はDSK信号をその位相遷移に
よって示す。第8図(c)は遅延検波出力、第8図(d
)は復号された2値情報信号を示す。遅延図(b)に示
すDSK信号とiタイムスロット遅延したDSK信号と
の積をとり、LPF (8)を通すことによって第8図
(C)に示す遅延検波出力が得られ、変調側で入力した
2値情報シンボルに対応した復号された2値情報信号(
d)が得られる。
Demodulation is performed using the circuit shown in FIG. FIG. 8 is a diagram explaining the operation of the demodulation circuit. FIG. 8(a) shows the input value information signal, and FIG. 8(b) shows the DSK signal by its phase transition. Figure 8(c) is the delayed detection output, Figure 8(d)
) indicates a decoded binary information signal. By taking the product of the DSK signal shown in the delay diagram (b) and the DSK signal delayed by i time slots and passing it through LPF (8), the delayed detection output shown in Figure 8 (C) is obtained, which is input to the modulation side. The decoded binary information signal corresponding to the binary information symbol (
d) is obtained.

なお、上記実施例は多重波の遅延時間の大きい移動通信
を対象として述べたが、他の通信形態例えば見通内/見
通外の固定通信など多重波の遅延時間がタイムスロット
に比べ無視できず遅延ひずみや同期ずれによる符号誤り
率の大きな場合にも適用して同様の効果を奏する。
Although the above embodiment has been described with reference to mobile communications where the delay time of multiplexed waves is large, other communication forms such as line-of-sight/out-of-line-of-sight fixed communications, etc., where the delay time of multiplexed waves is negligible compared to time slots. The same effect can be achieved by applying this method to cases where the bit error rate is large due to delay distortion or synchronization shift.

また、グイバシテイ受信や誤り訂正制御のような高価な
装置を用いることなく、通常の変復調器と同程度の簡単
な装置でデジタル信号を良好な品質で伝送できる効果を
奏する。
Furthermore, it is possible to transmit digital signals with good quality using a device as simple as a normal modulator/demodulator without using expensive devices such as privacy reception or error correction control.

〔発明の効果〕 以上のように、この発明によれば2値情報シンボルに対
応して搬送波の位相を1タイムスロット毎に2度続けて
+iミツジアンるいは−π/2ラジアンシフトし、1タ
イムスロット当り合計十πラジアン又は−πラジアンの
位相シフトを与えるDSK信号を用いるようにしたので
、遅延時間の大きい多重波伝播の条件下でも符号誤り率
を著しく改善させることができる効果がある。
[Effects of the Invention] As described above, according to the present invention, the phase of the carrier wave is shifted by +i mitzian or -π/2 radian twice in every time slot corresponding to the binary information symbol, and Since a DSK signal giving a phase shift of a total of 1π radians or −π radians per slot is used, the bit error rate can be significantly improved even under conditions of multiwave propagation with a large delay time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(6)はこの発明に係るデジタル通信方式のDS
K方式における2値情報シンボルに対応する搬送波の位
相遷移の一例を説明する図、第1図(B)は同じく2値
情報信号とDSK信号の関係を説明する図である。第2
図(4)は、2つのDSK信号、U波とD波の関係を説
明する図、第2図面はDSK信号の復調回路の系統図を
示す図である。第8図はDSK方式及びBPSK方式の
符号誤り特性の一例を示す図、第4図はDSK方式の変
調回路の一構成例と示す図、第5図はDSK方式におけ
る復調回路の一構成例を示す図、第6図はDSK−EN
C(1)がもつべき動作内容を説明する図、第7図はD
SK−ENC(1)の構成例を示す図、第8図はDSK
信号の復調回路の動作を説明する図である。 Cクツ る。 なお、図中、同一符号は同−又は相当部分を示す− 第1図 (A) CB) 第2図 (,4) 第3図 Eb/No  [d5) (A)l)511式 %式% 第4図 一5rnl&Ict 第5図 第7図 (f、=竹) 第8図 手続補正書(自発) 昭和60 年3  山5  日 [EJ
FIG. 1 (6) shows the DS of the digital communication system according to this invention.
FIG. 1B is a diagram illustrating an example of the phase transition of a carrier wave corresponding to a binary information symbol in the K system, and is also a diagram illustrating the relationship between a binary information signal and a DSK signal. Second
FIG. 4 is a diagram for explaining the relationship between two DSK signals, a U wave and a D wave, and the second diagram is a diagram showing a system diagram of a demodulation circuit for the DSK signal. FIG. 8 is a diagram showing an example of the code error characteristics of the DSK system and the BPSK system, FIG. 4 is a diagram showing an example of the configuration of a modulation circuit in the DSK system, and FIG. 5 is a diagram showing an example of the configuration of a demodulation circuit in the DSK system. The figure shown in Figure 6 is DSK-EN.
A diagram explaining the operation contents that C (1) should have, Figure 7 is D
A diagram showing an example of the configuration of SK-ENC (1), Figure 8 is a DSK
FIG. 3 is a diagram illustrating the operation of a signal demodulation circuit. C. Shoes. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Fig. 1 (A) CB) Fig. 2 (, 4) Fig. 3 Eb/No [d5] (A) l) 511 formula % formula % Figure 4-15rnl&Ict Figure 5 Figure 7 (f, = bamboo) Figure 8 Procedural amendment (voluntary) March 5, 1985 [EJ

