JPS61168263A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61168263A
JPS61168263A JP60007906A JP790685A JPS61168263A JP S61168263 A JPS61168263 A JP S61168263A JP 60007906 A JP60007906 A JP 60007906A JP 790685 A JP790685 A JP 790685A JP S61168263 A JPS61168263 A JP S61168263A
Authority
JP
Japan
Prior art keywords
semiconductor layer
pattern
film
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60007906A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sasaki
芳高 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP60007906A priority Critical patent/JPS61168263A/en
Publication of JPS61168263A publication Critical patent/JPS61168263A/en
Priority to US07/251,006 priority patent/US4833513A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To reduce an ON resistance by substantially equalizing the widths of gate polycrystalline silicon patterns at any portion, and forming a pattern to obtain the optimum source electrode leading hole according to the current capacity. CONSTITUTION:An N-type epitaxially grown layer 2 is formed on an N-type semiconductor substrate 1, and a polycrystalline silicon pattern 6 is formed through the first insulating film 5a on the main surface of the layer 2. A P-type semiconductor layer 4 is formed, and an N<+> type semiconductor layer (third semiconductor layer) 8 is formed on the surface of the layer 4. The second insulating film 5d is formed to coat the pattern 6, a hole 11 of the insulating film 5d is formed, and an aluminum electrode film 9 is formed on the film 5d. The plane shape of the layer 4 is continuously formed of octagonal semiconductor patterns 4A, 4B, 4C, and coupling semiconductor layer patterns 4D, 4E formed thinly by connecting the patterns.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は半導体装置に関し、主としてスイッチングある
いは増幅を目的としたMIS型半導体装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and mainly relates to an MIS type semiconductor device for the purpose of switching or amplification.

[発明の技術的背景とその問題点コ MIS型半導体装置のうち特に従来のMOSFETは低
耐圧、低電力デバイスと考えられていたが、最近の半導
体製造技術あるいは回路設計技術等の発展に伴い、高耐
圧、大電力設計が可能となり、現在ではパワーデバイス
としてその地位を確保するに至っている。
[Technical background of the invention and its problems] Conventional MOSFETs, especially among MIS semiconductor devices, were considered to be low voltage and low power devices, but with the recent development of semiconductor manufacturing technology or circuit design technology, It has become possible to design high-voltage and high-power devices, and has now secured its place as a power device.

かかる高耐圧パワーMO8FETの代表的なものとして
■オフセットゲート構造、■V −Q r。
Typical examples of such high-voltage power MO8FETs include: (1) offset gate structure; (2) V-Q r.

oveあるいはU −G roove構造、■DSA(
Diffusition  Self−Alignme
nt)構造等が知られているが、このうち製造技術、高
性能化に有利な従来のDSA構造パワーMO8FET(
以下DSA  MOS)の電極形成後の平面図と、この
平面図におけるA−A′線方向の断面構造図を第5図(
a)、(b)に示し、又、製造工程を第6図(a )乃
至(f )に示して説明する。
ove or U-G root structure, ■DSA (
Diffusion Self-Alignme
Among them, the conventional DSA structure power MO8FET (
Figure 5 (hereinafter referred to as DSA MOS) shows a plan view after electrode formation and a cross-sectional structure diagram taken along line A-A' in this plan view.
The manufacturing process will be explained with reference to FIGS. 6(a) to 6(f).

DSA  MOSは二重拡散によりチャンネルを形成す
るもので、格子状のゲート多結晶シ゛リコン電極6に囲
まれた同一の拡散窓によりチャンネル領域形成の不純物
拡散(n型半導体層4)とソース領域形成の不純物拡散
(n型半導体層8)を行っているのが特徴である。チャ
ンネル幅はn型半導体層4とn型半導体層8の拡散深さ
の差で決っているので数ミクロン以下の極めて短いチャ
ンネル領域(チャンネル長)を形成できる。ソース電極
はn型半導体層のソース領域8とチャンネル領域を形成
するn型半導体層4(あるいはn型半導体層3)と、両
方にオーミック接触している。ゲート電極形状は格子状
のものとストライプ状のものとが一般的であるが、ここ
では格子状のものを示す。0型半導体基板1がドレイン
領域であり、nオン誌構造となっている。トレイン電極
は図示していないがチップ裏面に形成されており、ゲー
ト、ソース間に正の電圧を加えてチャンネルをオンさせ
ると電流は基板より縦方向に流れ、チャンネル領域を通
ってソースに流れ込む。
DSA MOS forms a channel by double diffusion, and the impurity diffusion (n-type semiconductor layer 4) for forming the channel region and the diffusion for forming the source region are performed by the same diffusion window surrounded by the gate polycrystalline silicon electrode 6 in the form of a lattice. The feature is that impurity diffusion (n-type semiconductor layer 8) is performed. Since the channel width is determined by the difference in diffusion depth between the n-type semiconductor layer 4 and the n-type semiconductor layer 8, an extremely short channel region (channel length) of several microns or less can be formed. The source electrode is in ohmic contact with both the source region 8 of the n-type semiconductor layer and the n-type semiconductor layer 4 (or n-type semiconductor layer 3) forming the channel region. The gate electrode is generally shaped in a lattice shape or in a stripe shape, but the lattice shape is shown here. The 0-type semiconductor substrate 1 is a drain region and has an n-on diode structure. A train electrode (not shown) is formed on the back surface of the chip, and when a positive voltage is applied between the gate and source to turn on the channel, current flows vertically from the substrate, passes through the channel region, and flows into the source.

