JPH01204434A - Manufacture of insulating thin film - Google Patents

Manufacture of insulating thin film

Info

Publication number
JPH01204434A
JPH01204434A JP2945988A JP2945988A JPH01204434A JP H01204434 A JPH01204434 A JP H01204434A JP 2945988 A JP2945988 A JP 2945988A JP 2945988 A JP2945988 A JP 2945988A JP H01204434 A JPH01204434 A JP H01204434A
Authority
JP
Japan
Prior art keywords
adsorbing
thin film
substrate
insulating thin
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2945988A
Other languages
Japanese (ja)
Inventor
Masayasu Ishiko
雅康 石子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2945988A priority Critical patent/JPH01204434A/en
Publication of JPH01204434A publication Critical patent/JPH01204434A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the formation of a film in the order of an atomic layer with good reproducibility over a wide area, by supplying a halogen compound incorporating a silicon element on a substrate, and alternately repeating a step for forming an adsorbing layer and a step for introducing at least one of nitrogen, oxygen or gas of a compound of nitrogen or oxygen. CONSTITUTION:A first step is a step wherein a silicon compound or its radical is attached on the surface of a substrate. Adsorbing conditions and manufacturing conditions are selected so that adsorbing energy of the adsorbing species of the silicon compound and the like into a ground is higher than adsorbing energy of adsorbing species into an existing adsorbing layer. Then, the conditions for forming a two-dimensional adsorbing layer are obtained. In a second step, the adsorbing layer which is formed in the first step is oxidized or nitrided. The first and second steps such as these are alternately performed. In this way, a uniform thin film characterized by excellent film thickness control in the order of an atomic layer and excellent reproducibility in the substrate having a large area can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁薄膜の製造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to the production of insulating thin films.

〔従来の技術〕[Conventional technology]

近年、電子装置素子の小型化、高性能化、性能向上の手
段として絶縁薄膜が非常に重要な働きをするようになっ
た。特にシリコンを含む絶縁薄膜は、薄膜トランジスタ
や各種半導体素子のゲート絶縁膜やキャパシター用絶縁
薄膜等、その性能が素子特性に大きな影響をおよぼす。
In recent years, insulating thin films have come to play an extremely important role as a means of downsizing, improving performance, and improving the performance of electronic device elements. In particular, the performance of insulating thin films containing silicon, such as gate insulating films of thin film transistors, various semiconductor devices, and insulating thin films for capacitors, has a great influence on device characteristics.

更にパッジベージ、yや層間絶縁に使用する絶縁薄膜は
、信頼性向上に必要不可決である。このような絶縁薄膜
は従来、常圧あるいは減圧下での化学的気相成長技術や
塗布法など化学的方法や真空蒸着法やスパッタリング法
など物理的方法で製造されている。
Furthermore, insulating thin films used for padding and interlayer insulation are essential for improving reliability. Such insulating thin films have conventionally been manufactured by chemical methods such as chemical vapor deposition techniques and coating methods under normal pressure or reduced pressure, and physical methods such as vacuum evaporation methods and sputtering methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

絶縁薄膜の応用範囲が広がるKつれ、大面積基板上に均
一に再現性よく成膜する必要性が高まってきている。特
にデイスプレィ用薄膜素子では重要な問題である。従来
技術では成膜中のガス流量φ圧力の精密制御や蒸発量・
投入電力、基板温度とその分布、ガスの流れ方の検討や
基板回転環、非常に多くの製造パラメータの注意深い管
理が必要であった。その他成膜時間の精確な制御により
As the range of applications for insulating thin films expands, there is an increasing need to form films uniformly and with good reproducibility on large-area substrates. This is a particularly important problem in thin film elements for displays. Conventional technology requires precise control of gas flow rate φ pressure during film formation, evaporation amount,
Careful management of numerous manufacturing parameters was required, including input power, substrate temperature and its distribution, consideration of gas flow, and substrate rotation ring. Other features include precise control of film deposition time.

間接的な膜厚制御をしていた。このように、薄膜製造パ
ラメータは多岐にわたり、かつその制御に多大な努力が
払われているのが現状である。しかしながら、基板の大
型化とともに、再現性よく均一な膜厚を有する絶縁薄膜
形成は、ますます困難になってきている。特にデイスプ
レイノ(ネル用絶縁薄膜は、基板が非常に大きい上K、
例えば膜厚の変動がパネルの性能や信頼性に影響を与え
る。
The film thickness was indirectly controlled. As described above, the current situation is that there are a wide variety of thin film manufacturing parameters, and great efforts are being made to control them. However, as substrates become larger, it is becoming increasingly difficult to form an insulating thin film having a uniform thickness with good reproducibility. In particular, the insulating thin film for display panels has a very large substrate.
For example, variations in film thickness affect panel performance and reliability.

更に近年盛んに研究されている超薄膜を利用した新しい
素子も、原子層オーダーの成長速度制御を正確に、再現
性よくおこなう製造技術が不可欠である。しかし、前記
のごとく、従来技術ではこのような要求を満すことが困
難であった。
Furthermore, new devices using ultra-thin films, which have been actively researched in recent years, require manufacturing technology that accurately and reproducibly controls growth rates on the order of atomic layers. However, as mentioned above, it has been difficult to satisfy these requirements with the conventional techniques.

