JPS61168229A - Apparatus for vapor growth - Google Patents

Apparatus for vapor growth

Info

Publication number
JPS61168229A
JPS61168229A JP961085A JP961085A JPS61168229A JP S61168229 A JPS61168229 A JP S61168229A JP 961085 A JP961085 A JP 961085A JP 961085 A JP961085 A JP 961085A JP S61168229 A JPS61168229 A JP S61168229A
Authority
JP
Japan
Prior art keywords
reaction
gas
plasma
reaction tube
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP961085A
Other languages
Japanese (ja)
Inventor
Shuichi Ohashi
修一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP961085A priority Critical patent/JPS61168229A/en
Publication of JPS61168229A publication Critical patent/JPS61168229A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To increase a binding energy of a growing film by a construction wherein a carrier gas made into plasma is introduced into a reaction tube into which a reaction gas is introduced, so as to facilitate a vapor growth on a substrate. CONSTITUTION:While substrates 14 are disposed in a reaction chamber 15 in a reaction tube 11 provided with a supply port 12 and an exhaust port 13 for a reaction gas, a plasma generator 16 is connected to the reaction chamber 15 through a window 17. Then, a mixture gas of a silane gas and a phosphorous compound is enclosed in the reaction tube 11, and simultaneously a carrier gas of argon, nitrogen or the like is made into plasma in the generator 16 and introduced into the chamber 15. The decomposition of the reaction gas is facilitated by a heat energy of a heater 5 and by the energy of the plasma.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相成長方法に係わり、特に減圧CVD装置内
に配置された基板を外部加熱とプラズマ化したキャリア
ガスを導入することにより効率的に気相成長を行う製造
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vapor phase growth method, and particularly to a method for efficiently growing a substrate placed in a low-pressure CVD apparatus by externally heating the substrate and introducing a carrier gas turned into plasma. The present invention relates to a manufacturing apparatus that performs vapor phase growth.

〔従来の技術〕[Conventional technology]

従来から半導体装置の製造工程では、常圧CVD装置に
よる気相成長が採用されているが、特に最近では膜厚の
均−性等から減圧CVD装置で気相成長を行う方法が広
範囲に利用され、例えば、半導体装置の絶縁膜として使
用される燐珪酸ガラス(PSG)等は減圧CVD装置で
形成されるのが普通である。
Vapor phase growth using normal pressure CVD equipment has traditionally been used in the manufacturing process of semiconductor devices, but recently, vapor phase growth using low pressure CVD equipment has been widely used for reasons such as uniformity of film thickness. For example, phosphosilicate glass (PSG) used as an insulating film for semiconductor devices is usually formed using a low pressure CVD apparatus.

第2図は、減圧CVD装置を説明するための断面図であ
る。
FIG. 2 is a sectional view for explaining the low pressure CVD apparatus.

反応管1があって、その反応管に反応ガスの供給孔2と
排気孔3があり、反応管内部には被気相成長基板として
半導体ウェハ4が配置され、そのウェハを加熱するため
に、反応管の外部に加熱装置5が設けられている。
There is a reaction tube 1, and the reaction tube has a reaction gas supply hole 2 and an exhaust hole 3. Inside the reaction tube, a semiconductor wafer 4 is placed as a substrate to be subjected to vapor phase growth, and in order to heat the wafer, A heating device 5 is provided outside the reaction tube.

例えば、PSGを形成する場合に使用される反応ガスは
、シランガスが100cc/分、酸素ガスが100cc
/分、燐酸10cc/分程度が適量であり、減圧CVD
装置の圧力は0.5Torrにして、ウェハの加熱温度
は約450℃程度であって、この条件でPSGをCVD
成膜を行うと、PSGの膜厚の生成レートは、150人
m1分である。
For example, the reaction gases used when forming PSG are silane gas at 100 cc/min and oxygen gas at 100 cc/min.
The appropriate amount is about 10 cc/min of phosphoric acid, and low pressure CVD
The pressure of the apparatus was set to 0.5 Torr, and the heating temperature of the wafer was approximately 450°C. Under these conditions, PSG was subjected to CVD.
When the film is formed, the production rate of the PSG film thickness is 150 people/m/min.