次に、第6図(a )乃至(f)を用いて従来のDSA
  MOSの製造工程を説明する。n型半導体基板1上
にn型エピタキシャル成長層2を例えば比抵抗10〜2
5Ωcm、厚み30〜60μm形成後、表面からn型半
導体層3を形成する。その後、ゲート酸化膜5aを約1
000A形成した様子を第6図(a)に示す。
Next, using FIGS. 6(a) to (f), the conventional DSA
The manufacturing process of MOS will be explained. An n-type epitaxial growth layer 2 is formed on an n-type semiconductor substrate 1 with a specific resistance of 10 to 2, for example.
After forming a layer of 5 Ωcm and a thickness of 30 to 60 μm, an n-type semiconductor layer 3 is formed from the surface. After that, the gate oxide film 5a is
FIG. 6(a) shows how 000A was formed.

次に多結晶シリコン膜6を例えば6000^堆積後選択
的にパターニングし、この多結晶シリコンパターンをマ
スクにしてイオン注入を施し、チャンネル領域のn型半
導体層4を自己整合的に形成する。この様子を第6図(
b)に示す。
Next, the polycrystalline silicon film 6 is selectively patterned after being deposited, for example, 6000^, and ions are implanted using this polycrystalline silicon pattern as a mask to form the n-type semiconductor layer 4 in the channel region in a self-aligned manner. This situation is shown in Figure 6 (
Shown in b).

続いてフォトエツチング技術にてフォトレジストアを用
いてソース領域のn型半導体層形成予定部を選択的に開
口した様子を第6図(C)に示す。
Subsequently, a portion of the source region where the n-type semiconductor layer is to be formed is selectively opened using photoresist using a photoetching technique, as shown in FIG. 6(C).

次にソース領域のn型半導体層8と酸化膜5bを形成し
く第6図(d )に図示)、その上にCVD法にて形成
したPSG膜5Cを約800OA堆積した様子を第6図
(e)に示す。
Next, an n-type semiconductor layer 8 and an oxide film 5b in the source region are formed (as shown in FIG. 6(d)), and a PSG film 5C of approximately 800 OA is deposited thereon by CVD. Shown in e).

しかる後、各種熱処理を施した後に電極取り出し開口部
を形成し、アルミニウム(/l )電極9を形成するこ
とによってソース・ドレイン間耐圧Vo s s 、2
00〜600V程度のDSA  MOSが完成する。こ
の様子を第6図(f )に示す。
Thereafter, after performing various heat treatments, an electrode extraction opening is formed and an aluminum (/l) electrode 9 is formed to increase the source-drain breakdown voltage Vo s s ,2
A DSA MOS of about 00 to 600V is completed. This situation is shown in FIG. 6(f).

[背景技術の問題点] 一般的にMOS  FETは少数キャリアの蓄積がない
ため高速スイッチングが可能でドレイン電=4− 流が負の温度係数を持つため熱的安定性が高い等大電力
用素子として長所を持っている反面、バイポーラ型トラ
ンジスタと比較した場合多数キャリア素子であるため高
耐圧化と大電力化の相反関係が著しく、高耐圧化に必要
な基板抵抗層がそのまま飽和電圧の上昇に結びつき、同
一チップ面積ではオン抵抗が大きくなるという欠点があ
った。かかる問題を解決するためにはFETの電流通路
の抵抗、特にドレイン抵抗の低減を図ることが必要であ
る。換言すれば、いかにドレインの面積効率を上げるか
ということであり、この1cめには微細加工技術を駆使
して最良パターン設計を行わなければならない。これら
を満足させる構造として一般的にはDSA  M’O8
が採用されている。
[Problems in the background technology] In general, MOS FETs are capable of high-speed switching because there is no accumulation of minority carriers, and have high thermal stability because the drain current has a negative temperature coefficient. However, compared to bipolar transistors, since they are majority carrier elements, there is a significant trade-off between high withstand voltage and high power, and the substrate resistance layer required for high withstand voltage directly increases the saturation voltage. This has the disadvantage that the on-resistance increases with the same chip area. In order to solve this problem, it is necessary to reduce the resistance of the current path of the FET, especially the drain resistance. In other words, the question is how to increase the area efficiency of the drain, and the best pattern design must be made by making full use of microfabrication technology for the first c. DSA M'O8 is generally used as a structure that satisfies these requirements.
has been adopted.