本発明の目的は、広い面積にわたり再現性よく原子層オ
ーダの成膜制御が可能である新しい絶縁薄膜製造方法を
提供することにある。
An object of the present invention is to provide a new method for manufacturing an insulating thin film, which enables film formation control on the order of atomic layers with good reproducibility over a wide area.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による絶縁薄膜製造方法は、少なくとも1以上の
シリコン元素を含むノーロゲ/化合物あるいはそのラジ
カルを基板表面に供給し、付着させる第1の工程と、窒
素あるいは酸素あるいはそれらの化合物気体のうち少な
くとも1以上の気体を基板表面に供給する第2の工程を
交互におこなうという構成を有している。
The insulating thin film manufacturing method according to the present invention includes a first step of supplying and adhering a nologate/compound containing at least one silicon element or its radical to the substrate surface, and at least one of nitrogen, oxygen, or a compound gas thereof. The second step of supplying the gas to the substrate surface is alternately performed.

〔作用〕[Effect]

8glの工程は基本表面にシリコン化合物あるいはその
ラジカル?付着させる工程である。このとき吸着エネル
ギーの不充分による表面からの脱離あるいは吸着分子間
の立体障害等により、吸着層の被接率が1以下となるこ
とがある。しかし、この場合重要なことは、ヴオルマー
ウェーバ様式の島状多層吸着成長を生じさせないことで
ある。即ち、シリコン化合物等の吸着種が吸着する下地
への吸着エネルギーの方が、既吸着層への該吸着種吸着
エネルギーより高くなるように吸N種形態や製造条件f
t選択すれば2次元吸着層形成条件が得られる。本発明
者は各種シリコ/化合物を用い、その条件を探索した。
Is the 8gl process basically a silicon compound or its radicals on the surface? This is the process of attaching it. At this time, the coverage ratio of the adsorption layer may become less than 1 due to desorption from the surface due to insufficient adsorption energy or steric hindrance between adsorbed molecules. However, what is important in this case is not to cause the island-like multilayer adsorption growth of the Volmer-Weber style. In other words, the form of the adsorbed N species and the manufacturing conditions f are adjusted so that the adsorption energy of adsorbed species such as silicon compounds to the substrate is higher than the adsorption energy of the adsorbed species to the already adsorbed layer.
By selecting t, two-dimensional adsorption layer formation conditions can be obtained. The present inventor used various silico/compounds to explore the conditions.

その結果、シリコンのハロゲン化合物あるいはそのラジ
カルが適当であることが明らかとなった。その理由は、
今のところ明確ではないが、例えばシリコン塩化物は、
5iCI!zや5iCI!  の形で吸17 L、塩素
が適膳な温度の下では多層吸着を防止する。このため、
この吸着層は2次元的になっていると考えられる。更に
ノ・ロゲ/化合物は適当な温度で酸化あるいは窒化の反
応をスムーズにおこなう。また、とのノ10ゲン化合物
を使用した場合、吸着層被覆率が1以下であっても1本
発明の第1及び第2の工程をくり返すことで均一な薄膜
を形成できた。これはノ)ロゲ/化合物を使用すると局
所的な多層吸着層が生じないことを示唆している。
As a result, it became clear that silicon halogen compounds or their radicals were suitable. The reason is,
Although it is not clear at present, silicon chloride, for example,
5iCI! z and 5iCI! In the form of 17 L, chlorine prevents multilayer adsorption at appropriate temperatures. For this reason,
This adsorption layer is considered to be two-dimensional. Furthermore, the compound smoothly undergoes oxidation or nitridation reactions at appropriate temperatures. Furthermore, when the Tonogen compound was used, even if the adsorption layer coverage was 1 or less, a uniform thin film could be formed by repeating the first and second steps of the present invention. This suggests that localized multilayer adsorption layers do not occur when using the No. 1 loge/compound.

l@2の工程は%第1の工程で形成したシリコン・ハロ
ゲン化合物あるいはそのラジカルでなる吸着niを酸化
あるいは窒化させる工程である。この工程は表面吸着層
のみを反応させるものであり、窒素、酸素おるいはそれ
らの化合物気体の導入後非常に早い段階で該表面反応は
終了する。表面化学反応が生じる吸着層の下地層は前段
階で窒化あるいは酸化反応がおこなわれている。したが
って。
The step 1@2 is a step of oxidizing or nitriding the adsorbed ni formed in the first step using the silicon-halogen compound or its radicals. In this step, only the surface adsorption layer is reacted, and the surface reaction is completed at a very early stage after the introduction of nitrogen, oxygen, or a gaseous compound thereof. The underlying layer of the adsorption layer where the surface chemical reaction occurs has undergone a nitriding or oxidation reaction in the previous stage. therefore.

この表面反応が終了した以降、何ら不都合な反応は生じ
ない。またこの理由により、大面積基板に形成された吸
着層を均一に窒化あるいは酸化せしめることも可能にな
った。
After this surface reaction is completed, no untoward reactions occur. For this reason, it has also become possible to uniformly nitride or oxidize an adsorption layer formed on a large-area substrate.

