JP4025678B2 - Charging apparatus and charging method - Google Patents

Charging apparatus and charging method Download PDF

Info

Publication number
JP4025678B2
JP4025678B2 JP2003116551A JP2003116551A JP4025678B2 JP 4025678 B2 JP4025678 B2 JP 4025678B2 JP 2003116551 A JP2003116551 A JP 2003116551A JP 2003116551 A JP2003116551 A JP 2003116551A JP 4025678 B2 JP4025678 B2 JP 4025678B2
Authority
JP
Japan
Prior art keywords
charging
storage battery
voltage
charged
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116551A
Other languages
Japanese (ja)
Other versions
JP2004328826A (en
Inventor
精一 安沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2003116551A priority Critical patent/JP4025678B2/en
Publication of JP2004328826A publication Critical patent/JP2004328826A/en
Application granted granted Critical
Publication of JP4025678B2 publication Critical patent/JP4025678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被充電蓄電池に対して充電用蓄電池を接続して被充電蓄電池の充電を行う充電装置及び充電方法に関する。
【0002】
【従来の技術】
一般に、モータにより走行する電気自動車或いはエンジンとモータを併用して走行するハイブリッド自動車には、多数の蓄電素子を直列に接続したバッテリを搭載する。
【0003】
ところで、この種のバッテリは充電を必要とするが、この充電時間はガソリン車の給油時間に比べてかなり長い時間を要するのが実情である。一方、近時、20〔C〕の充放電が可能な内部抵抗の非常に小さいバッテリも開発されるに至っている。このバッテリの場合、充電時間tは、t=60〔分〕/20〔C〕=3〔分〕となり、充電時間tは給油時間並の時間となる。しかし、短時間での充電は、大電力で充電する必要があるため、例えば、8時間充電を想定した場合、3分で充電するためには、その160倍の電力が供給される。したがって、商用電源や発電機から電力を直接供給する充電装置では、大電力容量のものが必要になり、装置の高コスト化及び大型化を招いてしまう。
【0004】
そこで、別途用意した充電用蓄電池に一旦充電した後、この充電用蓄電池から被充電蓄電池に対して充電すれば、上記問題を解消することができ、従来、この種の充電装置としては、米国特許第6,018,231号で開示される充電システムが知られている。この充電システムは、被充電蓄電池(12〔V〕)に対してやや高い充電印加電圧(14〔V〕)を有する充電用蓄電池を接続し、この充電用蓄電池から被充電蓄電池に対して直接充電するようにしたものである。
【特許文献1】
米国特許第6,018,231号
【0005】
【発明が解決しようとする課題】
しかし、上述した従来の充電装置(充電システム)は、次のような問題点があった。
【0006】
第一に、被充電蓄電池の両端電圧が低下し、充電開始時に、充電用蓄電池の両端電圧に対して被充電蓄電池の両端電圧がかなり低くなっている場合、被充電蓄電池に対して過大な充電電流が流れ、被充電蓄電池の寿命低下や破損を招くなど、被充電蓄電池に悪影響を及ぼす。
【0007】
第二に、最終充電電圧を自由に選択できないため、被充電蓄電池の種類に応じた複数の充電用蓄電池を用意する必要があるなど、汎用性に欠け、結局、設備の大型化やコストアップを招く。
【0008】
本発明は、このような従来の技術に存在する課題を解決したものであり、充電用蓄電池から被充電蓄電池に充電する際における過大な充電電流を確実に防止して被充電蓄電池に対する悪影響を回避するとともに、異なる複数の種類の被充電蓄電池に利用できるようにして汎用性を高めることができる充電装置及び充電方法の提供を目的とする。
【0009】
【課題を解決するための手段及び実施の形態】
本発明に係る充電装置1は、充電用蓄電池Pに被充電蓄電池Bを接続し、充電用蓄電池Pから被充電蓄電池Bに対して当該被充電蓄電池Bよりも高い充電印加電圧Enを印加して充電を行う充電装置であって、直列接続した複数の蓄電素子P0,P1,P2…Pnを備える充電用蓄電池Pと、この充電用蓄電池Pの負極Pyと各蓄電素子P0,P1,P2…の正極P0x,P1x,P2x…Pnx間おける充電印加電圧E0,E1,E2…Enの少なくとも一部を被充電蓄電池Bに対して選択的に印加する充電電圧切換部2と、被充電蓄電池Bの両端電圧Exの大きさに対応して充電電圧切換部2を制御する制御部3と、充電用蓄電池Pの各蓄電素子P0,P1,P2…をそれぞれ充電する複数の充電回路50,51,52…5nとを備えることを特徴とする。
【0010】
この場合、好適な実施の形態により、充電用蓄電池Pの容量は、被充電蓄電池Bの容量よりも十分大きく設定することが望ましい。一方、充電電圧切換部2は、各蓄電素子P0,P1,P2…の正極P0x,P1x,P2x…と被充電蓄電池Bの正極Bx間に接続した複数のスイッチ部20,21,22,23…2nを備えて構成することができ、このスイッチ部21(他のスイッチ部20,22…も同じ)としては、例えば、一対のトランジスタ(少なくともFET61,62を含む)を対称となるように直列に接続した構成,ダイオード63とトランジスタ(少なくともFET64を含む)を直列に接続した構成,リレースイッチ65を用いるとともに、少なくともリレースイッチ65の切換時に当該リレースイッチ65に電流を流す回路をOFFにするトランジスタ(少なくともFET66を含む)を備える構成等を採用できる。また、充電電圧切換部2には、被充電蓄電池Bに対して直列に接続することにより充電電流Iを制限する充電電流制限抵抗7、望ましくは、抵抗値を変更可能な充電電流制限抵抗7を設けることができる。さらに、制御部3には、被充電蓄電池Bに対する最大充電電流Iuを設定する設定機能及充電時に最大充電電流Iuを越えない充電電流Iを流す被充電蓄電池Bと充電印加電圧E0,E1,E2…間の電位差e0,e1,e2…を得るように、充電電圧切換部2を切換制御する制御機能を備えることができるとともに、被充電蓄電池Bに対する最終充電電圧Esを設定する設定機能及び充電時に被充電蓄電池Bの両端電圧Exが最終充電電圧Esに達したなら充電を停止する制御機能を備えることができる。
【0011】
また、本発明に係る充電方法は、充電用蓄電池Pに被充電蓄電池Bを接続し、充電用蓄電池Pから被充電蓄電池Bに対して当該被充電蓄電池Bよりも高い充電印加電圧Enを印加して充電を行うに際し、予め、被充電蓄電池Bに対する最大充電電流Iuを設定し、充電時に、充電電圧切換部2を切換制御することにより、直列接続した複数の蓄電素子P0,P1,P2…を備える充電用蓄電池Pの負極Pyと各蓄電素子P0,P1,P2…の正極P0x,P1x,P2x…間おける充電印加電圧E0,E1,E2…の少なくとも一部を、被充電蓄電池Bの両端電圧Exの大きさに対応して被充電蓄電池Bに対して選択的に印加するとともに、最大充電電流Iuを越えない充電電流Iを流す被充電蓄電池Bと充電印加電圧E0,E1,E2…間の電位差e0,e1,e2…を得るように、充電電圧切換部2を切換制御するようにしたことを特徴とする。
【0012】
この場合、好適な実施の態様により、予め、被充電蓄電池Bに対する最終充電電圧Esを設定し、充電時に、被充電蓄電池Bの両端電圧Exが最終充電電圧Esに達したなら充電を停止することができる。
