JPS6116763Y2 - - Google Patents
Info
- Publication number
- JPS6116763Y2 JPS6116763Y2 JP1979170023U JP17002379U JPS6116763Y2 JP S6116763 Y2 JPS6116763 Y2 JP S6116763Y2 JP 1979170023 U JP1979170023 U JP 1979170023U JP 17002379 U JP17002379 U JP 17002379U JP S6116763 Y2 JPS6116763 Y2 JP S6116763Y2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- circuit
- charging
- detection
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 description 9
- 230000005284 excitation Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Description
【考案の詳細な説明】
本考案はm個の電池を夫々所定充電状態に充電
する電池の充電装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery charging device that charges m batteries to a predetermined state of charge.
n個の電池を充電する方式として、並列充電方
式と直列充電方式とが知られている。並列充電方
式はn個の電池を並列接続するものであるが、た
とえば商用電源から充電する場合には降圧部にて
降圧する率を大きくせねばならず、降圧部におけ
る損失が大きい欠点がある。直列充電方式はn個
の電池を直列接続するものであり、前記降圧部の
降圧率を並列充電方式に比して大きくする必要が
なく、降圧部における損失が少ない反面、各電池
の残存容量に差がある場合には、一部の電池が過
充電になつたり、又は不足充電になる欠点があ
る。 A parallel charging method and a series charging method are known as methods for charging n batteries. The parallel charging method connects n batteries in parallel, but when charging from a commercial power source, for example, the voltage step-down rate must be increased in the step-down section, which has the disadvantage of large losses in the step-down section. The series charging method connects n batteries in series, and there is no need to increase the step-down ratio of the step-down section compared to the parallel charging method, and while there is less loss in the step-down section, the remaining capacity of each battery is reduced. If there is a difference, there is a drawback that some batteries may become overcharged or undercharged.
本考案はかかる点に鑑み、直列充電方式を採る
も該方式の欠点を除去せんとするものであり、以
下本考案の一実施例を図面に基いて説明する。図
面において、1は充電電源にして、たとえば商用
電源の降圧した整流平滑出力回路で構成される。
充電電源1には充電路Lが接続され、電圧端子2
を有する。充電路Lに設けられる制御部3は、ス
イツチ素子としてのダーリントン接続された第1
第2トランジスタQ1,Q2、該トランジスタを
遮断制御する第3トランジスタQ3、充電路Lに
流れる充電電流を定電流化する第4トランジスタ
Q4及び抵抗R1,R2からなり、抵抗R1は第
2トランジスタQ2のコレクタ・ベース間に接続
される。抵抗R2は充電路Lに介挿され、コレク
タを第2トランジスタQ2のベースに接続した第
4トランジスタQ4のベース・エミツタは抵抗R
2の両端に接続される。 In view of these points, the present invention employs a series charging method, but attempts to eliminate the drawbacks of this method.One embodiment of the present invention will be described below with reference to the drawings. In the drawings, reference numeral 1 denotes a charging power source, which is composed of, for example, a rectifying and smoothing output circuit that steps down the voltage of a commercial power source.
A charging path L is connected to the charging power source 1, and a voltage terminal 2
has. The control unit 3 provided in the charging path L has a first Darlington-connected switch element as a switch element.
It consists of second transistors Q1 and Q2, a third transistor Q3 that controls the cutoff of the transistors, a fourth transistor Q4 that makes the charging current flowing in the charging path L a constant current, and resistors R1 and R2. Connected between collector and base. The resistor R2 is inserted in the charging path L, and the base-emitter of the fourth transistor Q4 whose collector is connected to the base of the second transistor Q2 is connected to the resistor R.
Connected to both ends of 2.
充電路Lにはn個の電池が直列に挿入できるよ
うになされているが、実施例では5個の電池B1
〜B5の場合を示す。各電池は抵抗r1〜r5か
らなる短絡枝路l1〜l5と各リレースイツチ
RY1〜RY5にて接続切換え可能になつている。 Although n batteries can be inserted in series in the charging path L, in the embodiment, five batteries B1 are inserted into the charging path L.
The case of ~B5 is shown. Each battery has a shorting branch l1-l5 consisting of resistors r1-r5 and a respective relay switch.
Connections can be switched between RY1 and RY5.