第3図は、この減圧CVD装置を使用して形成された半
導体に使用されたPSGの断面図であるが、シリコン基
板11があり、D−PSG12が形成されていて、その
面にコンタク1−ホール13が設けられていて、そこか
らアルミニウム電極14が引き出されて、更にその表面
がC−PSG15によって被覆されている。
FIG. 3 is a cross-sectional view of a PSG used in a semiconductor formed using this low pressure CVD apparatus. There is a silicon substrate 11, a D-PSG 12 is formed, and a contact 1- A hole 13 is provided, from which an aluminum electrode 14 is drawn out, and its surface is further covered with C-PSG 15.

このような構造では、屡々D−PSG12とアルミニウ
ム電極14との接面の端部A部からc−psG15の段
差部Bまでの肩部分での結合力が弱く、これが原因にな
って亀裂16を生じ、この亀裂が剥離すると、その剥δ
1を部分からプラスチ・ツクのパ・ノケージを通して、
湿度による水分が内部に浸入してアルミニウム電極14
が腐食するという欠点があった。
In such a structure, the bonding force is often weak at the shoulder part from the end A of the contact surface between the D-PSG 12 and the aluminum electrode 14 to the stepped part B of the c-PSG 15, and this causes the crack 16. When this crack occurs, the peeling δ
Pass part 1 through the plastic case from part 1,
Moisture due to humidity infiltrates the aluminum electrode 14.
The disadvantage was that it corroded.

このような段差部分に発生する剥離は、PSGの結合力
が脆弱であるために発生するものであるが、PSGを形
成した後、これを1000’c程度で加熱することによ
り結合力PSGの結合力を強化することができ亀裂の発
生を防止することが出来るが、半導体装置の場合にはア
ルミニウムがあるために高温処理が困難であるという不
具合がある。
Peeling that occurs at such stepped portions occurs because the bonding force of PSG is weak. Although it is possible to strengthen the force and prevent the occurrence of cracks, there is a problem in that semiconductor devices have difficulty in high-temperature processing due to the presence of aluminum.

〔発明が解決しよ・うとする問題点〕[Problem that the invention attempts to solve]

上記の減圧CVDによる成長膜の形成方法では、反応ガ
スの雰囲気中でウェハを外部加熱するのみでは、気相成
長された膜の結合エネルギーが小であることが問題点で
あり、そのために膜に亀裂が発生して剥離の原因になる
The problem with the above-mentioned method of forming a film grown by low pressure CVD is that the bonding energy of the vapor-phase grown film is small if only the wafer is externally heated in a reaction gas atmosphere. Cracks occur and cause peeling.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解消した気相成長方法を提供す
るもので、その手段は、反応管とその外部に加熱装置を
有する減圧CVD装置において、反応管内の基板を、上
記加熱装置によって加熱をすると共に、反応ガスが導入
された該反応管内にプラズマ化したキャリアガスを導入
して該基板上に気相成長を行う気相成長装置によって達
成できる。
The present invention provides a vapor phase growth method that solves the above-mentioned problems.The present invention provides a method for vapor phase growth that solves the above-mentioned problems. This can be achieved using a vapor phase growth apparatus that performs vapor phase growth on the substrate by introducing a carrier gas turned into plasma into the reaction tube into which the reaction gas is introduced.

〔作用〕[Effect]

本発明は、減圧CVDによる気相成長の成長膜の結合エ
ネルギーの不足を強化するために、減圧CVDの反応管
内の基板を外部加熱をすると共に、反応管内にプラズマ
化したキャリアガスを導入することにより、加熱エネル
ギーとプラズマのエネルギーの相乗効果により、反応ガ
スの分解を促進して気相成長を行い、成長膜の結合エネ
ルギーを大きくするように考慮したものである。
In order to strengthen the lack of bonding energy in a film grown by vapor phase growth by low pressure CVD, the present invention externally heats the substrate in a low pressure CVD reaction tube and introduces a carrier gas turned into plasma into the reaction tube. The synergistic effect of the heating energy and the plasma energy promotes the decomposition of the reactive gas to perform vapor phase growth, thereby increasing the bonding energy of the grown film.