【0013】
【実施例】
次に、本発明に係る好適な実施例を挙げ、図面に基づき詳細に説明する。
【0014】
まず、本実施例に係る充電装置1の構成について、図1〜図4を参照して説明する。
【0015】
図1中、Bはバッテリ(被充電蓄電池)、特に、モータにより走行する電気自動車或いはエンジンとモータを併用して走行するハイブリッド自動車等に搭載するバッテリを例示する。このバッテリBは、複数の蓄電素子Ba,Bb,Bc…Bnを直列に接続して構成したものであり、この蓄電素子Ba…には、リチウムイオン電池等のイオン電池や電気二重層コンデンサ等の各種蓄電素子を用いることができる。この場合、各蓄電素子Ba…は、1個のセルにより構成してもよいし、複数個のセル、例えば、直列接続,並列接続又はこれらの組合わせからなる複数個のセルにより構成してもよい。
【0016】
一方、1は、このバッテリBに対する充電を行う本実施例に係る充電装置を示す。充電装置1は、複数の蓄電素子P0,P1,P2,P3…Pnを直列接続して構成した充電用蓄電池Pを備える。この充電用蓄電池Pの容量は、バッテリBの容量よりも十分大きく設定するとともに、充電用蓄電池Pの両端電圧Enは、バッテリBの最終充電電圧Esよりも高く設定する。即ち、充電装置1が異なる複数の種類のバッテリB…に対して使用できるように、充電用蓄電池Pの容量及び両端電圧Enを、異なる複数の種類のバッテリB…の中の最も大きい容量及び最も大きい最終充電電圧Esよりも大きくなるように設定する。これにより、容量の大きなバッテリBであっても確実かつ安定に充電することができる。なお、各蓄電素子P0,P1,P2…は、1個のセル(蓄電素子)により構成してもよいし、複数個のセル(蓄電素子)により構成してもよい。実施例の蓄電素子P0は、直列接続した三つの蓄電素子を蓄電素子P0と見做している。
【0017】
また、充電用蓄電池Pの各蓄電素子P0,P1,P2…の両端には、各蓄電素子P0,P1,P2…をそれぞれ充電する複数の充電回路50,51,52,53…5nを接続する。この場合、充電回路50,51,52…の入力側には、商用交流電源等を接続する。ところで、この充電回路50,51,52…の充電電流は、各蓄電素子P0,P1,P2…からバッテリBに充電する際の充電電流I(Iu)よりも十分に小さく設定することができる。即ち、充電用蓄電池Pに対する充電は、バッテリBの充電が終了してから次の充電が行われるまでの間に充電が終了すればよいため、例えば、バッテリBに対する充電頻度等を目安に設定することができる。このため、各充電回路50,51,52…は、小型で小容量の充電回路で足りる。
【0018】
他方、2は、充電用蓄電池Pの負極Pyと各蓄電素子P0,P1,P2…の正極P0x,P1x,P2x…Pnx間おける充電印加電圧E0,E1,E2…Enの少なくとも一部をバッテリBに対して選択的に印加する充電電圧切換部を示す。この充電電圧切換部2は、各蓄電素子P0,P1,P2…の正極P0x,P1x,P2x…とバッテリBの正極Bx間に接続した複数のスイッチ部20,21,22,23…2nを備える。この場合、各スイッチ部20,21,22…は、各蓄電素子P0,P1,P2…の正極P0x,P1x,P2x…と共通の接続点Xp間にそれぞれ接続するとともに、この接続点Xpは、充電電流Iを制限する充電電流制限抵抗7を介して、バッテリBの正極Bxが接続される接続端子Txに接続する。充電電流制限抵抗7は、抵抗値を変更可能に構成することができる。抵抗値を変更する手段は、実施例のように、可変抵抗器により連続的に変更してもよいし、複数の異なる抵抗素子を切換スイッチ等により切換え、選択的に変更してもよい。さらに、抵抗値を変更するに際しては、実施例のように、後述する制御部3の制御により変更してもよいし、マニュアル操作により変更してもよい。このような充電電流制限抵抗7を接続することにより、安定した充電電流Iを流すことができるとともに、この充電電流制限抵抗7の抵抗値を変更可能にすれば、バッテリBの種類に対応して最適な抵抗値を設定できる。勿論、充電電流制限抵抗7は固定抵抗であってもよい。
【0019】
図2〜図4に、スイッチ部21(他のスイッチ部20,22…も同じ)の具体的構成例を示す。図2は、一対のFET61,62を、ドレイン−ソース間が反対(対称)となるように直列に接続して構成したものであり、これにより、FET61,62のドレイン−ソース間に存在する寄生ダイオードの影響を回避することができる。また、図3は、ダイオード63とFET64を直列に接続して構成したものである。この場合も、FET64のドレイン−ソース間に存在する寄生ダイオードの影響を回避できる。さらに、図4は、リレースイッチ65を用いてスイッチ部21を構成するとともに、リレースイッチ65の切換時に当該リレースイッチ65に電流を流す回路をOFFにするFET66を接続したものである。図4の場合、リレースイッチ65における接点の摩耗を低減できる。即ち、リレースイッチ65は、通常、機械的接点を用いるため、充電電流Iが流れている状態でON/OFF制御すれば、接点の摩耗を加速することになる。このため、リレースイッチ65の切換(ON/OFF)時には、FET66により電流を流す回路をOFFするようにした。
【0020】
また、3は、制御部であり、バッテリBの両端電圧Exの大きさに対応して充電電圧切換部2を制御する機能を備える。このため、制御部3は、設定部71を用いて、少なくともバッテリBに対する最大充電電流Iu及び最終充電電圧Esをそれぞれ設定する設定機能を備えるとともに、充電時に、設定した最大充電電流Iuを越えない充電電流Iを流すバッテリBと充電印加電圧E0…間の電位差e0,e1,e2…を得るように、充電電圧切換部2を切換える制御機能、さらには、充電時に、バッテリBの両端電圧Exが最終充電電圧Esに達したなら充電を停止する制御機能をそれぞれ備えている。したがって、各蓄電素子P0,P1,P2…の正極P0x,P1x,P2x…は、ライン群Lmを介してそれぞれ制御部3に接続するとともに、上述した接続点Xp及び接続端子Txを制御部3に接続する。これにより、制御部3は、上記電位差e0,e1,e2…を検出することができるとともに、各スイッチ部20,21,22…を選択的にON/OFF制御することができる。制御部3は、このような機能を有するため、これらの機能が実現されるシーケンス制御回路(ハードウェア)を構成してもよいし、マイクロコンピュータ等を利用し、制御プログラム(ソフトウェア)によりこれらの機能を実行させてもよい。
【0021】
次に、本実施例に係る充電方法を含む充電装置1の動作について、図5を参照しつつ図6に示すフローチャートに従って説明する。
【0022】
まず、充電装置1は、内蔵する各充電回路50,51,52…により、対応する蓄電素子P0,P1,P2…が常時充電される。この場合、各蓄電素子P0,P1,P2…に対する充電電流は小さくてもよい。例えば、前述したように、バッテリBに対する充電頻度等を目安に設定することができ、一例として8時間充電等であってもよい。
【0023】
一方、充電に際しては、充電しようとするバッテリBを、図1に示すように、接続端子Tx,Tyに接続する(ステップS1)。即ち、バッテリBの正極Bxを接続端子Txに接続するとともに、バッテリBの負極Byを接続端子Tyに接続する。なお、接続端子Tyは、充電用蓄電池Pの負極Pyに接続されている。また、この時点では、全てのスイッチ部20,21,22…は、OFFになっている。
【0024】
そして、設定部71を利用して、接続したバッテリBに関する所定の条件、即ち、バッテリBに対する最大充電電流Iu及び最終充電電圧Esをそれぞれ入力する(ステップS2)。この場合、最大充電電流Iuは、バッテリBに流すことができるバッテリBの容量等により設定される充電電流Iの最大値である。また、最終充電電圧Esは、いわばバッテリBの規定電圧である。この場合、最大充電電流Iu及び最終充電電圧Esは、バッテリBの固有の特性(既知)であるため、予め、制御部3のメモリ機能により登録し、バッテリBの種別を入力(選択)することにより、自動設定できるようにすることが望ましい。なお、実施例(図5)は、最大充電電流Iuを150〔A〕、最終充電電圧Esを336〔V〕に設定した場合を示している。これにより、制御部3は、設定された最大充電電流Iuに基づいて、この最大充電電流Iuを越えない充電電流Iを流すことができるバッテリBと充電用蓄電池P側の間の設定電位差eを求めるとともに、求めた設定電位差eを設定する。この場合、充電電流制限抵抗7の抵抗値をRxとし、他の抵抗分を無視すれば、設定電位差eは、e=Iu×Rxにより得られる。