しかしながら従来のDSA  MOS  FETのパタ
ーン設計は必ずしも最適設計とは限らない。
However, the pattern design of the conventional DSA MOS FET is not necessarily the optimal design.

限られたシリコンチップ面積内に電流通路、つまりチャ
ンネル幅を長くとれるような多結晶シリコンパターン、
チャンネル領域の形状について種々の工夫が必要である
。チャンネル幅を長く得ることによって多くのドレイン
電流を得ることが可能で、しかも大電流領域での相互コ
ンダクタンスgmも大きなものが得られる。これらがし
いてはオン抵抗の低減化を可能にする最大の要因である
ため、いかにして限られた面積内でチャンネル幅を長く
得るかが、最大の目標であった。
A polycrystalline silicon pattern that allows a long current path, or channel width, within the limited silicon chip area.
Various ideas are required regarding the shape of the channel region. By increasing the channel width, it is possible to obtain a large amount of drain current, and also to obtain a large mutual conductance gm in a large current region. Since these are the biggest factors that make it possible to reduce on-resistance, the biggest goal was how to obtain a long channel width within a limited area.

そこで、従来スイッチング電源等に用いられている高耐
圧パワーMO8FETのゲート多結晶シリコンパターン
を検討してみると、殆んどが四角の格子形状を呈してい
る。
Therefore, when we examine the gate polycrystalline silicon patterns of high-voltage power MO8FETs conventionally used in switching power supplies and the like, we find that most of them have a square lattice shape.

ちなみに、第5図(a )に示した従来装置の平面図を
参照すると、1つのソースn領域8から伯のソースn領
域8迄のグー1〜多結晶シリコン6の各辺間の幅L1と
角部間の幅L2との関係はL247L1となっている。
Incidentally, referring to the plan view of the conventional device shown in FIG. The relationship with the width L2 between the corners is L247L1.

定められた面積内にソースn領域とゲート多結晶シリコ
ンパターンを多く集積する(チャンネル幅を大きくする
)ためには上記各輪L1とL2とは等しいことが望まし
い。
In order to integrate a large number of source n regions and gate polycrystalline silicon patterns within a predetermined area (to increase the channel width), it is desirable that the rings L1 and L2 are equal.

これは、チャンネル領域はゲート多結晶シリコンパター
ンのエツジ部に沿って存在するためチャンネル幅を大き
く得るためにはL1=12の方が望ましく、Ll <1
2ではその差分(L2−Ll )の余分な面積のゲート
多結晶シリコン膜が形成されてしまうからである。この
ことは、しいてはゲート面積を広め、スイッチングスピ
ードの妨げとなるドレイン・ゲート間容量を増大させる
原因にもなる。
This is because the channel region exists along the edge of the gate polycrystalline silicon pattern, so in order to obtain a large channel width, it is preferable that L1 = 12, and Ll < 1.
2, a gate polycrystalline silicon film with an extra area corresponding to the difference (L2-Ll) is formed. This also increases the gate area and increases the capacitance between the drain and the gate, which impedes the switching speed.

又、チャンネル幅を増大させるための各パターンの微細
化をすることが一般的にはよく知られており、これによ
りゲート多結晶シリコンパターンとソース領域は縮小さ
れ、その分チャンネル幅の増大が図れる。しかしながら
、従来の四角形の格子形状を持つゲート多結晶シリコン
パターンではドレイン電流容量の割合に対してソース電
極開口部の開口部の面積が大きすぎる傾向にある。微細
化によって独立したチャンネル領域は数多く形成できる
(微細化によってチャンネル幅が長く得られる)が、1
つのセル(多結晶シリコン膜の開口部を拡散マスクとし
て、P型土導体層4.n1型半導体層8が存在する領域
)内のチャンネル幅は小さくなる。つまり、同一条件で
MoSトランジスタとしての動作をさせた場合、チャン
ネル幅の小さい方が電流容量が小さいにもかかわらず、
セル内に形成されているソース領域の電極引出し開口部
は数多く存在することになる。
In addition, it is generally well known that each pattern is miniaturized to increase the channel width, and as a result, the gate polycrystalline silicon pattern and source region are reduced, and the channel width can be increased accordingly. . However, in the conventional gate polycrystalline silicon pattern having a rectangular lattice shape, the area of the source electrode opening tends to be too large relative to the drain current capacity. Although many independent channel regions can be formed by miniaturization (the channel width can be increased by miniaturization), 1
The channel width in one cell (the region where the P-type soil conductor layer 4 and the N1-type semiconductor layer 8 are present using the opening of the polycrystalline silicon film as a diffusion mask) is reduced. In other words, when operating as a MoS transistor under the same conditions, although the smaller channel width has smaller current capacity,
There are many electrode lead-out openings in the source region formed within the cell.