〔実施例〕〔Example〕

第1図は本発明の実施例である減圧気相成長装置の模式
断面図である。
FIG. 1 is a schematic cross-sectional view of a reduced pressure vapor phase growth apparatus which is an embodiment of the present invention.

反応管11があり、反応ガスの供給部12と排気孔13
があって、基板14が反応管内の反応室15に配置され
、−力木発明によるプラズマ発生装置16は反応室15
と窓17を介して結合され、基板14と数百mmの間隔
で配置されている。
There is a reaction tube 11, a reaction gas supply section 12 and an exhaust hole 13.
The substrate 14 is placed in the reaction chamber 15 in the reaction tube, and the plasma generating device 16 according to Rikiki's invention is placed in the reaction chamber 15.
and the substrate 14 through a window 17, and are arranged at an interval of several hundred mm from the substrate 14.

プラズマ発生装置16は、マイクロ波発振器18、導波
管19、石英等からなるマイクロ波導波管20を有し、
マイクロ波によってキャリアガスを励振してプラズマ化
するものである。
The plasma generator 16 includes a microwave oscillator 18, a waveguide 19, and a microwave waveguide 20 made of quartz or the like,
The carrier gas is excited by microwaves and turned into plasma.

反応管11には気相成長に必要な反応ガスであるシラン
ガス(Sin4)及び燐化合物(円13)との混合ガス
を数mmTorr程度に封入し、同時にプラズマ発生装
置16ではアルゴン又は窒素等のキャリアガスをプラズ
マ化して反応室15に導入する。
The reaction tube 11 is filled with a mixed gas of silane gas (Sin4) and a phosphorus compound (circle 13), which are reaction gases necessary for vapor phase growth, at a pressure of several mmTorr, and at the same time, the plasma generator 16 is filled with a carrier such as argon or nitrogen. The gas is turned into plasma and introduced into the reaction chamber 15.

本発明によると、気相成長装置内で、キャリアガスのプ
ラズマのエネルギーと外部の加熱装置5で加熱される加
熱エネルギーと相乗されたエネルギーとによって、反応
ガスの分解が促進されて気相成長が行われることになる
According to the present invention, in the vapor phase growth apparatus, the decomposition of the reaction gas is promoted by the energy of the plasma of the carrier gas and the heating energy heated by the external heating device 5, which is synergistic, and the vapor phase growth is accelerated. It will be done.

尚、本発明による反応室とプラズマ発生装置を窓によっ
て隔離する理由は、反応ガスであるシランガス及び燐化
合物との混合ガスを直接にプラズマイオン化すると、反
応ガスイオンが基板を衝撃することになり、又シランが
未分解のままで反応することがあって必ずしも良質の膜
を得ることが困難になるからである。
The reason why the reaction chamber and the plasma generator according to the present invention are isolated by a window is that if a mixed gas of silane gas and a phosphorus compound, which are reactive gases, is directly plasma ionized, the reactive gas ions will bombard the substrate. Furthermore, silane may react without being decomposed, making it difficult to obtain a good quality film.