【0025】
また、制御部3は、バッテリBと充電印加電圧E0,E1,E2…間の実際の電位差e0,e1,e2…を検出する(ステップS3)。そして、検出した電位差(検出電位差)e0,e1,e2…と設定電位差eを比較し、検出電位差e0,e1,e2…の中から設定電位差eに最も近く、かつ設定電位差eを越えない検出電位差e0,e1,e2…を得るスイッチ部20,21,23…を判別する(ステップS4)。今、判別したスイッチ部が21(検出電位差e1)である場合を想定する。この場合、制御部3は、スイッチ部21をONにする(ステップS5)。このON時点を図5中taで示す。これにより、電位差e1により充電が行われる(ステップS6)。なお、図5は、このときのバッテリBの両端電圧Exが、232〔V〕であることを示している。
【0026】
一方、充電中は、制御部3により、バッテリBの両端電圧Exと充電印加電圧E0,E1,E2…間の電位差(検出電位差)e0,e1,e2…を検出するとともに、検出結果を監視する(ステップS7)。充電時には、バッテリBの両端電圧Exが図5に示すように徐々に上昇するため、tb時点では、検出電位差e2が設定電位差eに最も近く、かつ設定電位差eを越えない条件を満たす。制御部3は、この時点でスイッチ部21をOFF制御した後、スイッチ部22をON制御する(ステップS8,S5,S6…)。以下、順次、tc,td,te,tf時点毎に同様の動作が繰り返される。
【0027】
また、検出電位差e0,e1,e2…の監視と同時に、バッテリBの両端電圧Exを監視する。そして、両端電圧Exが設定された最終充電電圧Esに達したなら、制御部3は充電を停止する制御を行う(ステップS9,S10)。図5tg時点が、最終充電電圧Esに達した時点を示している。今、図5において、バッテリBのセルが80個直列かつ容量が5〔Ah〕とし、セル一個当たりの内部抵抗を1〔mΩ〕、電流制限抵抗7の抵抗値を100〔mΩ〕、充電電流の平均値を20〔C〕として試算すれば、ta時点からtb時点までの充電時間Taは34〔秒〕、最終充電電圧Esに達するまでの時間は3〔分〕程度となる。
【0028】
よって、このような本実施例に係る充電装置1(充電方法)によれば、充電用蓄電池Pからバッテリ(被充電蓄電池)Bに充電する際に、充電用蓄電池Pに対してバッテリBの両端電圧Exがかなり低くなっているような場合であっても、充電電流Iは、図5に示すように、最大充電電流Iuを越えることなく、かつ効率的に充電が行われるため、過大な充電電流Iを確実に防止できる。この結果、バッテリBにおける寿命低下や破損を招くなどの悪影響を回避することができる。また、最終充電電圧Esを自由に設定できるため、異なる複数の種類のバッテリBにも利用でき、汎用性に優れ、もって、設備の大型化やコストアップを回避することができる。
【0029】
以上、実施例について詳細に説明したが、本発明はこのような実施例に限定されるものではなく、細部の回路構成、手法等において、本発明の要旨を逸脱しない範囲で任意に変更,追加,削除することができる。例えば、被充電蓄電池には、モータにより走行する電気自動車或いはエンジンとモータを併用して走行するハイブリッド自動車に搭載するバッテリBを用いて好適であるが、用途はこれらに限定されるものではない。また、明細書で使用した正極及び負極は、絶対的な極のみを示すものではなく、正極(正極側)と負極(負極側)をそのまま入れ替えて構成した場合であっても同様に実施できる。
【0030】
【発明の効果】
このように、本発明に係る充電装置(充電方法)は、直列接続した複数の蓄電素子を備える充電用蓄電池と、この充電用蓄電池の負極と各蓄電素子の正極間おける充電印加電圧の少なくとも一部を被充電蓄電池に対して選択的に印加する充電電圧切換部と、被充電蓄電池の両端電圧の大きさに対応して充電電圧切換部を制御する制御部と、充電用蓄電池の各蓄電素子をそれぞれ充電する複数の充電回路とを備えるため、次のような顕著な効果を奏する。
【0031】
(1) 充電開始時に、充電用蓄電池に対して被充電蓄電池の両端電圧がかなり低くなっているような場合でも、充電電流は、最大充電電流を越えることなく、かつ効率的に充電が行われるため、過大な充電電流を確実に防止でき、被充電蓄電池における寿命低下や破損を招くなどの悪影響を回避することができる。
【0032】
(2) 最終充電電圧を自由に設定できるため、異なる複数の種類の被充電蓄電池にも利用でき、汎用性に優れ、もって、設備の大型化やコストアップを回避することができる。
【0033】
(3) 充電用蓄電池の各蓄電素子をそれぞれ充電する複数の充電回路を設けたため、この充電回路の充電電流を、各蓄電素子から被充電蓄電池に充電する際の充電電流よりも十分に小さく設定でき、小型で小容量の充電回路で足りる。
【0034】
(4) 好適な実施の形態により、充電用蓄電池の容量を、被充電蓄電池の容量よりも十分大きく設定すれば、容量の大きな被充電蓄電池であっても確実かつ安定に充電することができる。
【0035】
(5) 好適な実施の形態により、充電電圧切換部に、被充電蓄電池に直列に接続して充電電流を制限する充電電流制限抵抗を設ければ、より安定した充電電流を流すことができるとともに、さらに、充電電流制限抵抗を、抵抗値を変更可能にすれば、被充電蓄電池の種類に対応して最適な抵抗値を設定できる。
【図面の簡単な説明】
【図1】本発明の好適な実施例に係る充電装置の回路構成図、
【図2】同充電装置に用いるスイッチ部の構成例を示す電気回路図、
【図3】同充電装置に用いるスイッチ部の他の構成例を示す電気回路図、
【図4】同充電装置に用いるスイッチ部の他の構成例を示す電気回路図、
【図5】同充電装置による充電時の被充電蓄電池(バッテリ)の両端電圧及び充電電流の変化特性図、
【図6】同充電装置の動作(充電方法)を説明するためのフローチャート、
【符号の説明】
1 充電装置
2 充電電圧切換部
20… スイッチ部
3 制御部
50… 充電回路
7 充電電流制限抵抗
P 充電用蓄電池
P0… 蓄電素子
P0x… 蓄電素子の正極
Bx 被充電蓄電池の正極
Py 充電用蓄電池の負極
B 被充電蓄電池
E0… 充電印加電圧
Ex 被充電蓄電池の両端電圧
Es 被充電蓄電池の最終充電電圧
I 充電電流
Iu 最大充電電流
e0… 電位差(検出電位差)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charging device and a charging method for charging a charged storage battery by connecting a charging storage battery to the charged storage battery.
[0002]
[Prior art]
Generally, a battery in which a large number of power storage elements are connected in series is mounted on an electric vehicle that is driven by a motor or a hybrid vehicle that is driven by using an engine and a motor together.
[0003]