次にD1〜D5は個々の電池B1〜B5に対応
した検出部にして電圧端子2から給電される。各
検出部は同一構成であり、第1検出部D1につい
て説明する。即ち、電源端子2とアース間に、対
応する電池B1が充電路Lに介挿されたことを検
知して閉成する検知スイツチSW1及び定電圧素
子Zの直列回路と、電池B1と短絡枝路l1を切
換接続する切換回路4と、第3トランジスタQ3
を制御する制御回路5とが並列接続され、定電圧
素子Zには充電表示灯6及び電池B1の所定充電
状態を検出する検出回路7が並列接続される。切
換回路4は第5トランジスタQ51及びリレース
イツチRY1を開閉するリレーコイルRC1の直列
回路からなり、第5トランジスタQ51のベース
には定電圧素子Zによる定電圧が印加され、リレ
ーコイルRC1の励磁によりリレースイツチRY1
が電池B1側に接続される。制御回路5は抵抗R
3と第6トランジスタQ61の直列回路にて構成
され、該第6トランジスタのベースには定電圧素
子Zによる定電圧が印加され、第6トランジスタ
のコレクタが第3トランジスタQ3のベースに接
続される。検出回路7は電池B1の所定充電状態
における温度を検出する感熱サイリスタS1及び
該サイリスタのゲート・アノード間に接続される
検出温度設定用抵抗R4と雑音防止コンデンサC
の並列回路からなり、感熱サイリスタS1のアノ
ード・カソードが定電圧素子Zの両端に接続され
る。 Next, D1 to D5 serve as detection units corresponding to the individual batteries B1 to B5, and are supplied with power from the voltage terminal 2. Each detection section has the same configuration, and the first detection section D1 will be explained. That is, between the power supply terminal 2 and the ground, there is a series circuit of a detection switch SW1 and a constant voltage element Z that closes when it detects that the corresponding battery B1 is inserted into the charging path L, and a series circuit between the battery B1 and the short circuit branch. A switching circuit 4 that switches and connects l1 and a third transistor Q3
A control circuit 5 for controlling the battery B1 is connected in parallel to the constant voltage element Z, and a charging indicator light 6 and a detection circuit 7 for detecting a predetermined state of charge of the battery B1 are connected in parallel to the constant voltage element Z. The switching circuit 4 consists of a series circuit of a fifth transistor Q51 and a relay coil RC1 that opens and closes the relay switch RY1.A constant voltage is applied to the base of the fifth transistor Q51 by a constant voltage element Z, and the relay is activated by excitation of the relay coil RC1. Switch RY1
is connected to the battery B1 side. The control circuit 5 is a resistor R
A constant voltage from a constant voltage element Z is applied to the base of the sixth transistor, and the collector of the sixth transistor is connected to the base of the third transistor Q3. The detection circuit 7 includes a heat-sensitive thyristor S1 that detects the temperature of the battery B1 in a predetermined state of charge, a detection temperature setting resistor R4 connected between the gate and anode of the thyristor, and a noise prevention capacitor C.
The anode and cathode of the heat-sensitive thyristor S1 are connected to both ends of the constant voltage element Z.
而して感熱サイリスタS1は温度でスイツチす
るサイリスタである。即ち該サイリスタの温度が
設定値以上になると、オフ状態からオン状態にス
イツチし、一旦導通すると、そのアノード・カソ
ード間に流れる主電流が保持電流以下になるまで
導通状態を保持する。またスイツチ温度は検出温
度設定用抵抗R4の抵抗値を変えることにより設
定できるものであり、その抵抗値を大きくすると
スイツチ温度が低下する。 Thus, the heat-sensitive thyristor S1 is a thyristor that switches depending on the temperature. That is, when the temperature of the thyristor exceeds a set value, the thyristor switches from the off state to the on state, and once conductive, the conductive state is maintained until the main current flowing between the anode and cathode becomes equal to or less than the holding current. Further, the switch temperature can be set by changing the resistance value of the detection temperature setting resistor R4, and increasing the resistance value lowers the switch temperature.
以上の構成において作動を説明する。 The operation in the above configuration will be explained.
() まず1個の電池も充電路Lに挿入されて
いない場合は、各検出部Dn(添字nは1〜5
の総称である。以下同じ。)の検知スイツチ
SWnがいずれも、電池の非挿入を検知して開
成しているため、第5第6トランジスタQ5
n,Q6nが全て遮断状態にあり、第6トラン
ジスタQ6nのコレクタ電圧が高いので第3ト
ランジスタQ3が導通し、第1第2トランジス
タQ1,Q2が遮断状態にあり、充電路Lを開
路している。() First, if no battery is inserted into the charging path L, each detection part Dn (suffix n is 1 to 5
It is a general term for same as below. ) detection switch
Since both SWn detect that the battery is not inserted and open, the fifth and sixth transistor Q5
Since the collector voltage of the sixth transistor Q6n is high, the third transistor Q3 is conductive, and the first and second transistors Q1 and Q2 are in a cutoff state, and the charging path L is opened. .