このように、第1の工程における吸着層形成および第2
の工程における既吸着層の酸化、窒化という作用を利用
し、原子層オーダーで薄膜形成をおこなっている。すで
に述べたように前述の作用は広い範囲にわたって均一に
生じさせることが可能である。即ち、従来技術では困難
であった、広い範囲にわたって均一な絶縁薄膜を原子層
オーダーで制御し、形成することを可能とした。装置固
有のガスの流れや反応炉内・基板内温度分布の均一化や
基板移動・回転など、従来均一な絶縁膜形成に必要であ
った多くの工夫を不用とした。
In this way, the adsorption layer formation in the first step and the second
By utilizing the effects of oxidation and nitridation of the adsorbed layer in the process, thin films are formed on the order of atomic layers. As already mentioned, the aforementioned effects can be produced uniformly over a wide range. In other words, it has become possible to control and form a uniform insulating thin film over a wide range on the order of atomic layers, which was difficult with conventional techniques. This eliminates the need for many devices that were conventionally necessary to form a uniform insulating film, such as gas flow unique to the device, uniform temperature distribution inside the reactor and substrate, and substrate movement and rotation.

一方、第1の工程と第2の工程を1サイクルとし、その
lサイクルで原子層オーダの成長1.?こなう方法であ
るため、成膜に必要とされる時間は従来技術のものより
長くなる。しかし、前述の作用を利用している為、大面
積基板を多数改−度に処理しても、均一な膜厚を有する
絶縁薄膜を再現性よく形成できる。したがって、本発明
による絶縁薄膜製造の総合的スループットは決して低く
ない。
On the other hand, the first step and the second step are made into one cycle, and in that one cycle, growth on the order of atomic layer 1. ? Because of this method, the time required for film formation is longer than that of the prior art. However, since the above-mentioned effect is utilized, an insulating thin film having a uniform thickness can be formed with good reproducibility even if a large-area substrate is processed multiple times. Therefore, the overall throughput of manufacturing an insulating thin film according to the present invention is not low.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

〔実施例1〕 本発明に使用した絶縁薄膜製造装置のブロック図を第1
図に示す。本実施例ではジクロロシラ?を第1の工程用
出発原料として用いた。本実施例では窒化シリコン薄膜
の製造手順を述る。第2の工程に使用した気体は100
%のアンモニアNHsである。第1図に示すように、石
英製の反応室1にはジクロロシラン供給系、アンモニア
供給系および置換ガス(Ar)供給系の3系統が接続さ
れている。大型の基板5を数枚反応室IK導入した後、
反応室を10−’ Torr以下まで排気する。このと
き、酸素、Hz O等の残留ガス背圧をできるだけ低く
することが重要である。成膜速度が低い分、残留ガスの
膜質におよぼす影響が大きいためである。ジクロロシラ
ンおよびアンモニア供給系に接続されている三方弁2,
3をそれぞれ制御してジクロロシラ/およびアンモニア
を交互に反応室1に導びく。三方弁2.3はマイクロコ
ンピュータにより制御されている。電気炉6により基板
加熱をおこなう。約800Cまで加熱する能力がある。
[Example 1] A block diagram of the insulating thin film manufacturing apparatus used in the present invention is shown in the first example.
As shown in the figure. In this example, dichlorosila? was used as the starting material for the first step. In this example, a procedure for manufacturing a silicon nitride thin film will be described. The gas used in the second step was 100
% ammonia NHs. As shown in FIG. 1, three systems, a dichlorosilane supply system, an ammonia supply system, and a replacement gas (Ar) supply system, are connected to a reaction chamber 1 made of quartz. After introducing several large substrates 5 into the reaction chamber IK,
Evacuate the reaction chamber to below 10-' Torr. At this time, it is important to keep the back pressure of residual gases such as oxygen and Hz O as low as possible. This is because the influence of residual gas on the film quality is large because the film formation rate is low. three-way valve 2, connected to the dichlorosilane and ammonia supply system;
3, and dichlorosilica/and ammonia are alternately introduced into the reaction chamber 1. The three-way valve 2.3 is controlled by a microcomputer. The electric furnace 6 heats the substrate. It has the ability to heat up to about 800C.