By the way, this type of battery needs to be charged, but the charging time is actually much longer than the refueling time of a gasoline vehicle. On the other hand, recently, a battery having a very small internal resistance capable of charging / discharging 20 [C] has been developed. In the case of this battery, the charging time t is t = 60 [minutes] / 20 [C] = 3 [minutes], and the charging time t is equal to the oiling time. However, since charging in a short time requires charging with a large amount of power, for example, assuming charging for 8 hours, to charge in 3 minutes, 160 times as much power is supplied. Therefore, a charging device that directly supplies power from a commercial power source or a generator requires a large power capacity, leading to an increase in cost and size of the device.
[0004]
Therefore, once charging a separately prepared charging storage battery and then charging the charged storage battery from this charging storage battery, the above problem can be solved. Conventionally, as this type of charging device, US Patent A charging system disclosed in US Pat. No. 6,018,231 is known. In this charging system, a charging storage battery having a slightly higher charging applied voltage (14 [V]) is connected to a charged storage battery (12 [V]), and the charged storage battery is directly charged from the charging storage battery. It is what you do.
[Patent Document 1]
US Pat. No. 6,018,231
[Problems to be solved by the invention]
However, the conventional charging device (charging system) described above has the following problems.
[0006]
First, if the voltage at both ends of the rechargeable storage battery decreases and the voltage at both ends of the rechargeable storage battery is considerably lower than the voltage at both ends of the rechargeable storage battery at the start of charging, the charged battery is overcharged. A current flows, which adversely affects the charged storage battery, for example, leading to a decrease in the life or damage of the charged storage battery.
[0007]
Second, since the final charging voltage cannot be freely selected, it is necessary to prepare multiple charging storage batteries according to the type of storage battery to be charged. Invite.
[0008]
The present invention solves such a problem existing in the prior art and reliably prevents an excessive charging current when charging a charged storage battery from a charging storage battery to avoid an adverse effect on the charged storage battery. In addition, it is an object of the present invention to provide a charging device and a charging method that can be used for a plurality of different types of charged storage batteries to improve versatility.
[0009]
[Means for Solving the Problems and Embodiments]
The charging device 1 according to the present invention connects a charged storage battery B to a charging storage battery P, and applies a charging applied voltage En higher than that of the charged storage battery B from the charging storage battery P to the charged storage battery B. A charging device for charging, comprising: a storage battery P for charging comprising a plurality of power storage elements P0, P1, P2,... Pn connected in series, a negative electrode Py of the storage battery P for charging, and each of the power storage elements P0, P1, P2. A charging voltage switching unit 2 that selectively applies at least a part of the charging applied voltages E0, E1, E2,... En between the positive electrodes P0x, P1x, P2x... Pnx to the charged storage battery B, and both ends of the charged storage battery B. The control unit 3 that controls the charging voltage switching unit 2 in accordance with the magnitude of the voltage Ex, and a plurality of charging circuits 50, 51, 52,... That respectively charge the storage elements P0, P1, P2,. With 5n And wherein the door.