() 次に1個の電池たととばB1のみが充電
路Lに挿入されている場合は、該電池の存在に
より検知スイツチSW1が閉成し、充電初期に
おいては電池温度が低いので、検出回路7の出
力はない。このため第5第6トランジスタQ5
1,Q61が共に導通し、リレーコイルRC1
の励磁によりリレースイツチRY1は電池B1
側に接続されて電池B1を充電する。検出部D
2〜D5は前記()の場合と同様に各リレー
スイツチRY2〜RY5が短絡枝路l2〜l5側
に接続されており、これらの検出部D2〜D5
の各第5トランジスタのコレクタ電圧が高くな
ろうとするが、第1検出部D1の第6トランジ
スタQ61の導通により第3トランジスタQ3
のベース電圧が低く、該第3トランジスタは遮
断、第1第2トランジスタQ1,Q2は導通状
態にある。() Next, when only one battery, say B1, is inserted into the charging path L, the detection switch SW1 closes due to the presence of the battery, and since the battery temperature is low at the beginning of charging, the detection circuit There is no output of 7. Therefore, the fifth and sixth transistor Q5
1, Q61 are both conductive, relay coil RC1
Due to the excitation of the relay switch RY1, the battery B1
to charge the battery B1. Detection part D
2 to D5, each relay switch RY2 to RY5 is connected to the short circuit branch line l2 to l5 side as in the case of () above, and these detection parts D2 to D5
The collector voltage of each of the fifth transistors tends to increase, but due to the conduction of the sixth transistor Q61 of the first detection section D1, the collector voltage of the third transistor Q3 increases.
base voltage is low, the third transistor is cut off, and the first and second transistors Q1 and Q2 are conductive.
電池B1の充電により、該電池が所定充電状
態となり、電池温度が上昇して感熱サイリスタ
S1の温度が、検出温度設定用抵抗R4によつ
て定まる設定値に達すると、該サイリスタが導
通する。このため第5第6トランジスタQ5
1,Q61はそのベース電圧の低下で遮断し、
リレースイツチRY1が短絡枝路l1側に接続
され、また各検出部Dnの第5トランジスタの
遮断により、第3トランジスタQ3はそのベー
ス電圧の上昇で導通し、第1第2トランジスタ
Q1,Q2の遮断により充電が完了する。 By charging the battery B1, the battery enters a predetermined charging state, and when the battery temperature rises and the temperature of the heat-sensitive thyristor S1 reaches a set value determined by the detection temperature setting resistor R4, the thyristor becomes conductive. Therefore, the fifth and sixth transistor Q5
1, Q61 is cut off due to a drop in its base voltage,
The relay switch RY1 is connected to the short circuit branch l1 side, and the fifth transistor of each detection unit Dn is cut off, so that the third transistor Q3 becomes conductive due to the rise in its base voltage, and the first and second transistors Q1 and Q2 are cut off. Charging is completed.
() 2乃至5個の電池を充電路Lに挿入する
場合、個々の残存容量が異なるため、電池の充
電終了時点が異なる。即ち残存容量が大である
電池Bk(添字kは1〜5の1つの数字であ
る。)は早く所定充電状態に達し、この電池に
対応した検出部Dkの検出回路7の出力に基ず
き、電池Bk側に接続されていたリレースイツ
チRYkを短絡枝路lk側に切換え、該電池の充電
を終了する。この際残存容量の少ない電池Bk
はまだ所定充電状態に達していないため継続し
て充電される。かくして残存容量が大きい電池
から順に充電が終了し、最後の1個の電池
Bk″が充電状態になると前記()で説明した
と同様にして全ての電池の充電が完了する。() When two to five batteries are inserted into the charging path L, the remaining capacity of each battery differs, so the time at which charging of the batteries ends differs. In other words, a battery Bk (subscript k is a number from 1 to 5) with a large remaining capacity quickly reaches a predetermined state of charge, and the battery Bk has a large remaining capacity. , the relay switch RYk connected to the battery Bk side is switched to the short circuit branch lk side, and charging of the battery is completed. At this time, battery Bk with low remaining capacity
continues to be charged because it has not yet reached the predetermined state of charge. In this way, charging is completed in order from the battery with the highest remaining capacity, and the last battery
When Bk″ is in a charged state, charging of all batteries is completed in the same manner as explained in () above.
尚、検出回路Dnは実施例では電池温度を検出
しているが、電池電圧を検出するようにしても良
いことは明らかである。 Although the detection circuit Dn detects the battery temperature in the embodiment, it is clear that it may also detect the battery voltage.
以上の如く本考案によれば、n個の電池を直列
に接続して充電するから、充電電源部の降圧率を
並列充電方式に比し小さくすることができ、降圧
部における損失を小さくすることができる。また
個々の電池の所定充電状態を検出して、個々の電
池ごとに充電するようにしているので、直列接続
したn個の電池全体の所定充電状態を検出する場
合のように、一部の電池が過充電又は不足充電に
なることがない。さらに電池の所定充電状態の検
出として、電池温度を検出する場合には、電池と
各検出部を絶縁することができる。 As described above, according to the present invention, since n batteries are connected in series and charged, the step-down ratio of the charging power supply section can be lowered compared to the parallel charging method, and the loss in the step-down section can be reduced. Can be done. In addition, since the predetermined state of charge of each battery is detected and charged individually, it is possible to detect the predetermined state of charge of all n batteries connected in series. will not become overcharged or undercharged. Furthermore, when detecting the battery temperature to detect the predetermined state of charge of the battery, the battery and each detection section can be insulated.