本発明により気相成長させた膜層は極めて強固なエネル
ギーで結合しているために、剥離や亀裂を生ずることが
なく良質の成膜が可能になると共に、反応ガスのエネル
ギーが大きいために低温による気相成長も可能になる。
Since the film layer grown in vapor phase according to the present invention is bonded with extremely strong energy, it is possible to form a high-quality film without peeling or cracking. vapor phase growth is also possible.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明の気相成長装置を使用
することにより、良質の成膜が可能になって品質が向」
二に供し得るという効果大なるものがある。
As explained in detail above, by using the vapor phase growth apparatus of the present invention, it is possible to form a high-quality film and the quality is improved.
There is something very effective that can be used for two purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例である減圧気相成長装置の模式
断面図、 第2図は、従来の減圧CVD装置を説明するための断面
図、 第3図は、減圧CVD装置を使用した半導体装置の製造
工程を説明するための断面図、図において、11は反応
管、12は反応ガスの供給部、13は排気孔、14は基
板、15は反応室、16はプラズマ発生装置、17は窓
、18はマイクロ波発振器、19は導波管、20はマイ
クロ波透過窓をそれぞれ示す。 第1図
Fig. 1 is a schematic cross-sectional view of a low-pressure vapor phase growth apparatus which is an embodiment of the present invention, Fig. 2 is a cross-sectional view for explaining a conventional low-pressure CVD apparatus, and Fig. 3 is a schematic cross-sectional view of a low-pressure CVD apparatus using a low-pressure CVD apparatus. 11 is a reaction tube, 12 is a reaction gas supply section, 13 is an exhaust hole, 14 is a substrate, 15 is a reaction chamber, 16 is a plasma generator, 17 is a sectional view for explaining the manufacturing process of a semiconductor device. 18 is a window, 18 is a microwave oscillator, 19 is a waveguide, and 20 is a microwave transmission window. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 反応管とその外部に加熱装置を有する減圧CVD装置に
おいて、反応管内の基板を上記加熱装置によって加熱を
すると共に、反応ガスが導入された該反応管内にプラズ
マ化したキャリアガスを導入して該基板上に気相成長を
行うことを特徴とする気相成長装置。
In a low-pressure CVD apparatus having a reaction tube and a heating device outside the reaction tube, the substrate inside the reaction tube is heated by the heating device, and a carrier gas turned into plasma is introduced into the reaction tube into which the reaction gas has been introduced to heat the substrate. A vapor phase growth apparatus characterized by performing vapor phase growth on the top.
JP961085A 1985-01-21 1985-01-21 Apparatus for vapor growth Pending JPS61168229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP961085A JPS61168229A (en) 1985-01-21 1985-01-21 Apparatus for vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP961085A JPS61168229A (en) 1985-01-21 1985-01-21 Apparatus for vapor growth

Publications (1)

Publication Number Publication Date
JPS61168229A true JPS61168229A (en) 1986-07-29

Family

ID=11725064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP961085A Pending JPS61168229A (en) 1985-01-21 1985-01-21 Apparatus for vapor growth

Country Status (1)

Country Link
JP (1) JPS61168229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239923A (en) * 1987-03-27 1988-10-05 Oki Electric Ind Co Ltd Organic metal chemical vapor growth method and apparatus thereof
US4919077A (en) * 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919077A (en) * 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus
JPS63239923A (en) * 1987-03-27 1988-10-05 Oki Electric Ind Co Ltd Organic metal chemical vapor growth method and apparatus thereof

Similar Documents

Publication Publication Date Title
EP0572704B1 (en) Method for manufacturing a semiconductor device including method of reforming an insulating film formed by low temperature CVD
EP0478174A2 (en) Silicon dioxide deposition method and apparatus
JPH03155625A (en) Manufacture of plasma cvd film
US7309662B1 (en) Method and apparatus for forming a film on a substrate
WO1999050899A1 (en) Method for forming film
EP0047112B1 (en) Method of forming phosphosilicate glass films
Claassen et al. On the relation between deposition conditions and (mechanical) stress in plasma silicon nitride layers
US5045346A (en) Method of depositing fluorinated silicon nitride
JPS6450429A (en) Formation of insulating film
JPH06333857A (en) Device and method for forming film
JPH01143221A (en) Manufacture of insulating thin film
JPH01204434A (en) Manufacture of insulating thin film
JPS61168229A (en) Apparatus for vapor growth
JPS6114726A (en) Treatment of semiconductor substrate
JPS5941773B2 (en) Vapor phase growth method and apparatus
JPS59177919A (en) Selective growth of thin film
JPH01275745A (en) Silicon nitride thin film and its manufacture
JPH058271B2 (en)
JPH02102534A (en) Formation of semiconductor device
JPS60211847A (en) Forming method of insulating film
JPH07335643A (en) Film forming method
JPH0318803A (en) Production of optical waveguide and optical waveguide
JPS63122225A (en) Method for growing silicon oxide film of more than three elements
JPH0361377A (en) Microwave-plasma film depositing device
KR0160543B1 (en) Method for depositing high quality silicon nitride films