[0010]
In this case, according to a preferred embodiment, the capacity of the charging storage battery P is desirably set sufficiently larger than the capacity of the charged storage battery B. On the other hand, the charging voltage switching unit 2 includes a plurality of switch units 20, 21, 22, 23,... Connected between the positive electrodes P0x, P1x, P2x, etc. of the storage elements P0, P1, P2,. As the switch unit 21 (the other switch units 20, 22,... Are the same), for example, a pair of transistors (including at least FETs 61, 62) are arranged in series so as to be symmetrical. A connected configuration, a configuration in which a diode 63 and a transistor (including at least an FET 64) are connected in series, a relay switch 65, and a transistor that turns off a circuit that passes current through the relay switch 65 at least when the relay switch 65 is switched ( A configuration including at least the FET 66 may be employed. Further, the charging voltage switching unit 2 includes a charging current limiting resistor 7 that limits the charging current I by connecting in series to the charged storage battery B, preferably a charging current limiting resistor 7 that can change the resistance value. Can be provided. Further, the control unit 3 has a setting function for setting the maximum charging current Iu for the charged storage battery B, and the charged storage battery B that flows the charging current I that does not exceed the maximum charging current Iu during charging, and the charging applied voltages E0, E1, and E2. A control function for switching and controlling the charging voltage switching unit 2 so as to obtain a potential difference e0, e1, e2,... Between the setting function for setting the final charging voltage Es for the charged storage battery B and at the time of charging. It is possible to provide a control function for stopping charging when the voltage Ex between both ends of the storage battery B reaches the final charging voltage Es.
[0011]
Further, the charging method according to the present invention connects the charged storage battery B to the charging storage battery P, and applies a higher charge application voltage En than the charged storage battery B from the charging storage battery P to the charged storage battery B. When charging, the maximum charging current Iu for the battery B to be charged is set in advance, and the charging voltage switching unit 2 is controlled to be switched during charging, so that a plurality of power storage elements P0, P1, P2. At least a part of the charging applied voltages E0, E1, E2... Between the negative electrode Py of the charging storage battery P and the positive electrodes P0x, P1x, P2x... Of each storage element P0, P1, P2. Between the charged storage battery B and the charging applied voltages E0, E1, E2,..., Which are selectively applied to the charged storage battery B in accordance with the magnitude of Ex and flow a charging current I that does not exceed the maximum charging current Iu. Potential e0, e1, e2 ... to obtain, characterized in that so as to switch control of the charging voltage switching section 2.
[0012]
In this case, according to a preferred embodiment, the final charging voltage Es for the charged storage battery B is set in advance, and the charging is stopped if the voltage Ex across the charged storage battery B reaches the final charging voltage Es during charging. Can do.
[0013]
【Example】
Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.
[0014]
First, the structure of the charging device 1 which concerns on a present Example is demonstrated with reference to FIGS. 1-4.
[0015]
In FIG. 1, B exemplifies a battery (charged storage battery), in particular, a battery mounted on an electric vehicle that runs by a motor or a hybrid vehicle that runs by using an engine and a motor together. This battery B is configured by connecting a plurality of power storage elements Ba, Bb, Bc... Bn in series, and this power storage element Ba... Has an ion battery such as a lithium ion battery or an electric double layer capacitor. Various power storage elements can be used. In this case, each power storage element Ba may be composed of one cell, or may be composed of a plurality of cells, for example, a plurality of cells composed of series connection, parallel connection, or a combination thereof. Good.
[0016]
On the other hand, reference numeral 1 denotes a charging apparatus according to the present embodiment that charges the battery B. The charging device 1 includes a charging storage battery P configured by connecting a plurality of power storage elements P0, P1, P2, P3,. The capacity of the charging storage battery P is set to be sufficiently larger than the capacity of the battery B, and the both-end voltage En of the charging storage battery P is set to be higher than the final charging voltage Es of the battery B. That is, the capacity and both-end voltage En of the charging storage battery P are set to the largest capacity and the largest among the different types of batteries B so that the charging device 1 can be used for the different types of batteries B. It is set to be larger than the large final charge voltage Es. Thereby, even the battery B having a large capacity can be reliably and stably charged. In addition, each electrical storage element P0, P1, P2 ... may be comprised by one cell (electrical storage element), and may be comprised by several cells (electrical storage element). In the power storage element P0 of the example, three power storage elements connected in series are regarded as the power storage element P0.
[0017]
Further, a plurality of charging circuits 50, 51, 52, 53,... 5n for charging the respective storage elements P0, P1, P2,... Are connected to both ends of the respective storage elements P0, P1, P2,. . In this case, a commercial AC power source or the like is connected to the input side of the charging circuits 50, 51, 52. By the way, the charging current of the charging circuits 50, 51, 52... Can be set sufficiently smaller than the charging current I (Iu) when charging the battery B from the respective storage elements P0, P1, P2,. In other words, the charging of the charging storage battery P only needs to be completed after the charging of the battery B is completed until the next charging is performed. For example, the charging frequency of the battery B is set as a guideline. be able to. Therefore, each charging circuit 50, 51, 52.
[0018]
On the other hand, 2 indicates that at least a part of the charging applied voltages E0, E1, E2,... En between the negative electrode Py of the charging storage battery P and the positive electrodes P0x, P1x, P2x. The charge voltage switch part selectively applied with respect to is shown. This charging voltage switching unit 2 includes a plurality of switch units 20, 21, 22, 23... 2n connected between the positive electrodes P0x, P1x, P2x... Of each of the storage elements P0, P1, P2. . In this case, each of the switch sections 20, 21, 22,... Is connected between the positive electrodes P0x, P1x, P2x,... Of the respective storage elements P0, P1, P2,. The battery B is connected to a connection terminal Tx to which the positive electrode Bx of the battery B is connected via a charging current limiting resistor 7 that limits the charging current I. The charging current limiting resistor 7 can be configured to change the resistance value. The means for changing the resistance value may be changed continuously by a variable resistor as in the embodiment, or may be changed selectively by switching a plurality of different resistance elements using a changeover switch or the like. Furthermore, when changing the resistance value, it may be changed by the control of the control unit 3 described later as in the embodiment, or may be changed by manual operation. By connecting the charging current limiting resistor 7 as described above, a stable charging current I can flow, and if the resistance value of the charging current limiting resistor 7 can be changed, it corresponds to the type of the battery B. An optimum resistance value can be set. Of course, the charging current limiting resistor 7 may be a fixed resistor.