本実施例では、最初700Cまで加熱した後、300C
で安定化させる。まずジクロロシランおよびアンモニア
をそれぞれ排気側に流し安定化させる。次に置換ガス(
Ar)  を反応室に導入する。このとき反応室内の圧
力がITorr前後となるように、圧力調整パルプ7を
調整する。またこのときジクロロシラン、アンモニア供
給ラインの圧力が5Torr以上となるように圧力調整
バルブ12.14  を調整する。まず2秒間三方弁2
を操作して反応室側聞、排気側閉として1反応室にジク
ロロシランを供給する。これはジクロロシランを基板表
面上に付着させ、シリコン化合物の吸着層を形成する第
1の工程である。次に1秒間三方弁2を反応室側聞とし
、ジクロロシランの供給を終了させ1反応室内のガスを
置換する。次に三方弁3を2秒間1反応室側開、排気側
閉としてアンモニアを基板上に供給する。これはシリコ
ン化合物吸着層を窒化させる第2の工程である。この第
2の工程終了後、1秒間ガス置換をおこなう。
In this example, after first heating to 700C,
stabilize it. First, dichlorosilane and ammonia are respectively poured into the exhaust side and stabilized. Next, the displacement gas (
Ar) is introduced into the reaction chamber. At this time, the pressure adjusting pulp 7 is adjusted so that the pressure in the reaction chamber is around ITorr. At this time, the pressure regulating valves 12 and 14 are adjusted so that the pressure in the dichlorosilane and ammonia supply lines is 5 Torr or more. First, 3-way valve 2 for 2 seconds
is operated to close the reaction chamber side and exhaust side to supply dichlorosilane to one reaction chamber. This is the first step in which dichlorosilane is deposited on the substrate surface to form a silicon compound adsorption layer. Next, the three-way valve 2 is closed to the side of the reaction chamber for 1 second to terminate the supply of dichlorosilane and replace the gas in the reaction chamber. Next, the three-way valve 3 is opened for 2 seconds on the reaction chamber side and closed on the exhaust side to supply ammonia onto the substrate. This is the second step of nitriding the silicon compound adsorption layer. After completing this second step, gas replacement is performed for 1 second.

以上一連の手順きを1サイクルとして、所定のサイクル
数だけくり返す。
The above series of steps is regarded as one cycle, and is repeated a predetermined number of cycles.

1サイクルで1分子層の成長ではなかったが、成長膜厚
は正確にサイクル数に比例していた。またその再現性も
確認した。即ち本発明による製造法は、原子層オーダー
の成膜制御が可能であった。
Although one molecular layer was not grown in one cycle, the thickness of the grown film was exactly proportional to the number of cycles. We also confirmed its reproducibility. That is, the manufacturing method according to the present invention enables film formation control on the order of atomic layers.

基板内の膜厚分布は±1%以下と非常に均一であった。The film thickness distribution within the substrate was extremely uniform with ±1% or less.

本実施例ではジクロロシラ/を用いたが、他にトリクロ
ロシラン、四塩化シリコン等を用いてもよい。更にアン
モニアの代りに酸素、HzO等を使用してシリコン酸化
膜を製造することができた。あるいはアンモニアとNz
O,Nxの混合気体を使用することにより、酸化窒化シ
リコン薄膜を形成することもできた。このとき薄膜中の
酸素と窒素の割合いは、供給混合ガスの酸素と窒素の割
合いで調整できた。
In this example, dichlorosilane was used, but other materials such as trichlorosilane and silicon tetrachloride may also be used. Furthermore, a silicon oxide film could be manufactured using oxygen, HzO, etc. instead of ammonia. Or ammonia and Nz
A silicon oxynitride thin film could also be formed by using a gas mixture of O and Nx. At this time, the ratio of oxygen and nitrogen in the thin film could be adjusted by adjusting the ratio of oxygen and nitrogen in the supplied mixed gas.

このように、各種ガスの組み合せでもシリコン系絶縁薄
膜が形成でき、第1の工程および第2の工程で使用する
気体を特に限定するものではない。
In this way, a silicon-based insulating thin film can be formed using a combination of various gases, and the gases used in the first step and the second step are not particularly limited.

しかし、ジクロロシラン、トリクロロシラン、四塩化シ
リコン等、使用する気体で基板温度等の製造条件はいく
らか異っていた。
However, manufacturing conditions such as substrate temperature differed somewhat depending on the gas used, such as dichlorosilane, trichlorosilane, and silicon tetrachloride.

尚、本実施例における窒化シリコン成膜では、基板温1
200〜600Cの範凹で同様な効果があった。しかし
、2000以下では吸着種の付着率(あるいは被a率)
低下や表面反応の低下等でほとんど膜の成長が認められ
なかった。また600C以上ではジクロロシラ/の分解
が進み、3次元成長が始まり均一な薄膜成長には不適当
であった。
In addition, in the silicon nitride film formation in this example, the substrate temperature was 1
A similar effect was obtained in the range of 200 to 600C. However, below 2000, the adhesion rate (or a coverage rate) of adsorbed species
Almost no film growth was observed due to a decrease in surface reaction and a decrease in surface reaction. Moreover, at temperatures above 600 C, decomposition of dichlorosilane/ is progressed and three-dimensional growth begins, which is unsuitable for uniform thin film growth.

〔実施例2〕 本実施例に使用した絶縁薄膜製造装置のブロック図を第
2図に示す。この装置は実施例1で使用した装置と基本
的には同じである。ジクロロシラン供給系および酸素供
給系どもにラジカル生成器26.27  が新たに追加
されている点が異なるところである。ラジカルは高周波
、マイクロ波あるいは直流高電圧等による放電現象や光
照射によりて生成される。本実施例ではマイクロ波放電
を利用して、ラジカルを生成している。基板22は大型
のガラス基板を用いた。反応室21にガラス基板数枚を
導入しh 10−’ Torr以下の真空にする。
[Example 2] FIG. 2 shows a block diagram of the insulating thin film manufacturing apparatus used in this example. This device is basically the same as the device used in Example 1. The difference is that radical generators 26 and 27 are newly added to the dichlorosilane supply system and the oxygen supply system. Radicals are generated by a discharge phenomenon caused by high frequency waves, microwaves, DC high voltage, etc., or by light irradiation. In this embodiment, radicals are generated using microwave discharge. As the substrate 22, a large glass substrate was used. Several glass substrates are introduced into the reaction chamber 21, and a vacuum of less than h10-' Torr is created.