周知のごとく、MOS  FETはバイポーラ型トラン
ジスタと比較して熱暴走が少なく、従って必要以上のソ
ース電極取り出し開口部は不要である。この不要な分を
利用してより多くのチャンネル領域を形成し、チャンネ
ル幅を長く得るようなパターン配置を行わなければなら
ない。
As is well known, MOS FETs have less thermal runaway than bipolar transistors, and therefore do not require an unnecessary opening for the source electrode. It is necessary to use this unnecessary portion to form more channel regions and to arrange the pattern so as to obtain a longer channel width.

[発明の目゛的] 本発明は前記事情に鑑みてなされたものであり、オン抵
抗の低減化、相互コンダクタンスgm及びスイッチング
スピードの向上、あるいはチップ面積の縮小化を図り、
生産性向上を可能とする最適パターンの設計を施した半
導体装置を提供することを目的とするものである。
[Objective of the Invention] The present invention has been made in view of the above circumstances, and aims to reduce on-resistance, improve mutual conductance gm and switching speed, or reduce chip area.
It is an object of the present invention to provide a semiconductor device with an optimal pattern design that enables improved productivity.

[発明の概要] 前記目的を達成するために本発明は、ゲート多結晶シリ
コンパターンの幅をいずれの部分においてもほぼ等しく
なるようにし、パターンの微細化が行われても電流容量
に従って最適なソース電極取り出し開口部が得られるよ
う、それに伴った適切なパターン形状を配置させること
のできる半導体装置としたものである。
[Summary of the Invention] In order to achieve the above object, the present invention makes the width of the gate polycrystalline silicon pattern almost equal in all parts, and even if the pattern is miniaturized, the optimum source can be adjusted according to the current capacity. This is a semiconductor device in which an appropriate pattern shape can be arranged in order to obtain an electrode extraction opening.

[発明の実施例] 以下実施例により本発明を具体的に説明する。[Embodiments of the invention] The present invention will be specifically explained below using Examples.

第1図は本発明の一実施例を示すものであり、同図(a
 ”)はA! (アルミニウム)電極形成後のDSA 
 MOS  FET(7)平面図であり、同図(b)は
そのA−A−線断面構造図である。
FIG. 1 shows an embodiment of the present invention, and FIG.
”) is A! DSA after (aluminum) electrode formation
It is a top view of MOS FET (7), and the same figure (b) is the sectional structure diagram on the AA line.

この装置は、n型半導体基板1上にn型エピタキシャル
成長層(第1半導体層)2が形成され、この第1半導体
層2の主面に絶縁酸化膜(第1絶縁膜)5aを介して多
結晶シリコン(又は導電体膜)パターン6が形成され、
第1半導体層2中であって前記第1絶縁膜5aを介して
前記半導体膜パターン6の一部が重なる位置に前記第1
半導体層2とは逆導電型であるP型の半導体層(第2半
導体層)4が形成され、該第2半導体層4の表面であっ
て前記第1絶縁膜5aを介して前記導電体膜パターン6
の一部が重なる位置にn1型半導体層(第3半導体層)
8が形成され、前記導電体膜パターン6を被覆するよう
に絶縁酸化膜(第2絶縁膜)5dが形成され、該第2絶
縁膜5dによる開口部11が形成され、該開口部11を
含み前記第2絶縁膜5d上にAl電極膜(金属電極膜)
9が形成されてなり、前記導電体膜パターン6で囲まれ
ると共に前記第1半導体層2の表面に形成された第2半
導体層パターン4の平面形状は第1図(a )に示す如
く、8つの辺を持つ8角形の半導体層パターン4A、4
B、4Cと、この3つの8角形半導体層パターンの相隣
り合う一辺間同志を結ぶ連結用半導体層パターン4D、
4Eによって連続的に形成され、該連結用半導体層パタ
ーン4D、4Eは8角形半導体層パターンよりも細く形
成されている。図において10がゲート多結晶シリコン
膜開口部(セル)であり、11がソース電極取り出し開
口部である。尚、ソース用AN電極9はソースn領域8
とチャンネル領域を形成するP型半導体層4と共にこの
チャンネルP型半導体層4とオーミック接触しているP
型半導体層3の双方に電気的に接続されている。ここで
各セル10間の辺間の距離L1と角部間の距!IL2の
関係は11412となるように設定されている。
In this device, an n-type epitaxial growth layer (first semiconductor layer) 2 is formed on an n-type semiconductor substrate 1, and a multilayer film is formed on the main surface of the first semiconductor layer 2 with an insulating oxide film (first insulating film) 5a interposed therebetween. A crystalline silicon (or conductor film) pattern 6 is formed,
The first semiconductor layer is located in the first semiconductor layer 2 at a position where a portion of the semiconductor film pattern 6 overlaps via the first insulating film 5a.
A P-type semiconductor layer (second semiconductor layer) 4 having a conductivity type opposite to that of the semiconductor layer 2 is formed, and the conductive film is formed on the surface of the second semiconductor layer 4 via the first insulating film 5a. pattern 6
n1 type semiconductor layer (third semiconductor layer) at a position where a part of
8 is formed, an insulating oxide film (second insulating film) 5d is formed to cover the conductor film pattern 6, an opening 11 is formed by the second insulating film 5d, and a conductor film including the opening 11 is formed. Al electrode film (metal electrode film) on the second insulating film 5d
The planar shape of the second semiconductor layer pattern 4, which is surrounded by the conductor film pattern 6 and formed on the surface of the first semiconductor layer 2, is 8 as shown in FIG. 1(a). Octagonal semiconductor layer patterns 4A, 4 with two sides
B, 4C, and a connecting semiconductor layer pattern 4D that connects adjacent sides of these three octagonal semiconductor layer patterns;
4E, and the connecting semiconductor layer patterns 4D and 4E are formed thinner than the octagonal semiconductor layer patterns. In the figure, 10 is a gate polycrystalline silicon film opening (cell), and 11 is a source electrode extraction opening. Note that the source AN electrode 9 is connected to the source n region 8.
and a P-type semiconductor layer 4 forming a channel region, and a P-type semiconductor layer 4 that is in ohmic contact with this channel P-type semiconductor layer 4.
The semiconductor layer 3 is electrically connected to both sides of the semiconductor layer 3. Here, the distance L1 between the sides between each cell 10 and the distance between the corners! The relationship of IL2 is set to be 11412.