[0019]
2 to 4 show specific configuration examples of the switch unit 21 (the same applies to the other switch units 20, 22,...). FIG. 2 shows a configuration in which a pair of FETs 61 and 62 are connected in series so that the drain and the source are opposite (symmetric), and thus the parasitic current existing between the drain and the source of the FETs 61 and 62 is shown. The influence of the diode can be avoided. FIG. 3 shows a configuration in which a diode 63 and an FET 64 are connected in series. Also in this case, the influence of the parasitic diode existing between the drain and source of the FET 64 can be avoided. Further, FIG. 4 is configured by using the relay switch 65 to configure the switch unit 21 and connecting an FET 66 for turning off a circuit for passing a current to the relay switch 65 when the relay switch 65 is switched. In the case of FIG. 4, the wear of the contacts in the relay switch 65 can be reduced. That is, since the relay switch 65 normally uses a mechanical contact, if the ON / OFF control is performed in a state where the charging current I is flowing, the wear of the contact is accelerated. For this reason, when the relay switch 65 is switched (ON / OFF), the circuit through which the current flows is turned off by the FET 66.
[0020]
Reference numeral 3 denotes a control unit, which has a function of controlling the charging voltage switching unit 2 in accordance with the magnitude of the both-end voltage Ex of the battery B. For this reason, the control unit 3 includes a setting function for setting at least the maximum charging current Iu and the final charging voltage Es for the battery B using the setting unit 71, and does not exceed the set maximum charging current Iu during charging. A control function for switching the charging voltage switching unit 2 so as to obtain a potential difference e0, e1, e2,... Between the battery B through which the charging current I flows and the charging application voltage E0. Each has a control function for stopping charging when the final charging voltage Es is reached. Therefore, the positive electrodes P0x, P1x, P2x... Of the respective storage elements P0, P1, P2... Are connected to the control unit 3 through the line group Lm, and the connection point Xp and the connection terminal Tx described above are connected to the control unit 3. Connecting. As a result, the control unit 3 can detect the potential differences e0, e1, e2,..., And can selectively control each switch unit 20, 21, 22,. Since the control unit 3 has such functions, a sequence control circuit (hardware) that realizes these functions may be configured, or these may be configured by a control program (software) using a microcomputer or the like. The function may be executed.
[0021]
Next, the operation of the charging apparatus 1 including the charging method according to the present embodiment will be described according to the flowchart shown in FIG. 6 with reference to FIG.
[0022]
First, in the charging device 1, the corresponding storage elements P0, P1, P2,... Are always charged by the built-in charging circuits 50, 51, 52. In this case, the charging current for each power storage element P0, P1, P2,. For example, as described above, the charging frequency or the like for the battery B can be set as a guideline. For example, the charging may be performed for 8 hours.
[0023]
On the other hand, when charging, the battery B to be charged is connected to the connection terminals Tx and Ty as shown in FIG. 1 (step S1). That is, the positive electrode Bx of the battery B is connected to the connection terminal Tx, and the negative electrode By of the battery B is connected to the connection terminal Ty. The connection terminal Ty is connected to the negative electrode Py of the charging storage battery P. At this time, all the switch sections 20, 21, 22,... Are OFF.
[0024]
Then, the setting unit 71 is used to input predetermined conditions relating to the connected battery B, that is, the maximum charging current Iu and the final charging voltage Es for the battery B (step S2). In this case, the maximum charging current Iu is the maximum value of the charging current I set by the capacity of the battery B that can flow to the battery B. The final charging voltage Es is a so-called specified voltage of the battery B. In this case, since the maximum charging current Iu and the final charging voltage Es are unique characteristics (known) of the battery B, they are registered in advance by the memory function of the control unit 3 and the type of the battery B is input (selected). Therefore, it is desirable to enable automatic setting. In the example (FIG. 5), the maximum charging current Iu is set to 150 [A] and the final charging voltage Es is set to 336 [V]. As a result, the control unit 3 sets the set potential difference e between the battery B that can flow the charging current I not exceeding the maximum charging current Iu and the charging storage battery P side based on the set maximum charging current Iu. At the same time, the obtained set potential difference e is set. In this case, if the resistance value of the charging current limiting resistor 7 is Rx and other resistances are ignored, the set potential difference e can be obtained by e = Iu × Rx.
[0025]
Further, the control unit 3 detects actual potential differences e0, e1, e2,... Between the battery B and the charging application voltages E0, E1, E2,. Then, the detected potential difference (detected potential difference) e0, e1, e2,... Is compared with the set potential difference e, and the detected potential difference closest to the set potential difference e from the detected potential differences e0, e1, e2,. Switch units 20, 21, 23,... for obtaining e0, e1, e2,. Assume that the determined switch section is 21 (detection potential difference e1). In this case, the control unit 3 turns on the switch unit 21 (step S5). This ON time is indicated by ta in FIG. Thereby, charging is performed by the potential difference e1 (step S6). FIG. 5 shows that the voltage Ex across the battery B at this time is 232 [V].
[0026]
On the other hand, during charging, the control unit 3 detects potential differences (detected potential differences) e0, e1, e2,... Between the voltage Ex across the battery B and the charging application voltages E0, E1, E2,. (Step S7). At the time of charging, the voltage Ex across the battery B gradually rises as shown in FIG. 5, so that the condition that the detected potential difference e2 is closest to the set potential difference e and does not exceed the set potential difference e at time tb is satisfied. At this time, the control unit 3 controls the switch unit 21 to be turned off, and then controls the switch unit 22 to be turned on (steps S8, S5, S6,...). Thereafter, the same operation is sequentially repeated at the time points tc, td, te, and tf.
[0027]
Further, the voltage Ex across the battery B is monitored simultaneously with the detection potential differences e0, e1, e2,. And if the both-ends voltage Ex reaches the set final charge voltage Es, the control part 3 will perform control which stops charge (step S9, S10). The time tg in FIG. 5 indicates the time when the final charging voltage Es is reached. Now, in FIG. 5, 80 cells of battery B are connected in series and the capacity is 5 [Ah], the internal resistance per cell is 1 [mΩ], the resistance value of the current limiting resistor 7 is 100 [mΩ], the charging current Assuming that the average value is 20 [C], the charging time Ta from the time point ta to the time point tb is 34 [seconds], and the time to reach the final charging voltage Es is about 3 [minutes].
