JPS61167884A - Diagnostic device for fracture of rotor conductor of induction motor - Google Patents

Diagnostic device for fracture of rotor conductor of induction motor

Info

Publication number
JPS61167884A
JPS61167884A JP60007154A JP715485A JPS61167884A JP S61167884 A JPS61167884 A JP S61167884A JP 60007154 A JP60007154 A JP 60007154A JP 715485 A JP715485 A JP 715485A JP S61167884 A JPS61167884 A JP S61167884A
Authority
JP
Japan
Prior art keywords
frequency
circuit
current
rotor
stator winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60007154A
Other languages
Japanese (ja)
Inventor
Akira Oshitani
押谷 侃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60007154A priority Critical patent/JPS61167884A/en
Publication of JPS61167884A publication Critical patent/JPS61167884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Induction Machinery (AREA)

Abstract

PURPOSE:To diagnose the fracture state of a rotor conductor by deriving the power ratio of the power source frequency component and beat frequency component in a current which flows through a stator winding. CONSTITUTION:The primary current of the stator winding of an induction motor 25 flows through a current transformer 1 and a current-voltage converting circuit 2 to input a voltage proportional to the primary current to a frequency analyzing circuit 4, which detect frequency characteristics, thereby reading frequency components in the input waveform from the extremal value of the characteristic curve. Further, a detection coil is arranged in the gap between a stator and a rotor, an induced voltage due to leak magnetic flux of a revolving magnetic field produced with the secondary current of the rotor conductor is detected by a leak magnetic flux detecting circuit 7, and an LPF8 remove the power source frequency component in the induced voltage to extract only a slide frequency component. Then, a beat frequency derived from a frequency detecting circuit 9 and the frequency component contained in the current of the stator winding which is calculated by the circuit 4 are passed through a frequency discriminating circuit 6 and a power ratio arithmetic circuit 10 calculates the power ratio of the power source frequency component and the frequency component obtained by the circuit 6 to diagnose the fracture state of the rotor conductor.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、誘導電動機の固定子巻線に流れる電流に含
まれるうなり現象を検知して該誘導電動機の回転子導体
の破断の有無を診断する装置に関するものである。
The present invention relates to a device that detects a beat phenomenon contained in a current flowing through a stator winding of an induction motor and diagnoses the presence or absence of a break in a rotor conductor of the induction motor.

【従来技術とその問題点】[Prior art and its problems]