第2図乃至第4図は本発明の他の実施例を示す平面図で
ある。第2図のものが第1図の場合と異なるのは、2個
の8角形半導体層パターン4A。
2 to 4 are plan views showing other embodiments of the present invention. The difference between the one in FIG. 2 and the one in FIG. 1 is the two octagonal semiconductor layer patterns 4A.

4Bの相隣り合う一辺間に1個の連結用半導体層パター
ン4Dを配置して連続的に形成した点である。
One connecting semiconductor layer pattern 4D is arranged between adjacent sides of 4B and formed continuously.

第3図は2個の6角形の半導体層パターン4F。FIG. 3 shows two hexagonal semiconductor layer patterns 4F.

4Gの相隣り合う一辺間を連結用半導体層パターン4H
で結んだものである。
Semiconductor layer pattern 4H for connecting adjacent sides of 4G
It is tied with

第4図に示すものは2個の四角形半導体層パターン41
4Jの相隣り合う一辺間を連結用半導体層パターン4に
で結んだものである。
What is shown in FIG. 4 is two rectangular semiconductor layer patterns 41.
Adjacent sides of 4J are connected by a connecting semiconductor layer pattern 4.

いずれの場合も配列を交互にして定められた面積内にゲ
ート多結晶シリコンパターンのエツジを長く設計できる
、つまりチャンネル幅を大きく設計できるようにしてい
る。
In either case, the edges of the gate polycrystalline silicon pattern can be designed to be long within a defined area by alternating the arrangement, that is, the channel width can be designed to be large.

[発明の効果] 本発明は半導体装置、特にMIS型半導体装置の性能向
上を図るためにゲート多結晶シリコンパターンに工夫を
こらし、チャンネル幅を長くし、単位面積当りの電流容
量を増すことによって性能向上を図っている。
[Effects of the Invention] In order to improve the performance of semiconductor devices, especially MIS type semiconductor devices, the present invention improves the performance by improving the gate polycrystalline silicon pattern, increasing the channel width, and increasing the current capacity per unit area. We are trying to improve.

このことを従来装置との寸法関係の比較において説明す
る。従来例である第5図(a )の平面図と本発明の実
施例を示す第1図(a)、第2図〜第4図の平面図の倍
率は同一のデザインルールを採用しており、破線で囲ま
れた所定面積内の縦の長さYLを12CI11とし、横
の長さXLを16cmとして設定しておく。
This will be explained by comparing the dimensional relationship with the conventional device. The same design rule is adopted for the magnification of the plan view of FIG. 5(a), which is a conventional example, and the plan views of FIGS. 1(a), 2 to 4, which show the embodiment of the present invention. , the vertical length YL within the predetermined area surrounded by the broken line is set to 12CI11, and the horizontal length XL is set to 16 cm.

第5図(a )では3X4=12個のソース電極取り出
し開口部10が存在し、1個のセルの一辺の長さはLo
t  (−LO2)は2CI11となっているからセル
1個のチャンネル幅(セルの周囲全体)はBcmとなり
、この破線枠内の合計チャンネル幅は95cmとなって
いる。
In FIG. 5(a), there are 3×4=12 source electrode extraction openings 10, and the length of one side of one cell is Lo.
Since t (-LO2) is 2CI11, the channel width of one cell (the entire circumference of the cell) is Bcm, and the total channel width within this broken line frame is 95cm.