真空に到達後、基板を2500に加熱する。手順は実施
例1と同様に2秒間ジクロロシランのラジカルを供給、
1秒間の置換、2秒間の酸素ラジカルの供給、再び1秒
間の置換をする。以上一連の手順を1サイクルとし、所
定の回数だけくり返す。
After reaching vacuum, heat the substrate to 2500 ℃. The procedure is the same as in Example 1, supplying dichlorosilane radicals for 2 seconds,
Replace for 1 second, supply oxygen radicals for 2 seconds, and replace again for 1 second. The above series of steps is one cycle, and is repeated a predetermined number of times.

成膜された膜は高い絶縁性を有する酸化ケイ素薄膜であ
った。膜厚分布は±1%以内と非常に均一であり、かつ
ピンホール等の欠陥はほとんどないスムーズな表面を示
していた。成長膜厚は正確にサイクル数に比例し、その
再現性も良好であった。
The film formed was a silicon oxide thin film with high insulation properties. The film thickness distribution was very uniform within ±1%, and the surface showed a smooth surface with almost no defects such as pinholes. The grown film thickness was accurately proportional to the number of cycles, and its reproducibility was also good.

−尚、ラジカル生成器はどちらか一方だけ動作させても
同様な効果を得ることができた。即ち、酸素や窒素だけ
をラジカル化させ第2工程の表面反応の活性化・低温化
を図り、第1の工程の吸着反応の基板温度とのマツチン
グをする。あるいはその逆に、第1の工程の活性化・低
温化を図るためにジクロロシラ/をラジカル化させても
同様である。また、第1の工程で使用する原料もトリク
ロロシラン、四塩化シリコンとしてもよい。同様に第2
の工程に使用する原料も窒素、窒素とNzO、アンモニ
アと酸素、Hz O、窒素と酸素、窒素とHzO等各種
組み合せで2以上の混合ガスを使用しても同様な効果を
得ることができる。
-Also, the same effect could be obtained even if only one of the radical generators was operated. That is, only oxygen and nitrogen are converted into radicals to activate and lower the temperature of the surface reaction in the second step, and to match the substrate temperature of the adsorption reaction in the first step. Or, conversely, the same effect can be obtained by radicalizing dichlorosilane/ in order to activate and lower the temperature in the first step. Further, the raw materials used in the first step may also be trichlorosilane or silicon tetrachloride. Similarly, the second
Similar effects can be obtained by using a mixture of two or more gases in various combinations as raw materials used in the process, such as nitrogen, nitrogen and NzO, ammonia and oxygen, HzO, nitrogen and oxygen, and nitrogen and HzO.

〔実施例3〕 本実施例に使用した絶縁薄膜製造装置のブロック図を第
3図に示す。この装置はIE2の工程で使用する気体、
アンモニアとN@Oがそれぞれ別々の供給系より導入で
きる構造となっている。基板43は単結晶シリコンであ
り1反応室41に数枚導入し真空に引いた後、約300
t:’に加熱されている。まず2秒間ジクロロシランを
供給し、1秒間ガス置換期間をおく。ここでft換ガス
はArであり% 1〜5Torr常に反応室に流してい
る。その後2秒間アンモニアのみを導入し、再び1秒間
ガス置換をおこなう。この一連の手続きを第1のサイク
ルと呼ぶ。この第1のサイクルを6回くり返した後、第
2のサイクルに移る。第2のサイクルは以下に述べる一
連の手順をいう。まず、2秒間ジクロロシランを供給し
、1秒間ガス置換をおこなう。その後2秒間NzOのみ
を導入し、再び1秒間のガス置換期間をおく。
[Example 3] FIG. 3 shows a block diagram of the insulating thin film manufacturing apparatus used in this example. This equipment uses gases used in the IE2 process,
The structure is such that ammonia and N@O can be introduced from separate supply systems. The substrate 43 is made of single crystal silicon, and after introducing several substrates into one reaction chamber 41 and evacuating it, about 300
It is heated to t:'. First, dichlorosilane is supplied for 2 seconds, followed by a 1 second gas exchange period. Here, the ft exchange gas is Ar, which is constantly flowing into the reaction chamber at a pressure of 1 to 5 Torr. After that, only ammonia is introduced for 2 seconds, and gas replacement is performed again for 1 second. This series of procedures is called the first cycle. After repeating this first cycle six times, proceed to the second cycle. The second cycle refers to the series of steps described below. First, dichlorosilane is supplied for 2 seconds, and gas replacement is performed for 1 second. Thereafter, only NzO is introduced for 2 seconds, and a gas replacement period of 1 second is again allowed.