誘導電動機の回転子は、鉄心と2次電流の流れる導体(
以下バーと略記する)と短絡環などから構成されている
。バーは回転子外周の溝内にあり、数十本が周上等間隔
に配置されている。 電動機の正常運転状態においては、固定子@線から生ず
る回転磁界の周波数がf・の場合、回転子巻線に生ずる
1回転子を基準とした回転磁界の周波数はaf・となり
 (ここで3はすべりを示す)、従って電動機の正常運
転時には、回転子@線から生ずる回転磁界の固定子を基
準とした回転周波数は、 (1−s ) fe + sfo −f@波数と同一速
度となり、固定子@線に流れる電流が脈動することはな
い、このことは運転途中ですペリSが変化する場合にも
同じである。 ところで、運転中の遠心力や始動電流によ、る加熱によ
りバーの一部が破断すると、回転子の2次電流に不平衡
を生じ、周波数がaf・に相当した。 回転方向が回転子に対して逆方向の逆相電流が生ずる。 このため、固定子巻線には、周波数が基本周波数f、よ
り2 sf、だけ小さいfe (1−2s)の周波数を
もった電流が生ずる。従って電動機の固定子巻線には、
基本周波数f、の電流と、回転子から誘起された前記周
波数f* (1−2g)の電流とが重量して流れるため
、電流波形にうなり現象を生じ、この電流波形の振幅は fa−fo (1−2a) ” 2sf。 に相当した周期で変動する。バーの破断本数が多くなる
と、回転子の2次電流中の不平衡電流が増大するため電
動機の起動ができなくなる。 固定子と回転子との間に働く磁気吸引力は、バーの破断
による2次電流分布の不均一から回転子の周上で非対称
に分布する。この非対称磁気吸引力と逆相2次電流によ
る回転磁界とにより、回転子には回転子の回転周波数f
、のほかf、±2 sfoの周波数をもった励振力が作
用し、電動機に振動を発生する。この振動はflの周波
数で振動し、振幅は23f6の周波数でうなり現象を生
ずる。しかし、このような振動現象は、回転子の偏心回
転(軸曲がりによる)でも生ずるため、電動機の振動や
騒音がうなり現象を生じても、それだけでバーの破断と
診断するのは危険である。 従来は、振動にうなり現象が生ずると、第3図に示すよ
うに、固定子巻線の電流波形(a)と振動波形偽)とを
オシログラフに記録し、両波形のうなり周期を読み取っ
て両波形のうなり周期が一致し、その周期が1/ 2 
sfo秒になっていると、回転子バーの破断と診断して
いた。しかし、バーの破断本数が掻く少ない場合は、第
3図(a)の電流波形における振幅の変動量が少ないた
め、この手法による診断には熟練を要した。このため、
たとえば特開昭56−153959に示されるように、
固定子巻線に流れる電流に含まれるうなり周波数ないし
脈動周波数のみをフィルタを用いて抽出し、この周波数
をカウンタを用いてカウントするとともに、電動機の回
転子に連結された回転速度計によって得られた回転数N
と電源周波数fから得られる同期速度Noとから、バー
が破断しているときに固定子巻線電流に含まれるべきう
なり周波数を次式;%式%) によって得るように回路が構成されたうなり周波数検出
器の出力と比較してバーの破断の有無を診断するように
した方法が知られている。しかし、回転速度の測定には
、たとえばマグネットパルス検出器や光電子パルス検出
器を用いて得られたパルスを回転数分析回路に入力し、
この回路で分析された回転周波数成分の中から、回転周
波数選別回路を用いて中心回転周波数を選別する必要が
あり、測定が必ずしも単純ではない。 また、近年では、FFTアナライザ(フーリよる周波数
分析から診断する手法も用いられている。 第4図にこのFFTアナライザによる固定子巻線電流の
分析結果を、第5図に振動の分析結果を示す、この手法
によれば高い診断精度が得られる一方、この診断精度を
得るためには、FFTアナライザとして周波数分解能が
0−01 = 0.05H2の高分解能が得られるよう
な使い方を必要とし、専門の技術者を分析のつど必要と
するため、診断の迅速性と容易性とに欠けていた。
The rotor of an induction motor consists of an iron core and a conductor through which secondary current flows (
It consists of a short-circuit ring (hereinafter abbreviated as bar) and a short-circuit ring. The bars are located in grooves on the outer circumference of the rotor, and several dozen bars are arranged at equal intervals on the circumference. Under normal operating conditions of the motor, if the frequency of the rotating magnetic field generated from the stator @ wire is f., the frequency of the rotating magnetic field generated in the rotor winding with one rotor as a reference is af. (Here, 3 is Therefore, during normal operation of the motor, the rotational frequency of the rotating magnetic field generated from the rotor wires with respect to the stator is the same speed as (1-s) fe + sfo -f@ wave number, and the stator The current flowing through the @ line does not pulsate; this is the same even when the periphery S changes during operation. By the way, when a part of the bar breaks due to heating due to centrifugal force or starting current during operation, an imbalance occurs in the secondary current of the rotor, and the frequency corresponds to af. A negative sequence current is generated whose rotation direction is opposite to that of the rotor. Therefore, a current with a frequency fe (1-2 s) is generated in the stator winding, which is 2 sf smaller than the fundamental frequency f. Therefore, in the stator winding of the electric motor,