これに対し、第1−(a)では8角形の直線辺Loaの
長さ1cm、斜45°辺l−o a  (=JY/ 2
LO3>は約Q、7cmであり、連結辺Losは2CI
Ilとなるので、1個のセル10のチャンネル幅は約2
4.4cmとなり、破線内のパターン面積でのチャンネ
ル幅は約113.2cmとなる。又、第3図における辺
Los=2cm、辺Lo 7 =1.5cm。
On the other hand, in Part 1-(a), the length of the straight side Loa of the octagon is 1 cm, and the oblique 45° side Loa (=JY/2
LO3> is approximately Q, 7cm, and the connecting side Los is 2CI
Il, so the channel width of one cell 10 is approximately 2
4.4 cm, and the channel width in the pattern area within the broken line is approximately 113.2 cm. In addition, the side Los in FIG. 3 is 2 cm, and the side Lo 7 is 1.5 cm.

斜辺Lo e a=、 o、 7cn+、連結辺1−o
s=6cmであり、破線内に含まれるセルのチャンネル
幅は約111.80IIlとなる。更に、第4図におけ
る辺l−+。
Hypotenuse Lo e a=, o, 7cn+, connecting side 1-o
s=6 cm, and the channel width of the cell included within the dashed line is approximately 111.80 IIl. Furthermore, the side l−+ in FIG.

=2C111,辺L++=2CI11.辺し+z=O,
’5cm、連結辺L  13=10CI11であるから
、面積内に含まれる全部のセルのチャンネル幅は108
0IIlとなっている。このようなチャンネル幅はいず
れの場合も従来のものに比較して大きくなり、かつその
差はセル数が増加する程、あるいはパターン面積が大き
いほど大きくなる。
=2C111, side L++=2CI11. Edge+z=O,
'5cm, connecting side L13=10CI11, so the channel width of all cells included in the area is 108
0IIl. In any case, the channel width becomes larger than that of the conventional one, and the difference becomes larger as the number of cells increases or as the pattern area becomes larger.

このように本発明の実施例によれば大幅にチャンネル幅
を大きくできる。この理由としては、斜45°線を有効
的に用いることによって第5図(a)におけるLlと1
2との関係をLI LFL2にしたためである。従って
、セル10同志を交互に配列することによって同じデザ
インルールにも拘わらず全体的に中央部へセルパターン
配列を集積することができるわけであり、その分従来の
ものより多くのセルの集積が可能となった。
As described above, according to the embodiment of the present invention, the channel width can be greatly increased. The reason for this is that by effectively using the 45° oblique line, Ll and 1 in Fig. 5(a) can be
This is because the relationship with 2 is set to LI LFL2. Therefore, by arranging the cells 10 alternately, it is possible to integrate the cell pattern arrangement in the central area despite the same design rule, and therefore more cells can be integrated than in the conventional method. It has become possible.

次に微細化を進めた場合、特にセルとゲート多結晶シリ
コンパターンを縮小化した場合、従来実施例では数ミク
ロン間隔でソース電極取り出し開口部が必要であった。
Next, when miniaturization is advanced, especially when cell and gate polycrystalline silicon patterns are downsized, in the conventional embodiment, source electrode extraction openings are required at intervals of several microns.

つまりソース電極取り出し開口部は、デザインルールに
束縛されてしまう欠点を持っていた。本発明では、第2
図や、第3図。
In other words, the source electrode extraction opening has the drawback of being constrained by design rules. In the present invention, the second
Figures and Figure 3.

第4図のようにソース電極取り出し開口部の間隔を任意
に設計可能であり、しかもチャンネル幅は減少しない長
所がある。
As shown in FIG. 4, the interval between the source electrode extraction openings can be arbitrarily designed, and the channel width does not decrease.

一般的にソース領域の面積は小さい方がチャンネル幅は
大きく得られるため、同じデザインルールで、単位面積
(点線のワク内)当り従来実施例では12個に対して、
本発明の第3図では7個、第4図では6個と少なくする
ことが可能で、しかもチャンネル幅は第3図は111.
8cmで第4図は108cmである。
In general, the smaller the area of the source region, the larger the channel width can be obtained. Therefore, with the same design rule, there are 12 pieces per unit area (within the dotted line) in the conventional example, but with the same design rule,
According to the present invention, the number of channels can be reduced to 7 in FIG. 3 and 6 in FIG. 4, and the channel width is 111.
8cm, and the one in Figure 4 is 108cm.