[0028]
Therefore, according to the charging device 1 (charging method) according to this embodiment, when charging the battery (charged storage battery) B from the charging storage battery P, both ends of the battery B with respect to the charging storage battery P are used. Even in the case where the voltage Ex is considerably low, the charging current I does not exceed the maximum charging current Iu as shown in FIG. The current I can be reliably prevented. As a result, it is possible to avoid adverse effects such as a decrease in life or damage in the battery B. Further, since the final charging voltage Es can be set freely, it can be used for a plurality of different types of batteries B, and is excellent in versatility, thereby avoiding an increase in size and cost of equipment.
[0029]
Although the embodiments have been described in detail above, the present invention is not limited to such embodiments, and the detailed circuit configuration and method are arbitrarily changed and added without departing from the scope of the present invention. , Can be deleted. For example, the battery B to be charged is preferably used in an electric vehicle that runs by a motor or a hybrid vehicle that runs by using a combination of an engine and a motor, but the application is not limited thereto. Further, the positive electrode and the negative electrode used in the specification do not indicate only absolute poles, and can be similarly implemented even when the positive electrode (positive electrode side) and the negative electrode (negative electrode side) are interchanged as they are.
[0030]
【The invention's effect】
Thus, the charging device (charging method) according to the present invention includes a charging storage battery including a plurality of power storage elements connected in series, and at least one charge applied voltage between the negative electrode of the charging storage battery and the positive electrode of each power storage element. Voltage switching unit for selectively applying the charging unit to the charged storage battery, a control unit for controlling the charging voltage switching unit corresponding to the magnitude of the voltage across the charged storage battery, and each storage element of the charging storage battery Are provided with a plurality of charging circuits, respectively, so that the following remarkable effects can be obtained.
[0031]
(1) Even when the voltage across the charged storage battery is considerably lower than the charging storage battery at the start of charging, the charging current is charged efficiently without exceeding the maximum charging current. Therefore, an excessive charging current can be reliably prevented, and adverse effects such as a decrease in the life and damage of the charged storage battery can be avoided.
[0032]
(2) Since the final charging voltage can be set freely, it can be used for a plurality of different types of charged storage batteries and is excellent in versatility, thereby avoiding an increase in equipment size and cost.
[0033]
(3) Since a plurality of charging circuits for charging each storage element of the storage battery for charging are provided, the charging current of the charging circuit is set sufficiently smaller than the charging current for charging the charged storage battery from each storage element. A small, small-capacity charging circuit is sufficient.
[0034]
(4) According to a preferred embodiment, if the capacity of the charging storage battery is set sufficiently larger than the capacity of the charged storage battery, even a charged storage battery having a large capacity can be reliably and stably charged.
[0035]
(5) According to a preferred embodiment, if the charging voltage switching unit is provided with a charging current limiting resistor that is connected in series to the charged storage battery and limits the charging current, a more stable charging current can flow. Further, if the resistance value of the charging current limiting resistor can be changed, an optimum resistance value can be set corresponding to the type of the storage battery.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a charging device according to a preferred embodiment of the present invention;
FIG. 2 is an electric circuit diagram showing a configuration example of a switch unit used in the charging device;
FIG. 3 is an electric circuit diagram showing another configuration example of a switch unit used in the charging device;
FIG. 4 is an electric circuit diagram showing another configuration example of the switch unit used in the charging device;
FIG. 5 is a change characteristic diagram of both-end voltage and charging current of a charged storage battery (battery) during charging by the charging device;
FIG. 6 is a flowchart for explaining the operation (charging method) of the charging device;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Charging apparatus 2 Charging voltage switching part 20 ... Switch part 3 Control part 50 ... Charging circuit 7 Charging current limiting resistance P Charging storage battery P0 ... Electric storage element P0x ... Positive electrode Bx of electric storage element Positive electrode Py of to-be-charged storage battery Negative electrode of charging storage battery B Charged storage battery E0 ... Charge applied voltage Ex Both-ends voltage Es of the charged storage battery Final charge voltage I of the charged storage battery I Charging current Iu Maximum charging current e0 ... Potential difference (detection potential difference)

Claims (12)

充電用蓄電池に被充電蓄電池を接続し、前記充電用蓄電池から前記被充電蓄電池に対して当該被充電蓄電池よりも高い充電印加電圧を印加して充電を行う充電装置において、直列接続した複数の蓄電素子を備える充電用蓄電池と、この充電用蓄電池の負極と各蓄電素子の正極間おける充電印加電圧の少なくとも一部を前記被充電蓄電池に対して選択的に印加する充電電圧切換部と、前記被充電蓄電池の両端電圧の大きさに対応して前記充電電圧切換部を制御する制御部と、前記充電用蓄電池の各蓄電素子をそれぞれ充電する複数の充電回路とを備えることを特徴とする充電装置。  In a charging device that connects a charged storage battery to a charging storage battery, and charges the charged storage battery by applying a charge applied voltage higher than that of the charged storage battery, a plurality of power storage units connected in series A charging storage battery including an element; a charging voltage switching unit that selectively applies at least a part of a charging applied voltage between a negative electrode of the charging storage battery and a positive electrode of each storage element to the charged storage battery; A charging device comprising: a control unit that controls the charging voltage switching unit corresponding to the magnitude of the voltage across the charging storage battery; and a plurality of charging circuits that charge each storage element of the charging storage battery. . 前記充電用蓄電池の容量は、前記被充電蓄電池の容量よりも十分大きく設定することを特徴とする請求項1記載の充電装置。  The charging device according to claim 1, wherein a capacity of the charging storage battery is set to be sufficiently larger than a capacity of the charged storage battery. 前記充電電圧切換部は、各蓄電素子の正極と前記被充電蓄電池の正極間に接続した複数のスイッチ部を備えることを特徴とする請求項1記載の充電装置。  The charging device according to claim 1, wherein the charging voltage switching unit includes a plurality of switch units connected between a positive electrode of each power storage element and a positive electrode of the charged storage battery. 