Claims (1)

【特許請求の範囲】[Claims] 所定のタイムスロットで送出される2値情報シンボルに
対応して、その第1の情報シンボルは1/2タイムスロ
ット毎に2度続けて+π/2ラジアンずつ位相シフトを
行い、その第2の情報シンボルは1/2タイムスロット
毎に2度続けて−π/2ラジアンずつ位相シフトを行っ
て位相シフトキーイング変調を行う変調方式と、この変
調方式により変調された信号を受信し、その出力を2分
割して得た一方の信号を1/2タイムスロット位相シフ
トさせて他方の信号と乗算積分して元の2値情報シンボ
ルを得るようにした復調方式とを備えたことを特徴とす
るディジタル通信方式。
Corresponding to a binary information symbol transmitted in a predetermined time slot, the first information symbol undergoes a phase shift of +π/2 radians twice in every 1/2 time slot, and the second information symbol Symbols are modulated using a modulation method that performs phase shift keying modulation by performing a phase shift of -π/2 radians twice every 1/2 time slot, and a signal modulated by this modulation method is received and its output is Digital communication characterized by comprising a demodulation method in which one signal obtained by dividing is phase-shifted by 1/2 time slot and multiplied and integrated with the other signal to obtain the original binary information symbol. method.
JP1055585A 1985-01-22 1985-01-22 Digital communication system Granted JPS61169049A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1055585A JPS61169049A (en) 1985-01-22 1985-01-22 Digital communication system
US06/768,551 US4726038A (en) 1985-01-22 1985-08-22 Digital communication system
CA000489287A CA1254622A (en) 1985-01-22 1985-08-23 Digital communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055585A JPS61169049A (en) 1985-01-22 1985-01-22 Digital communication system

Publications (2)

Publication Number Publication Date
JPS61169049A true JPS61169049A (en) 1986-07-30
JPH0225306B2 JPH0225306B2 (en) 1990-06-01

Family

ID=11753497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055585A Granted JPS61169049A (en) 1985-01-22 1985-01-22 Digital communication system

Country Status (1)

Country Link
JP (1) JPS61169049A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193426A (en) * 1986-02-20 1987-08-25 Matsushita Electric Ind Co Ltd Method for transmitting digital signal
JPS62193425A (en) * 1986-02-20 1987-08-25 Matsushita Electric Ind Co Ltd Method for transmitting digital signal
JPS62193429A (en) * 1986-02-20 1987-08-25 Matsushita Electric Ind Co Ltd Method for transmitting digital signal
JPS62214743A (en) * 1986-03-14 1987-09-21 Matsushita Electric Ind Co Ltd Digital signal transmission method
JP2008536424A (en) * 2005-04-12 2008-09-04 コミツサリア タ レネルジー アトミーク Contactless communication method based on asynchronous modulation and demodulation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193426A (en) * 1986-02-20 1987-08-25 Matsushita Electric Ind Co Ltd Method for transmitting digital signal
JPS62193425A (en) * 1986-02-20 1987-08-25 Matsushita Electric Ind Co Ltd Method for transmitting digital signal
JPS62193429A (en) * 1986-02-20 1987-08-25 Matsushita Electric Ind Co Ltd Method for transmitting digital signal
JPS62214743A (en) * 1986-03-14 1987-09-21 Matsushita Electric Ind Co Ltd Digital signal transmission method
JP2008536424A (en) * 2005-04-12 2008-09-04 コミツサリア タ レネルジー アトミーク Contactless communication method based on asynchronous modulation and demodulation

Also Published As

Publication number Publication date
JPH0225306B2 (en) 1990-06-01

Similar Documents

Publication Publication Date Title
US5787123A (en) Receiver for orthogonal frequency division multiplexed signals
EP0422467B1 (en) HF high data rate modem
JP3224541B2 (en) Data signal multiplexing method and apparatus
EP0232626A2 (en) Method of digital signal transmission having a low error rate in the presence of multipath transmission
US20060250942A1 (en) Digital modulation system using modified orthogonal codes to reduce autocorrelation
DK166187B (en) DIGITAL COMMUNICATION SYSTEM
US8605813B2 (en) Transmitter
US20190052510A1 (en) Transmission method, transmission device, reception method, and reception device
US3984777A (en) Carrier wave reproducer device for use in the reception of a multi-phase phase-modulated wave
JPS61169049A (en) Digital communication system
CN110011687B (en) Wireless OQPSK communication system and related method
US4726038A (en) Digital communication system
US7369624B2 (en) Carrier suppression type modulator with encoded modulating signals
JPH06232939A (en) Frame synchronization circuit
JPH0697914A (en) Spread time diversity spectrum communication system
JPH0222583B2 (en)
JPS63260245A (en) Digital signal transmission method
JP2754414B2 (en) Diversity receiver circuit
JPS63260244A (en) Digital signal transmission method
JP3531823B2 (en) Orthogonal frequency division multiplexing signal transmission / reception system and orthogonal frequency division multiplexing signal transmission / reception method
JP3531825B2 (en) Orthogonal frequency division multiplexing signal transmission / reception system and orthogonal frequency division multiplexing signal transmission / reception method
JP2890936B2 (en) Word synchronization method
JP3531822B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
FI96556C (en) Digital transport device and method
JP3818528B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term