以上のことから、本発明は、定められたチップ面積内で
チャンネル幅を大きく得られるように適切なゲート多結
晶シリコンパターンを提供し、該ゲート多結晶シリコン
パターンの開口部に相当するセルの適切な配置をするこ
とによってドレイン電流を大きく得ることを可能とし、
しかも大電流領域での相互コンダクタンス(lnlを大
きくし、スイッチングスピードの高速化、あるいはオン
抵抗の低減化、さらには、チップ面積の縮小化をはかり
、生産性向上を可能とする最適パターンを施した半導体
層のうち特にMIS型半導体装置を提供可能であること
を特徴としている。
In view of the above, the present invention provides an appropriate gate polycrystalline silicon pattern so as to obtain a large channel width within a defined chip area, and provides an appropriate gate polycrystalline silicon pattern for cells corresponding to the openings of the gate polycrystalline silicon pattern. By arranging the drain current, it is possible to obtain a large drain current.
In addition, we have created an optimal pattern that increases the mutual conductance (lnl) in the high current region, increases switching speed, reduces on-resistance, and further reduces the chip area and improves productivity. Among the semiconductor layers, the present invention is particularly characterized in that it can provide MIS type semiconductor devices.

尚、本発明による実施例はMO8型半導体装置を一実施
例としているが、これに限定せず、例えば、多結晶シリ
コンパターンをエミッタ領域、セルパターンをベースあ
るいはこの逆で多結晶シリ     1コンパターンを
ベース領域セルパターンをエミツタ領域としたバイポー
ラ型半導体装置で高速スイッチングを目的としたトラン
ジスタにも応用できる。
Although the embodiment according to the present invention is an MO8 type semiconductor device, the present invention is not limited to this. For example, a polycrystalline silicon pattern may be used as an emitter region and a cell pattern as a base, or vice versa. This is a bipolar semiconductor device with a base region cell pattern as an emitter region, and can also be applied to transistors aimed at high-speed switching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a>、(b)は、本発明によるMO8型半導体
装置の平面図と、そのA−A−線断面構造図を示し、第
2図乃至第4図は、他の実施例を示すものであり、第5
図(a)、(b)は従来実施例の代表的な一例を示す平
面図及びそのA−A′線断面構造図であり、第6図(a
 )〜(f )は、その試作工程図を示す。 1・・・n型半導体基板(ドレイン) 2・・・n型エピタキシャル半導体層(ドレイン)3・
・・P“型半導体層 4・・・P型半導体層(チャンネル領域)5a、5b、
5c、5d・・・絶縁膜 6・・・多結晶シリコン(ゲート電極膜)7・・・フォ
トレジスト、 8・・・n型半導体層(ソース) 9・・・A避電極材料 10・・・多結晶シリコン層開口部(セル)第  6 
FIGS. 1(a) and (b) show a plan view of an MO8 type semiconductor device according to the present invention and a cross-sectional view taken along the line A-A, and FIGS. 2 to 4 show other embodiments. The fifth
Figures (a) and (b) are a plan view and a cross-sectional structural view taken along line A-A' of the conventional embodiment, and Figure 6 (a)
) to (f) show the trial production process diagrams. 1... N-type semiconductor substrate (drain) 2... N-type epitaxial semiconductor layer (drain) 3.
...P" type semiconductor layer 4...P type semiconductor layer (channel region) 5a, 5b,
5c, 5d... Insulating film 6... Polycrystalline silicon (gate electrode film) 7... Photoresist, 8... N-type semiconductor layer (source) 9... A escape electrode material 10... Polycrystalline silicon layer opening (cell) No. 6
figure

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の第1半導体層の主面に、第1絶縁膜
を介して半導体膜又は導電体膜パターンを有し、第1半
導体層中であって前記第1絶縁膜を介して半導体膜又は
導電体膜パターンの一部が重なる位置に前記第1半導体
層とは逆導電型の第2半導体層を有し、前記第1絶縁膜
を介して該第2半導体層の表面から前記半導体膜又は導
電体膜パターンの一部が重なる位置に第1導電型の第3
半導体層を有し、前記半導体膜又は導電体膜パターンを
被覆するように第2絶縁膜を有し、該第2絶縁膜による
開口部を有し、該開口部を含み前記第2絶縁膜上に金属
電極膜を有している半導体装置において、前記導電体膜
パターンで囲まれると共に前記第1導電体層の表面に形
成された第2半導体層の平面形状は、2の整数倍の辺を
持つ多角形の半導体層パターン部と、少なくとも2つ以
上の該多角形半導体層パターン部の相隣り合う一辺間を
連結する連結用半導体層パターン部とによって連続的に
形成され、該連結用半導体層パターン部は前記多角形半
導体層パターン部よりも細く形成されていることを特徴
とする半導体装置。
(1) A semiconductor film or a conductor film pattern is provided on the main surface of a first semiconductor layer of a first conductivity type with a first insulating film interposed therebetween, A second semiconductor layer having a conductivity type opposite to that of the first semiconductor layer is provided at a position where a part of the semiconductor film or conductor film pattern overlaps, and A third conductive layer of the first conductivity type is provided at a position where the semiconductor film or conductor film pattern partially overlaps.
a semiconductor layer, a second insulating film covering the semiconductor film or the conductive film pattern, an opening formed by the second insulating film, and a second insulating film including the opening; In a semiconductor device having a metal electrode film, the planar shape of the second semiconductor layer surrounded by the conductor film pattern and formed on the surface of the first conductor layer has sides that are an integral multiple of 2. a polygonal semiconductor layer pattern section, and a connecting semiconductor layer pattern section connecting adjacent sides of at least two or more polygonal semiconductor layer pattern sections; A semiconductor device characterized in that the pattern portion is formed thinner than the polygonal semiconductor layer pattern portion.
(2)前記多角形半導体層パターン部は8角形状であり
、前記連結用半導体層パターン部は前記8角形状半導体
パターン部の2個又は3個の相隣り合う辺間を連結する
1個又は2個のパターン部であることを特徴とする特許
請求の範囲第1項記載の半導体装置。
(2) The polygonal semiconductor layer pattern portion has an octagonal shape, and the connecting semiconductor layer pattern portion is one or more connecting semiconductor layer pattern portions that connect two or three adjacent sides of the octagonal semiconductor pattern portion. The semiconductor device according to claim 1, characterized in that there are two pattern portions.
JP60007906A 1985-01-20 1985-01-20 Semiconductor device Pending JPS61168263A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60007906A JPS61168263A (en) 1985-01-20 1985-01-20 Semiconductor device
US07/251,006 US4833513A (en) 1985-01-20 1988-09-27 MOS FET semiconductor device having a cell pattern arrangement for optimizing channel width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007906A JPS61168263A (en) 1985-01-20 1985-01-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61168263A true JPS61168263A (en) 1986-07-29