この第2のサイクルを2回くり返した後、再び第1のサ
イクルにもどる。以上第1および第2のサイクルをまと
めて1サイクルとし、所定のサイクル数だけくり返す。
After repeating this second cycle twice, the process returns to the first cycle. The first and second cycles described above are collectively referred to as one cycle, and are repeated a predetermined number of cycles.

成長膜厚は正確にサイクル数に比例し、その再現性も高
かった。成膜された薄膜は酸化シリコン並みの絶縁破壊
電界を有するとともに、窒化シリコン並みの高い誘’I
C率を有していた。これは、ゲート絶縁用やキャパシタ
ー用として、非常に有効である。またNa十など可動イ
オンに対するバリヤー効果が窒化シリコン並みに高いと
いう特徴があった。
The grown film thickness was accurately proportional to the number of cycles, and its reproducibility was also high. The formed thin film has a dielectric breakdown field comparable to that of silicon oxide, and a high dielectric strength comparable to that of silicon nitride.
It had a C rate. This is very effective for gate insulation and capacitor applications. It also had the characteristic of having a barrier effect as high as that of silicon nitride against mobile ions such as Na+.

尚、第1の工程に使用する気体はトリクロロシラン、四
塩化ンリコ/等でもよい。第2の工程に使用する気体も
目的に応じて各種ガスの組み合せをしても、同様の効果
を得ることができる。
The gas used in the first step may be trichlorosilane, chlorine tetrachloride, or the like. Similar effects can be obtained by combining various gases used in the second step depending on the purpose.

更に、すでに実施例2で述べたように、第1の工程で使
用するジクロロシランあるいは第2の工程で使用するア
ンモニアあるいはN 20 のうち少なくとも1つ以上
をラジカル化させ、反応室に導入してもよい。これによ
り各工程の吸着・表面化学反応の基板温度の最適化、低
温化を図ることができた。このようにしても成膜膜厚の
均−性絶縁性等の膜質、あるいは原子層オーダの膜厚制
御性および再現性が優れているという本発明の効果を得
ることができた。
Furthermore, as already described in Example 2, at least one of dichlorosilane used in the first step, ammonia or N 20 used in the second step is radicalized and introduced into the reaction chamber. Good too. This made it possible to optimize and lower the substrate temperature for adsorption and surface chemical reactions in each process. Even in this manner, the effects of the present invention, such as excellent film quality such as uniformity of film thickness and insulation properties, and excellent film thickness controllability and reproducibility on the order of atomic layers, could be obtained.

〔実施例4〕 本実施例に使用した絶縁薄膜製造装置は実施例3で使用
した装置と全く同じである。基板は単結晶シリコンであ
り、反応室に数枚導入し真空に引いた後、約300Cに
加熱させておく。まず2秒間ジクロロシランを導入し、
1秒間のガス置換期間をおく。次に2秒間アンモニアを
導入し、再び1秒間ガス置換をおこなう。以上一連の手
順を200回くり返しておこなう。次に50回上記の手
順をさらにくり返した後、51回目の第2の工程でN2
0 ’に流す。このときアンモニアは流していない。次
に49回ジクロロシラy−アンモニアの手順をくり返し
た後、2回第2の工程にN20を流す。以下同様な手順
で、少しづつジクロロシラン−N z Oの工程を増し
てゆき、5iO−の成膜に近づける。成膜した膜は広い
面積にわたり、誘電率、屈折率が膜厚方向に変化してい
る酸化窒化シリコン薄膜であった。このように第2の工
程に使用する気体を成膜中変化させてゆくことも可能で
ある。膜厚方向に希望する組成を有する薄膜を大面積基
板上に原子層オーダーの均一性をもりて、再現性よく製
造できた。
[Example 4] The insulating thin film manufacturing apparatus used in this example was exactly the same as the apparatus used in Example 3. The substrates are single-crystal silicon, and several substrates are introduced into a reaction chamber, evacuated, and then heated to about 300C. First, introduce dichlorosilane for 2 seconds,
Wait for a 1 second gas replacement period. Next, ammonia is introduced for 2 seconds, and gas replacement is performed again for 1 second. Repeat the above series of steps 200 times. Next, after repeating the above procedure 50 times, in the second step of the 51st time, N2
Flow to 0'. At this time, ammonia was not flowing. The dichlorosilane y-ammonia procedure is then repeated 49 times and then the second step is flushed with N20 twice. Thereafter, in the same manner, the number of dichlorosilane-NzO steps is increased little by little, approaching the formation of a 5iO- film. The deposited film was a silicon oxynitride thin film with dielectric constant and refractive index varying in the film thickness direction over a wide area. In this way, it is also possible to change the gas used in the second step during film formation. A thin film having a desired composition in the film thickness direction could be manufactured on a large-area substrate with uniformity on the order of atomic layers and with good reproducibility.

〔発明の効果〕〔Effect of the invention〕

シリコン元素を含むハロゲン化合物を基板上に供給し、
吸着層を形成する第1の工程と窒素あるいは酸素あるい
はそれらの化合物気体のうち、少なくとも1以上を導入
する第2の工程を交互に繰り返すことにより絶縁薄膜を
製造する本発明による方法は、以下の効果があった。第
1に原子層オーダーで膜厚を制御することができる。第
2に大面積基板を多数枚−度に処理しても、再現性よく
均一な薄膜形成が可能であった。第3に本発明による製
造方法により、薄膜製造装置の構造を、従来のものより
簡単にすることができた。これは本発明による製造方法
が、ガスの流れ方や基板回転等、装置上特別な工夫をし
なくても、均一な薄膜が形成できるためである。第4に
、原子層オーダーで薄膜組成を制御することができた。
Supplying a halogen compound containing silicon element onto the substrate,
The method according to the present invention for producing an insulating thin film by alternately repeating the first step of forming an adsorption layer and the second step of introducing at least one of nitrogen, oxygen, or a compound gas thereof includes the following steps. It worked. First, the film thickness can be controlled on the order of atomic layers. Second, it was possible to form a uniform thin film with good reproducibility even when a large number of large-area substrates were processed at the same time. Thirdly, by the manufacturing method according to the present invention, the structure of the thin film manufacturing apparatus can be made simpler than the conventional one. This is because the manufacturing method according to the present invention allows a uniform thin film to be formed without any special device modifications such as gas flow or substrate rotation. Fourth, the thin film composition could be controlled on the order of atomic layers.

この効果を利用して、超格子構造等、精密な組成制御を
必要とするデバイス製造等、新しい絶縁薄膜の応用を可
能とした。第5に、ガス流量・圧力等の製造パラメータ
の精密制御を不用としたため、従来よりプロセス全体の
自動化、省力化ができた。
Utilizing this effect, we have made it possible to apply new insulating thin films, such as in the manufacture of devices that require precise compositional control, such as superlattice structures. Fifth, since precise control of manufacturing parameters such as gas flow rate and pressure is not required, the entire process can be automated and labor-saving compared to conventional methods.

以上述べたように、本発明は多くの効果を有し、薄膜ト
ラ7ジスタ等、多くの応用が考えられている。
As described above, the present invention has many effects, and many applications such as thin film transistors are being considered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に使用した絶縁薄膜製造装置
のブロック図である。 第2図は本発明の実施例2に使用した絶縁薄膜製造装置
のブロック図である。 第3図は本発明の実施例3および実施例4に使用した絶
縁薄膜製造装置のブロック図である。 1、21.41・・・・・・反応室、2,3・・・・・
・三方弁、5、22.43・・・・・・基板、6・・・
・・・電気炉、7・・・・・・主パルプ、  26.2
7  ・・・・・・ラジカル生成器、工2゜工4・・・
・・・圧力調整パルプ。 代理人 弁理士  内 原   晋
FIG. 1 is a block diagram of an insulating thin film manufacturing apparatus used in Example 1 of the present invention. FIG. 2 is a block diagram of an insulating thin film manufacturing apparatus used in Example 2 of the present invention. FIG. 3 is a block diagram of an insulating thin film manufacturing apparatus used in Examples 3 and 4 of the present invention. 1, 21.41...Reaction chamber, 2,3...
・Three-way valve, 5, 22.43... Board, 6...
...Electric furnace, 7...Main pulp, 26.2
7 ...radical generator, work 2゜work 4...
...Pressure adjustment pulp. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも1以上のシリコン元素を含むハロゲン
化合物あるいはそのラジカルを基板表面に供給し、付着
させる第1の工程と、窒素あるいは酸素あるいはそれら
の化合物気体のうち少なくとも1以上の気体を基板表面
に供給する第2の工程とを交互におこなうことを特徴と
する絶縁薄膜の製造方法。
(1) A first step of supplying and adhering a halogen compound containing at least one silicon element or its radical to the substrate surface, and a first step of supplying at least one gas of nitrogen, oxygen, or their compound gas to the substrate surface. A method for manufacturing an insulating thin film, characterized in that the second step of supplying the insulating thin film is performed alternately.
JP2945988A 1988-02-09 1988-02-09 Manufacture of insulating thin film Pending JPH01204434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2945988A JPH01204434A (en) 1988-02-09 1988-02-09 Manufacture of insulating thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2945988A JPH01204434A (en) 1988-02-09 1988-02-09 Manufacture of insulating thin film

Publications (1)

Publication Number Publication Date
JPH01204434A true JPH01204434A (en) 1989-08-17

Family

ID=12276684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2945988A Pending JPH01204434A (en) 1988-02-09 1988-02-09 Manufacture of insulating thin film

Country Status (1)

Country Link
JP (1) JPH01204434A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217317A (en) * 2001-01-16 2002-08-02 Sony Corp Non-volatile semiconductor storage device and its manufacturing method
JP2002222876A (en) * 2001-01-25 2002-08-09 Sony Corp Non-volatile semiconductor memory device and method of manufacturing the same
JP2002541332A (en) * 1999-04-14 2002-12-03 アーサー シャーマン Sequential chemical vapor deposition
US6576053B1 (en) 1999-10-06 2003-06-10 Samsung Electronics Co., Ltd. Method of forming thin film using atomic layer deposition method
WO2004008513A1 (en) * 2002-07-15 2004-01-22 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device and substrate processing apparatus
JP2008010685A (en) * 2006-06-29 2008-01-17 Tokyo Electron Ltd Film forming method and film forming device as well as storage medium
JP2008066483A (en) * 2006-09-06 2008-03-21 Tokyo Electron Ltd Method and device for forming oxide film, and program
JP2008109093A (en) * 2006-09-28 2008-05-08 Tokyo Electron Ltd Film forming method, and film forming apparatus
JP2010050425A (en) * 2007-12-26 2010-03-04 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, and substrate processing apparatus
JP2011049596A (en) * 2008-09-29 2011-03-10 Tokyo Electron Ltd Mask pattern forming method, fine pattern forming method, and film deposition apparatus
JP2013211576A (en) * 2002-11-11 2013-10-10 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate processing apparatus
JP2013251578A (en) * 2007-12-26 2013-12-12 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and substrate processing device
TWI462179B (en) * 2006-09-28 2014-11-21 Tokyo Electron Ltd Film formation method and apparatus for forming silicon oxide film

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541332A (en) * 1999-04-14 2002-12-03 アーサー シャーマン Sequential chemical vapor deposition
JP2011184799A (en) * 1999-04-14 2011-09-22 Asm Internatl Nv Sequential chemical vapor deposition
US6576053B1 (en) 1999-10-06 2003-06-10 Samsung Electronics Co., Ltd. Method of forming thin film using atomic layer deposition method
JP2002217317A (en) * 2001-01-16 2002-08-02 Sony Corp Non-volatile semiconductor storage device and its manufacturing method
JP4617574B2 (en) * 2001-01-16 2011-01-26 ソニー株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof
JP2002222876A (en) * 2001-01-25 2002-08-09 Sony Corp Non-volatile semiconductor memory device and method of manufacturing the same
US7524766B2 (en) 2002-07-15 2009-04-28 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device and substrate processing apparatus
WO2004008513A1 (en) * 2002-07-15 2004-01-22 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device and substrate processing apparatus
JP2013211576A (en) * 2002-11-11 2013-10-10 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate processing apparatus
JP2008010685A (en) * 2006-06-29 2008-01-17 Tokyo Electron Ltd Film forming method and film forming device as well as storage medium
JP2008066483A (en) * 2006-09-06 2008-03-21 Tokyo Electron Ltd Method and device for forming oxide film, and program
JP2008109093A (en) * 2006-09-28 2008-05-08 Tokyo Electron Ltd Film forming method, and film forming apparatus
TWI462179B (en) * 2006-09-28 2014-11-21 Tokyo Electron Ltd Film formation method and apparatus for forming silicon oxide film
JP2010050425A (en) * 2007-12-26 2010-03-04 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, and substrate processing apparatus
JP4611414B2 (en) * 2007-12-26 2011-01-12 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JP2013251578A (en) * 2007-12-26 2013-12-12 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and substrate processing device
JP2011049596A (en) * 2008-09-29 2011-03-10 Tokyo Electron Ltd Mask pattern forming method, fine pattern forming method, and film deposition apparatus

Similar Documents

Publication Publication Date Title
US8334219B2 (en) Method of forming stress-tuned dielectric film having Si-N bonds by modified PEALD
JPH01204434A (en) Manufacture of insulating thin film
US20010002280A1 (en) Radical-assisted sequential CVD
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
TWI737612B (en) Deposition methods for uniform and conformal hybrid titanium oxide films
JPH01143221A (en) Manufacture of insulating thin film
KR20030084125A (en) Process for depositing insulating film on substrate at low temperature
JP2789587B2 (en) Manufacturing method of insulating thin film
JP4474596B2 (en) Method and apparatus for forming silicon nanocrystal structure
WO2014143337A1 (en) Adhesion layer to minimize dilelectric constant increase with good adhesion strength in a pecvd process
JP2663471B2 (en) Manufacturing method of insulating thin film
KR101884555B1 (en) Method of forming a metal oxide by plasma enhanced atomic layer deposition
KR20170056386A (en) Method of manufacturing thin layer of molybdenum disulfide
KR20010036268A (en) Method for forming a metallic oxide layer by an atomic layer deposition
JPS6369220A (en) Manufacture of group iv semiconductor thin film
JPH02110920A (en) Manufacture of thin film of amorphous semiconductor
JPH07221048A (en) Method for forming barrier metal layer
JPH04362017A (en) Formation of oriented ta2o5 thin film
KR101334221B1 (en) Method of manufacturing multi-level metal thin film and apparatus for manufacturing the same
JP2018168398A (en) Production method of yttrium oxide-containing thin film by atomic layer deposition method
TW202343674A (en) Method of forming low-k material layer with high-frequency power, structure including the layer, and system for forming same
JPH02102534A (en) Formation of semiconductor device
JPH04125930A (en) Manufacture of semiconductor device
JP3547158B2 (en) Method for manufacturing multilayer silicon film
KR20240026430A (en) method of forming material within a recess