Since the current at the fundamental frequency f and the current at the frequency f* (1-2 g) induced from the rotor flow in a heavy manner, a beat phenomenon occurs in the current waveform, and the amplitude of this current waveform is fa-fo. (1-2a) It fluctuates at a period equivalent to 2sf. When the number of broken bars increases, the unbalanced current in the rotor's secondary current increases, making it impossible to start the motor. Stator and Rotation The magnetic attraction force that acts between the rotor and the rotor is distributed asymmetrically around the rotor due to the non-uniform distribution of the secondary current caused by the bar breakage.This asymmetrical magnetic attraction force and the rotating magnetic field due to the opposite phase secondary current , the rotor has a rotational frequency f of the rotor.
In addition to , an excitation force having a frequency of f, ±2 sfo acts on the motor, generating vibrations in the motor. This vibration vibrates at a frequency of fl, and the amplitude produces a beat phenomenon at a frequency of 23f6. However, such a vibration phenomenon also occurs due to eccentric rotation of the rotor (due to shaft bending), so even if the vibration or noise of the motor causes a humming phenomenon, it is dangerous to diagnose a bar breakage based on that alone. Conventionally, when a beat phenomenon occurs in vibration, as shown in Figure 3, the current waveform (a) of the stator winding and the vibration waveform (false) are recorded on an oscilloscope, and the beat period of both waveforms is read. The beat periods of both waveforms match, and the period is 1/2
If it was sfo seconds, it was diagnosed as a broken rotor bar. However, when the number of broken bars is very small, the amount of amplitude fluctuation in the current waveform shown in FIG. 3(a) is small, so diagnosis using this method requires skill. For this reason,
For example, as shown in Japanese Patent Application Laid-Open No. 56-153959,
Only the beat frequency or pulsation frequency contained in the current flowing through the stator winding is extracted using a filter, and this frequency is counted using a counter and obtained by a tachometer connected to the rotor of the motor. Rotation speed N
The circuit is configured to obtain the beat frequency that should be included in the stator winding current when the bar is broken from the synchronous speed No. obtained from the power supply frequency f using the following formula; A method is known in which the presence or absence of a bar breakage is diagnosed by comparing the output of a frequency detector. However, to measure rotational speed, pulses obtained using, for example, a magnetic pulse detector or a photoelectronic pulse detector are input into a rotational speed analysis circuit.
It is necessary to use a rotation frequency selection circuit to select the center rotation frequency from among the rotation frequency components analyzed by this circuit, and the measurement is not necessarily simple. In addition, in recent years, a diagnosis method using FFT analyzer (Foury frequency analysis) has been used. Figure 4 shows the analysis results of the stator winding current using this FFT analyzer, and Figure 5 shows the vibration analysis results. Although high diagnostic accuracy can be obtained with this method, in order to obtain this diagnostic accuracy, it is necessary to use the FFT analyzer in such a way that a frequency resolution of 0-01 = 0.05H2 can be obtained, and it requires specialized knowledge. Because this method requires several technicians for each analysis, it lacks the speed and ease of diagnosis.

【発明の目的] この発明は、上述の欠点を除去し、回転子のバー切れを
生じた誘導電動機の固定子巻線に流れる電流と独立して
求められ該固定子巻線に流れる電流に含まれたうなり周
波数と対比されるべきうなり周波数をより簡単に計測し
、診断をより容易に行なおうとするものである。 【発明の要点】 この発明は、誘導電動機の固定子巻線に流れる電流に含
まれるうなり現象を検知して該誘導電動該誘導電動機の
固定子巻線に流れる電流波形に含まれる周波数成分を分
析する周波数分析回路と、該誘導電動機の回転子の漏洩
磁束を計測して固定子巻線に含まれるべきうなり周波数
を検出するうなり周波数検出回路と、この検出されたう
なり周波数と一敗する周波数が前記周波数検出回路によ
り分析された周波数成分中に存在するか否かを判別する
うなり周波数判別回路と、前記固定子巻線に流れる電流
中の電源周波数成分とうなり周波数成分とのパワー比を
演算するパワー比演算回路と、前記電源周波数とうなり
周波数とパワー比とをそれぞれデジタル表示する表示回
路とを備えるようにし、従来のような、回転子の回転周
波数から固定子巻線電流に含まれるべきうなり周波数を
求める方法に比して計測を単純化して、前記の目的を達
成しようとするものである。
[Object of the Invention] The present invention eliminates the above-mentioned drawbacks, and is determined independently of the current flowing through the stator winding of an induction motor that has caused rotor bar breakage, and is included in the current flowing through the stator winding. The objective is to more easily measure the beat frequency to be compared with the detected beat frequency, thereby making diagnosis easier. [Summary of the Invention] This invention detects the beat phenomenon included in the current flowing in the stator winding of an induction motor and analyzes the frequency components included in the current waveform flowing in the stator winding of the induction motor. a beat frequency detection circuit that measures the leakage magnetic flux of the rotor of the induction motor and detects the beat frequency to be included in the stator winding; a beat frequency discrimination circuit that determines whether a beat frequency component exists in the frequency components analyzed by the frequency detection circuit; and a power ratio between the power supply frequency component and the beat frequency component in the current flowing through the stator winding. It is equipped with a power ratio calculation circuit and a display circuit that digitally displays the power supply frequency, the beat frequency, and the power ratio, respectively. This method aims to achieve the above-mentioned objective by simplifying the measurement compared to the method of determining the frequency.

【発明の実施例】[Embodiments of the invention]

第1図に本発明に基づく診断装置の回路構成の一実施例
を示す0図において、誘導電動機25の固定子巻線に流
入する1次電流を変流器1を用いて検出し、この検出さ
れた電流を電流電圧変換回路2に入力して、電流に比例
した電圧に変換する。 この、1次電流に比例した電圧は増幅回路3により増幅
され、周波数分析回路4に入力される。5は周波数分析
回路4が分析する周波数範囲の中心周波数を設定する回
路であって、診断場所の電源周波数により50Hzまた
は60Hzのいずれかに設定して、この信号を周波数分
析回路4に与える0周波数分析回路4は前述のFFTア
ナライザと同一原理に基づ(周波数分析回路であって、
前記増幅回路3から入力された電圧波形に含まれる周波
数成分をたとえば0.05Hzの分解能をもって分析す
る。 すなわち、0.05Hzののピッチごとにその周波数成
分を育する電圧ないしパワーを読み取りながら第4図の
ような、電圧ないしパワーの周波数特性を検出し、この
特性曲線の極値、から入力波形中に含まれる周波数成分
を読み取る。 一方、誘導電動機の固定子巻線に流れる電流と独立して
、該固定子巻線に流れる電流に含まれたうなり周波数と
対比されるべきうなり周波数を求めるため、第2図に示
されるような、小形なボビン16にコイル15を100
ターン程度巻いて形成された検出コイル17を、固定子
と回転子との間のギャップ中において回転子に近接して
配し、その軸方向を回転子の周方向と一敗させて固定子
側に固定すると、この検出コイルには5回転子導体に流
れる2次電流から生ずる回転磁界の漏洩磁束により電圧
が誘起される。漏洩磁束検出回路7は、このようにして
誘起された電圧を検出する回路であるが、この誘起され
た電圧の中には電源周波数成分が含まれるから、この電
圧をローパスフィルタ8を介することにより電源周波数
成分を除去してすべり周波数成分のみを取り出し、この
すべり周波数成分をうなり周波数検出回路9に入力すれ
ば、この入力された電圧から固定子巻線に流れる電流中
に含まれるべきうなり周波数が求められる。この求めら
れたうなり周波数と、前記周波数分析回路4において得
られた。固定子巻線に流れる電流に含まれる周波数成分
とをうなり周波数判別回路6に人力+−、” )tii
 ?IhD m + ノtb t−e t、+ W 油
m mから得られたうなり周波数と一敗する周波数成分
が存在するか否かを判別する。この一致する周波数成分
が存在するときは、パワー比演算回路10において、固
定子巻線電流中の電源周波数成分と、この−敗した周波
数成分とのそれぞれのパワーを計測してその比を求め、
この比をパワー比表示回路13に実時間にてデジタル表
示するとともに、電源周波数とうなり周波数とをそれぞ
れ表示回路11゜12にデジタル表示する。パワー比〔
通常dB (デシベル)にて表示〕と破断した回転子導
体の本数との関係はあらかじめ実験により次のように明
らかにされており、診断者は表示されたパワー比のみに
より回転子導体の破断状況を診断することができる。 =1.5dB以下・・−・・クラック程度、3.1lk
dB以下−・−・−・クラックおよび導体破断1本以内
、5.0dB以下−・−・導体破断3本以内。 従ってこの診断結果から、回転子のバー切れが検知され
ても徒らに電動機の運転を停止することなく、バー切れ
の程度に応じて電動機の分解修理の時期を計画的に立案
し、電動機を使用する設備の効率的運転に資することが
できる。
FIG. 1 shows an embodiment of the circuit configuration of a diagnostic device according to the present invention, in which a primary current flowing into the stator winding of an induction motor 25 is detected using a current transformer 1. The resulting current is input to the current-voltage conversion circuit 2 and converted into a voltage proportional to the current. This voltage proportional to the primary current is amplified by the amplifier circuit 3 and input to the frequency analysis circuit 4. Reference numeral 5 denotes a circuit for setting the center frequency of the frequency range analyzed by the frequency analysis circuit 4, which is set to either 50Hz or 60Hz depending on the power frequency of the diagnostic location, and this signal is set to 0 frequency to the frequency analysis circuit 4. The analysis circuit 4 is based on the same principle as the above-mentioned FFT analyzer (it is a frequency analysis circuit,
The frequency components included in the voltage waveform input from the amplifier circuit 3 are analyzed with a resolution of, for example, 0.05 Hz. That is, while reading the voltage or power that develops the frequency component at each pitch of 0.05Hz, the frequency characteristic of the voltage or power as shown in Figure 4 is detected, and from the extreme value of this characteristic curve, the input waveform is determined. Read the frequency components contained in. On the other hand, in order to find the beat frequency that should be compared with the beat frequency included in the current flowing through the stator winding of the induction motor, independent of the current flowing through the stator winding, the , 100 coils 15 on a small bobbin 16
A detection coil 17 formed by winding approximately one turn is placed close to the rotor in the gap between the stator and rotor, and its axial direction is aligned with the circumferential direction of the rotor so that it is connected to the stator side. When fixed to , a voltage is induced in this detection coil by the leakage magnetic flux of the rotating magnetic field generated from the secondary current flowing in the five-rotor conductor. The leakage flux detection circuit 7 is a circuit that detects the voltage induced in this way, but since this induced voltage includes a power supply frequency component, this voltage is passed through the low-pass filter 8. By removing the power supply frequency component and extracting only the slip frequency component, and inputting this slip frequency component to the beat frequency detection circuit 9, the beat frequency that should be included in the current flowing to the stator winding can be determined from the input voltage. Desired. This determined beat frequency was obtained in the frequency analysis circuit 4. The frequency components included in the current flowing through the stator windings are manually input to the beat frequency discrimination circuit 6.
? It is determined whether there is a frequency component that is different from the beat frequency obtained from IhD m + notb t-et, + W oil m. When this matching frequency component exists, the power ratio calculation circuit 10 measures the respective powers of the power supply frequency component in the stator winding current and this failed frequency component, and calculates the ratio.
This ratio is digitally displayed in real time on the power ratio display circuit 13, and the power supply frequency and beat frequency are digitally displayed on the display circuits 11 and 12, respectively. Power ratio [
The relationship between the number of broken rotor conductors (normally expressed in dB (decibels)) and the number of broken rotor conductors has been clarified in advance through experiments as shown below, and the diagnostician can determine the state of rotor conductor breakage based only on the displayed power ratio. can be diagnosed. =1.5dB or less---Crack level, 3.1lk
dB or less --- Cracks and 1 conductor break or less, 5.0 dB or less --- 3 conductor breaks or less. Therefore, based on this diagnosis result, even if a broken bar on the rotor is detected, the motor should not be stopped in vain, and the timing of disassembly and repair of the motor can be planned according to the degree of broken bar, and the motor should be restarted. This can contribute to efficient operation of the equipment used.

【発明の効果】【Effect of the invention】

以上に述べたように、本発明によれば、波形の読み方に
熟練を要する固定子巻線電流や電動機振動などのオシロ
グラフ測定を必要とせず、本装置を診断場所に搬入して
、固定子電流と、複雑な測定過程を必要とする回転速度
の測定に代わり、この固定子電流と関係なくこの固定子
電流中に含まれるべきうなり周波数を求めるための1回
転子の漏洩磁束から得られる電圧とを入力するだけの簡
単な計測により、回転子導体の破断状況の診断に必要な
データが直ちに表示され、回転子導体の破断の有無を即
座に診断できるほか、回転子導体の破断本数をも容易に
推定するこ□とができ事故を未然に防止することができ
る。また、固定子導体の破断本数が極めて少ない場合に
直ちに電動機の運転を停止するなどの不要な対応がなく
なり、推定された破断本数から電動機の分解修理の時期
を計画的に立案することができ、電動機を使用する設備
の効率的運転に資することができるという効果が得られ
る。
As described above, according to the present invention, there is no need for oscillographic measurement of stator winding current or motor vibration, which requires skill in reading waveforms; Instead of measuring the current and rotational speed, which requires a complicated measurement process, the voltage obtained from the leakage flux of one rotor is used to determine the beat frequency that should be included in this stator current regardless of this stator current. By simply inputting the following, the data necessary for diagnosing the rotor conductor breakage status is immediately displayed.In addition to immediately diagnosing the presence or absence of a rotor conductor breakage, it is also possible to determine the number of broken rotor conductors. It can be easily estimated and accidents can be prevented. In addition, unnecessary measures such as immediately stopping the operation of the motor when the number of broken stator conductors is extremely small are eliminated, and the timing of disassembly and repair of the motor can be planned based on the estimated number of broken conductors. This has the effect of contributing to efficient operation of equipment using electric motors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく回転子導体の破断診断装置の回
路構成を示すブロック回路図、第2図は回転子の漏洩磁
束を検出する検出コイルの見取り図、第3図は回転子導
体が破断している誘導電動機の固定子巻線に流れる電流
の波形と該誘導電動機の振動波形とを示すオシログラム
、第4図は回転子導体が破断しているときの固定子電流
に含まれる周波数成分をFFTアナライザで分析したと
きのこのアナライザからの出力波形、第5図は電動機の
振動波形の周波数成分を同じ<FFTアナライザで分析
したときのこのアナライザからの出力波性である。 4:周波数分析回路、6:うなり周波数判別回路、7:
漏洩磁束検出回路、9:うなり周波数検出回路、10:
パワー比演算回路、11:電源周波敗第1図     
 第2図 第3図 第4図
Fig. 1 is a block circuit diagram showing the circuit configuration of a rotor conductor fracture diagnosis device based on the present invention, Fig. 2 is a sketch of a detection coil for detecting leakage magnetic flux of the rotor, and Fig. 3 is a diagram showing a rotor conductor fracture. Figure 4 shows the frequency components included in the stator current when the rotor conductor is broken. The output waveform from this analyzer when analyzed by the FFT analyzer, and FIG. 5 shows the output waveform from this analyzer when the frequency component of the vibration waveform of the electric motor is analyzed by the same FFT analyzer. 4: Frequency analysis circuit, 6: Beating frequency discrimination circuit, 7:
Leakage flux detection circuit, 9: Beating frequency detection circuit, 10:
Power ratio calculation circuit, 11: Power supply frequency loss Figure 1
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)誘導電動機の固定子巻線に流れる電流に含まれるう
なり現象を検知して該誘導電動機の回転子導体の破断の
有無を診断する装置であって、該誘導電動機の固定子巻
線に流れる電流波形に含まれる周波数成分を分析する周
波数分析回路と、該誘導電動機の回転子の漏洩磁束を計
測して固定子巻線に含まれるべきうなり周波数を検出す
るうなり周波数検出回路と、この検出されたうなり周波
数と一致する周波数が前記周波数検出回路により分析さ
れた周波数成分中に存在するか否かを判別するうなり周
波数判別回路と、前記固定子巻線に流れる電流中の電源
周波数成分とうなり周波数成分とのパワー比を演算する
パワー比演算回路と、前記電源周波数とうなり周波数と
パワー比とをそれぞれデジタル表示する表示回路とを備
えたことを特徴とする誘導電動機回転子導体の破断診断
装置。
1) A device for diagnosing the presence or absence of a break in the rotor conductor of the induction motor by detecting a beat phenomenon included in the current flowing in the stator winding of the induction motor, the current flowing in the stator winding of the induction motor A frequency analysis circuit that analyzes frequency components included in the current waveform; a beat frequency detection circuit that measures the leakage magnetic flux of the rotor of the induction motor to detect the beat frequency that should be included in the stator winding; a beat frequency discrimination circuit that determines whether a frequency matching the beat frequency exists in the frequency components analyzed by the frequency detection circuit; and a beat frequency component and the beat frequency in the current flowing through the stator winding. A rupture diagnostic device for an induction motor rotor conductor, comprising: a power ratio calculation circuit that calculates a power ratio with respect to a component; and a display circuit that digitally displays each of the power supply frequency, beat frequency, and power ratio.
JP60007154A 1985-01-18 1985-01-18 Diagnostic device for fracture of rotor conductor of induction motor Pending JPS61167884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007154A JPS61167884A (en) 1985-01-18 1985-01-18 Diagnostic device for fracture of rotor conductor of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007154A JPS61167884A (en) 1985-01-18 1985-01-18 Diagnostic device for fracture of rotor conductor of induction motor

Publications (1)

Publication Number Publication Date
JPS61167884A true JPS61167884A (en) 1986-07-29

Family

ID=11658149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007154A Pending JPS61167884A (en) 1985-01-18 1985-01-18 Diagnostic device for fracture of rotor conductor of induction motor

Country Status (1)

Country Link
JP (1) JPS61167884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004056A (en) * 2017-06-15 2019-01-10 株式会社日立産機システム Stationary induction equipment and failure monitoring system for stationary induction equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141761A (en) * 1980-04-03 1981-11-05 Yamabishi Denki Kk Throuble shooting system for induction motor
JPS56153959A (en) * 1980-04-28 1981-11-28 Fuji Electric Co Ltd Induction machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141761A (en) * 1980-04-03 1981-11-05 Yamabishi Denki Kk Throuble shooting system for induction motor
JPS56153959A (en) * 1980-04-28 1981-11-28 Fuji Electric Co Ltd Induction machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004056A (en) * 2017-06-15 2019-01-10 株式会社日立産機システム Stationary induction equipment and failure monitoring system for stationary induction equipment

Similar Documents

Publication Publication Date Title
Gyftakis et al. Reliable detection of stator interturn faults of very low severity level in induction motors
US5519337A (en) Motor monitoring method and apparatus using high frequency current components
US4136312A (en) Method and apparatus for detection of rotor faults in dynamoelectric machines
Kokko Condition monitoring of squirrel-cage motors by axial magnetic flux measurements
US20150260794A1 (en) Fault detection in induction machines
US2640100A (en) Means for testing rotors
JP4471628B2 (en) Speed sensing field ground fault detection mode of generator field winding
Yazidi et al. Flux signature analysis: An alternative method for the fault diagnosis of induction machines
Bellini et al. Vibrations, currents and stray flux signals to asses induction motors rotor conditions
Frosini et al. A wavelet-based technique to detect stator faults in inverter-fed induction motors
Goktas et al. Separation of induction motor rotor faults and low frequency load oscillations through the radial leakage flux
JP2000184658A (en) Diagnostic device for induction motor
Saad et al. Fault diagnostics of induction motors based on internal flux measurement
KR20190099861A (en) System and method for detecting damper bar breakage of 3-phase salient pole synchronous machines
JPS61167884A (en) Diagnostic device for fracture of rotor conductor of induction motor
JPH03291539A (en) Detecting method for abnormality of roller bearing of electric motor
JPS6232378A (en) Diagnosing device for induction motor
Fulnečck et al. Stator current and axial magnetic flux analysis of induction motor
JPS61112976A (en) Diagnostic apparatus of induction motor
Bacha et al. Comparative investigation of diagnosis media of stator voltage asymmetry and rotor broken bars in induction machines
SU1121633A1 (en) Method of checking rotor core break in short-circuited asynchronous motor
JPH0479222B2 (en)
Park et al. Detection and classification of damper bar and field winding faults in salient pole synchronous motors
JP2004112906A (en) Detection method for crack of rotor bar of ac motor
Bacha et al. Diagnosis of induction motor rotor broken bars