Family

ID=11678599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007906A Pending JPS61168263A (en) 1985-01-20 1985-01-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61168263A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0282705A2 (en) * 1987-03-18 1988-09-21 Motorola Inc. FET structure arrangement having low on resistance
US4801986A (en) * 1987-04-03 1989-01-31 General Electric Company Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method
US5016066A (en) * 1988-04-01 1991-05-14 Nec Corporation Vertical power MOSFET having high withstand voltage and high switching speed
WO2013103051A1 (en) * 2012-01-06 2013-07-11 三菱電機株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586170A (en) * 1981-07-02 1983-01-13 Nec Corp Field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586170A (en) * 1981-07-02 1983-01-13 Nec Corp Field effect transistor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0282705A2 (en) * 1987-03-18 1988-09-21 Motorola Inc. FET structure arrangement having low on resistance
US4775879A (en) * 1987-03-18 1988-10-04 Motorola Inc. FET structure arrangement having low on resistance
US4801986A (en) * 1987-04-03 1989-01-31 General Electric Company Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method
US5016066A (en) * 1988-04-01 1991-05-14 Nec Corporation Vertical power MOSFET having high withstand voltage and high switching speed
WO2013103051A1 (en) * 2012-01-06 2013-07-11 三菱電機株式会社 Semiconductor device
JP5687364B2 (en) * 2012-01-06 2015-03-18 三菱電機株式会社 Semiconductor device
JPWO2013103051A1 (en) * 2012-01-06 2015-05-11 三菱電機株式会社 Semiconductor device
US9324782B2 (en) 2012-01-06 2016-04-26 Mitsubishi Electric Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US5192989A (en) Lateral dmos fet device with reduced on resistance
US8148224B2 (en) Insulated gate type semiconductor device and method for fabricating the same
JP2585331B2 (en) High breakdown voltage planar element
US20220157807A1 (en) Mosfet device of silicon carbide having an integrated diode and manufacturing process thereof
JPH09102602A (en) Mosfet
US20090020765A1 (en) Semiconductor Device and Method for Manufacturing Same
JPH04229661A (en) Insulated-gate bipolar transistor and its manufacture
JP2002540602A (en) Electronic device with trench gate field effect element
US6955970B1 (en) Process for manufacturing a low voltage MOSFET power device having a minimum figure of merit
US7189608B2 (en) Semiconductor device having reduced gate charge and reduced on resistance and method
JPH08181308A (en) Insulated gate semiconductor device
JPS6237965A (en) Longitudinal semiconductor device and manufacture thereof
DE102017118121A1 (en) Semiconductor device and manufacturing method thereof
CN111354793A (en) Field effect transistor, preparation method and electronic equipment
JPH0286136A (en) Semiconductor element and manufacture thereof
JPS61168263A (en) Semiconductor device
JPH1041499A (en) Dmos fet of high breakdown voltage
JP3448138B2 (en) Method for manufacturing semiconductor device
JPS62183555A (en) Semiconductor device
JP2723868B2 (en) Semiconductor device
US20230155021A1 (en) Silicon carbide semiconductor device
JP3008480B2 (en) Semiconductor device
JP2000294783A (en) Power mos transistor and its manufacture
JPS6216572A (en) Vertical type semiconductor device and manufacture thereof
JPH0493083A (en) Semiconductor device and manufacture thereof