図面は本考案による装置の一実施例を示す電気
回路図である。
B1〜B5……電池、l1〜l5……短絡枝
路、L……充電路、D1〜D5……検出部、7…
…検出回路、4……切換回路、Q1,Q2……ス
イツチ素子、5……制御回路、S1……検温素
子。
The drawing is an electrical circuit diagram showing an embodiment of the device according to the present invention. B1-B5...battery, l1-l5...short circuit branch, L...charging path, D1-D5...detection section, 7...
...Detection circuit, 4...Switching circuit, Q1, Q2...Switch element, 5...Control circuit, S1...Temperature detection element.
Claims (1)
にm個直列に配置できる充電路と、電池の所定
充電状態を検出するn個の検出部とを備え、各
検出部は対応する電池の所定充電状態を検出す
る検出回路と、該回路の出力により前記電池と
前記短絡枝路を切換接続する切換回路と、前記
検出回路の出力により前記充電路に介挿したス
イツチ素子を制御する制御回路とを具備し、前
記各検出部の制御回路のいずれからも出力信号
が無い時に前記スイツチ素子を遮断制御してな
る電池の充電装置。 (2) 前記電池の所定充電状態の検出回路は、電池
温度を検出する検温素子を備えてなる実用新案
登録請求の範囲第1項記載の電池の充電装置。[Claims for Utility Model Registration] (1) A battery comprising: m charging paths that can be arranged in series so that each battery can be connected to a short-circuit branch, and n detection units that detect a predetermined state of charge of the batteries. , each detection section includes a detection circuit that detects a predetermined state of charge of a corresponding battery, a switching circuit that switches and connects the battery and the short circuit branch using the output of the circuit, and a switching circuit that connects the battery and the short circuit branch via the output of the detection circuit to the charging path. A battery charging device comprising a control circuit for controlling an inserted switch element, and controlling the switch element to be cut off when there is no output signal from any of the control circuits of the respective detection sections. (2) The battery charging device according to claim 1, wherein the circuit for detecting a predetermined state of charge of the battery includes a temperature measuring element for detecting battery temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1979170023U JPS6116763Y2 (en) | 1979-12-07 | 1979-12-07 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1979170023U JPS6116763Y2 (en) | 1979-12-07 | 1979-12-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5686838U JPS5686838U (en) | 1981-07-11 |
JPS6116763Y2 true JPS6116763Y2 (en) | 1986-05-23 |
Family
ID=29680863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1979170023U Expired JPS6116763Y2 (en) | 1979-12-07 | 1979-12-07 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6116763Y2 (en) |
-
1979
- 1979-12-07 JP JP1979170023U patent/JPS6116763Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5686838U (en) | 1981-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5818236A (en) | Method and apparatus for checking insulation of ungrounded power source | |
JP3279071B2 (en) | Battery pack charging device | |
US7705605B2 (en) | Voltage detecting apparatus | |
US20100072947A1 (en) | Multi-Cell Battery Pack Charge Balance Circuit | |
JP2001185228A (en) | Electric power supply equipped with battery | |
JP2000197276A (en) | Equipment and method for managing charging of battery | |
US3085187A (en) | Battery chargers with polarity control means | |
CN101459267A (en) | Battery pack | |
US20190204388A1 (en) | Power storage system | |
JP2009038925A (en) | Power supply unit for vehicle, and control method thereof | |
JP3789488B2 (en) | Method and apparatus for disconnecting a load connected to a power supply | |
US3062998A (en) | Battery chargers | |
US4010410A (en) | Recreational vehicle converter-battery fast charging circuit | |
JPS5918934B2 (en) | Storage battery charging device | |
JPS6116763Y2 (en) | ||
KR20220081568A (en) | Apparatus and method for estimating maximum power of battery | |
JP2012084443A (en) | Power supply device | |
US2259965A (en) | Automatic reclosing circuit breaker system | |
JP3013136B2 (en) | Charge / discharge device | |
US3652917A (en) | Battery charging system using a coulometer as a logic device | |
JPH07264780A (en) | Charge-discharge controller for set battery | |
EP0676847B1 (en) | Battery charger with high sensitivity | |
US20210399553A1 (en) | Battery management system | |
JP4025678B2 (en) | Charging apparatus and charging method | |
CN113872174A (en) | Device, circuit breaker and pre-charging arrangement for a DC power supply network |