前記スイッチ部は、一対のトランジスタ(少なくともFETを含む)を対称となるように直列に接続してなることを特徴とする請求項3記載の充電装置。  The charging device according to claim 3, wherein the switch unit is formed by connecting a pair of transistors (including at least an FET) in series so as to be symmetrical. 前記スイッチ部は、ダイオードとトランジスタ(少なくともFETを含む)を直列に接続して構成することを特徴とする請求項3記載の充電装置。  The charging device according to claim 3, wherein the switch unit is configured by connecting a diode and a transistor (including at least an FET) in series. 前記スイッチ部は、リレースイッチを用いるとともに、少なくともリレースイッチの切換時に当該リレースイッチに電流を流す回路をOFFにするトランジスタ(少なくともFETを含む)を備えることを特徴とする請求項3記載の充電装置。  The charging device according to claim 3, wherein the switch unit includes a transistor (including at least an FET) that uses a relay switch and turns off a circuit that causes a current to flow through the relay switch when the relay switch is switched. . 前記充電電圧切換部は、前記被充電蓄電池に直列に接続して充電電流を制限する充電電流制限抵抗を備えることを特徴とする請求項1記載の充電装置。  The charging device according to claim 1, wherein the charging voltage switching unit includes a charging current limiting resistor connected in series to the charged storage battery to limit a charging current. 前記充電電流制限抵抗は、抵抗値を変更可能であることを特徴とする請求項7記載の充電装置。  The charging device according to claim 7, wherein a resistance value of the charging current limiting resistor can be changed. 前記制御部は、前記被充電蓄電池に対する最大充電電流を設定する設定機能及び充電時に前記最大充電電流を越えない充電電流を流す前記被充電蓄電池と前記充電印加電圧間の電位差を得るように、前記充電電圧切換部を切換制御する制御機能を備えることを特徴とする請求項1記載の充電装置。  The control unit is configured to set a maximum charging current for the charged storage battery, and to obtain a potential difference between the charged storage battery and a charge applied voltage that flows a charging current that does not exceed the maximum charging current during charging. The charging device according to claim 1, further comprising a control function for switching and controlling the charging voltage switching unit. 前記制御部は、前記被充電蓄電池に対する最終充電電圧を設定する設定機能及び充電時に前記被充電蓄電池の両端電圧が前記最終充電電圧に達したなら充電を停止する制御機能を備えることを特徴とする請求項1記載の充電装置。  The control unit includes a setting function for setting a final charging voltage for the charged storage battery and a control function for stopping charging when a voltage between both ends of the charged storage battery reaches the final charging voltage during charging. The charging device according to claim 1. 充電用蓄電池に被充電蓄電池を接続し、前記充電用蓄電池から前記被充電蓄電池に対して当該被充電蓄電池よりも高い充電印加電圧を印加して充電を行う充電方法において、予め、前記被充電蓄電池に対する最大充電電流を設定し、充電時に、充電電圧切換部を切換制御することにより、直列接続した複数の蓄電素子を備える充電用蓄電池の負極と各蓄電素子の正極間おける充電印加電圧の少なくとも一部を、前記被充電蓄電池の両端電圧の大きさに対応して前記被充電蓄電池に対して選択的に印加するとともに、前記最大充電電流を越えない充電電流を流す前記被充電蓄電池と前記充電印加電圧間の電位差を得るように、前記充電電圧切換部を切換制御することを特徴とする充電方法。  In a charging method in which a charged storage battery is connected to a charging storage battery, and charging is performed by applying a charge applied voltage higher than that of the charged storage battery from the charging storage battery to the charged storage battery, the charged storage battery By setting the maximum charging current for the battery and switching control of the charging voltage switching unit during charging, at least one of the charging applied voltages between the negative electrode of the charging storage battery including a plurality of storage elements connected in series and the positive electrode of each storage element is set. Are selectively applied to the charged storage battery corresponding to the magnitude of the voltage across the charged storage battery, and the charged storage battery and the charge application that pass a charging current not exceeding the maximum charging current A charging method, wherein the charge voltage switching unit is controlled to obtain a potential difference between voltages. 予め、前記被充電蓄電池に対する最終充電電圧を設定し、充電時に、前記被充電蓄電池の両端電圧が前記最終充電電圧に達したなら充電を停止することを特徴とする請求項11記載の充電方法。  The charging method according to claim 11, wherein a final charging voltage for the charged storage battery is set in advance, and charging is stopped when a voltage between both ends of the charged storage battery reaches the final charging voltage during charging.
JP2003116551A 2003-04-22 2003-04-22 Charging apparatus and charging method Expired - Fee Related JP4025678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116551A JP4025678B2 (en) 2003-04-22 2003-04-22 Charging apparatus and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116551A JP4025678B2 (en) 2003-04-22 2003-04-22 Charging apparatus and charging method

Publications (2)

Publication Number Publication Date
JP2004328826A JP2004328826A (en) 2004-11-18
JP4025678B2 true JP4025678B2 (en) 2007-12-26

Family

ID=33496718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116551A Expired - Fee Related JP4025678B2 (en) 2003-04-22 2003-04-22 Charging apparatus and charging method

Country Status (1)

Country Link
JP (1) JP4025678B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109688A1 (en) * 2009-03-25 2010-09-30 東京電力株式会社 Electric vehicle charging system
JP2010252549A (en) * 2009-04-16 2010-11-04 Nissan Motor Co Ltd System and method for charging and discharging of power between vehicles
JP5016121B2 (en) * 2010-02-19 2012-09-05 Jfeエンジニアリング株式会社 Quick charger and mobile charger
WO2012097866A1 (en) 2011-01-18 2012-07-26 Abb Technology Ab A high voltage dc power source and a power apparatus for a high voltage electrical power system

Also Published As

Publication number Publication date
JP2004328826A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
US7863863B2 (en) Multi-cell battery pack charge balance circuit
JP3279071B2 (en) Battery pack charging device
US7304402B2 (en) Car power source apparatus
US8183833B2 (en) Voltage balancer device for battery pack
CN110011368B (en) Power storage element protection device, power storage device, and power storage element protection method
US20130057219A1 (en) Power supply apparatus for vehicle and vehicle provided with same
US11235682B2 (en) Power supply device for vehicle
JP2010528576A (en) Storage battery assembly and power system using the same
JP2003032908A (en) Capacitor battery pack, control method and controller thereof, and automotive storage system
JP2010522528A (en) System and method for equalizing the state of charge of series connected cells
JP6878782B2 (en) Power control unit and power system
JP2004023803A (en) Voltage controller for battery pack
JP2008079364A (en) Charging/discharging device
WO2019111872A1 (en) Charging control device, electricity storage device, and charging method
JP2002010501A (en) Capacity equalizing apparatus for capacitor
JP5473659B2 (en) Power system and converter
JPH08213055A (en) Charging method of battery pack and its device
JP4025678B2 (en) Charging apparatus and charging method
JP6610453B2 (en) Power supply control device and power supply system
JP4207408B2 (en) Charge state adjustment device and charge state detection device
EP3649719A1 (en) Battery management
JP2000270483A (en) Charging condition controller of battery set
JPH11355966A (en) Charger and discharger for battery pack
JP6601334B2 (en) Power supply control device and power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees