JPS6116722B2 - - Google Patents

Info

Publication number
JPS6116722B2
JPS6116722B2 JP54119356A JP11935679A JPS6116722B2 JP S6116722 B2 JPS6116722 B2 JP S6116722B2 JP 54119356 A JP54119356 A JP 54119356A JP 11935679 A JP11935679 A JP 11935679A JP S6116722 B2 JPS6116722 B2 JP S6116722B2
Authority
JP
Japan
Prior art keywords
buffer tank
oxygen
adsorption
adsorption tower
stage buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54119356A
Other languages
Japanese (ja)
Other versions
JPS5645804A (en
Inventor
Toshio Yahagi
Hiroshi Yokoyama
Masaomi Tomomura
Shunsuke Nokita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11935679A priority Critical patent/JPS5645804A/en
Publication of JPS5645804A publication Critical patent/JPS5645804A/en
Publication of JPS6116722B2 publication Critical patent/JPS6116722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に空気中より窒素を吸着塔で加圧
吸着し、その後吸着塔を減圧して窒素を排出して
吸着塔を再生しながら、非吸着物である酸素のみ
分離して連続的に生成する酸素濃縮方法および装
置に関する。 一般に、このような酸素濃縮方法は圧力変動吸
着分離法と呼ばれる方法に基づくもので、この圧
力変動吸着分離法は加圧吸着、減圧吸着を2塔も
しくは3ないし4塔の吸着塔により上記操作を交
互に切替えて行い、その切替時間は数十秒から数
十分間の間である。切替操作は各吸着塔を接続し
ている配管に設置されている電磁弁をタイマーに
よつて動かすのが一般的である。 そのため、複数の吸着塔を上記のごとく短時間
で、吸・脱着操作を繰返しており、従つて切替の
時間帯、即ち吸着から脱着及び脱着から吸着状態
に変つて、安定状態までにの数秒間は圧力が変動
する。この圧力変動は、取出し酸素流量が一時的
に変動し定常運転に比べて大幅に減少することに
なる。この欠点を解消する方法として、吸着塔か
ら取出した酸素を供給端に送り出す前段階に酸素
貯蔵タンクを設けることが考えられる。しかし弁
切替による流量変動を抑圧するためには、吸着塔
本体よりもかなり大きな容積を持つた貯蔵タンク
が必要であり、はなはだ不経済である。従つて、
他の方法によつて酸素流量の変動を抑制すること
が要望されるものである。 本発明の目的は、弁切替時における酸素流量の
変動を抑制し、安定した酸素取出しが可能な酸素
濃縮方法及び酸素濃縮装置を提供するにある。 この目的を達成するため本発明の酸素濃縮方法
は、窒素を吸着する吸着剤を充填した複数個の吸
着塔を用い、基本操作として加圧吸着操作、減圧
脱着操作を含む圧力変動法によつて、空気中から
酸素に富すガスを分離回収する酸素濃縮方法にお
いて、バツフアタンクを多段バツフアタンクと
し、吸・脱着切替時に、多段バツフアタンクの
内、前段バツフアタンクに留つたガスを吸着塔に
戻し、後段バツフアタンクに留つたガスを取り出
すようにしたことを特徴とするものである。 また、本発明による酸素濃縮装置は、吸・脱着
切替時における吸着塔出口からの酸素流量の変動
を解消する手段として、吸着塔出口に多段バツフ
アタンクを設置し、該多段バツフアタンクの前段
バツフアタンクと後段バツフアタンクのとの中間
に弁等の切替手段を設けたことを特徴とするもの
である。 以下、本発明を添付図面に示す実施例に従つて
さらに説明する。 第1図は本発明に係る酸素濃縮装置の一実施例
を示す系統図である。第1図において、符号1,
2は窒素吸着塔であり、空気送入管21によつて
供給される空気は、圧縮機3によつて圧縮され
る。圧縮機3で圧縮された空気は、水滴分離器4
で脱湿される。脱湿された空気は、管22、弁1
1、更に弁12を介して吸着塔1,2に送られ
る。吸着塔1,2から出た酸素は、弁15,16
を通り、バツフアタンクに送られるが、本実施例
のバツフアタンクは前段バツフアタンク5と後段
バツフアタンク6との2段バツフアタンク構造
で、両バツフアタンク5と6の中間には切替手段
として弁17が設けられている。したがつて、弁
15,16を通つた酸素は前段バツフアタンク
5、弁17及び後段バツフアタンク6を介して取
出管23で取り出される。 次に、本実施例の作用について説明する。 先ず、吸着塔1で吸着工程を実施し、吸着塔2
で脱着工程を実施する。この場合、弁11,1
4,15及び17は開、弁12,13及び16は
閉である。この弁操作によつて、送入管21から
送られる空気は圧縮機3、水滴分離器4、管2
2、弁11を通り吸着塔1に供給される。吸着塔
1によつて窒素は吸着され、酸素は弁15、前段
バツフアタンク5、弁17及び後段バツフアタン
ク6に送られる。一方、吸着塔2は、前工程で吸
着した窒素を弁14及び排出管24を介し、圧力
を大気に戻しながら排出する。以上が第1サイク
ルで、第2サイクルとして次の工程が入る。 すなわち、脱着工程が終了した吸着塔2では、
まず弁16を開、弁12,14を閉にして、前段
バツフアタンク5に留つている濃縮酸素を吸着塔
2に戻し、該吸着塔2と前段バツフアタンク5と
の圧力を均圧(均圧化工程と称する)にする。こ
の場合、前段バツフアタンク5と後段バツフアタ
ンク6の中間にある弁17は閉にしておく。これ
により後段バツフアタンク6に留つている酸素を
取出管23に送り出すことができ、吸・脱着切替
時においても、製品酸素を連続的に取出せる。一
方、吸着工程を終了した吸着塔1では弁13を
開、弁11,15を閉にして、加圧状態から大気
に減圧して脱着再生する。 次いで第3サイクルにおいては、吸着塔2側で
は弁12,16を開、弁14を閉として空気を吸
着塔2に供給して吸着工程に入る。吸着工程で濃
縮された酸素は弁16を介し前段バツフアタンク
5に入る。弁17の操作は前段バツフアタンク5
に酸素が留つた時点で開にして、後段バツフアタ
ンク6に酸素を送り、さらにその酸素を取出管2
3に送る。一方、脱着工程である吸着塔1側では
弁13開、弁11,15が閉であり、第2サイク
ルと同一の弁作動状態である。 第4サイクルでは均圧化工程に移り、脱着工程
が終了した吸着塔1では前段バツフアタンク5と
均圧化し、吸着工程を終了した吸着塔2では吸着
した窒素を排気する。以上第1から第4サイクル
をもつて一周期サイクルが形成されている。 上記の操作方法の実施例として表1に示す酸素
濃縮装置の仕様及び操作条件で実測した。
In particular, the present invention adsorbs nitrogen from the air under pressure in an adsorption tower, then depressurizes the adsorption tower and discharges nitrogen to regenerate the adsorption tower, while continuously separating only oxygen, which is a non-adsorbed substance. The present invention relates to a method and apparatus for concentrating oxygen. In general, such oxygen concentration methods are based on a method called pressure fluctuation adsorption separation method, which performs the above operations using two or three or four adsorption towers for pressurized adsorption and reduced pressure adsorption. The switching is performed alternately, and the switching time is between several tens of seconds and several tens of minutes. The switching operation is generally performed by using a timer to operate a solenoid valve installed in the piping connecting each adsorption tower. Therefore, adsorption and desorption operations are repeated in multiple adsorption towers in a short period of time as described above, and therefore, during the switching period, that is, from adsorption to desorption, and from desorption to adsorption, it takes several seconds to reach a stable state. pressure fluctuates. This pressure fluctuation results in a temporary fluctuation in the flow rate of oxygen taken out, which significantly decreases compared to steady operation. One possible way to overcome this drawback is to provide an oxygen storage tank before sending the oxygen taken out from the adsorption tower to the feed end. However, in order to suppress flow rate fluctuations due to valve switching, a storage tank with a considerably larger volume than the adsorption tower body is required, which is extremely uneconomical. Therefore,
It is desired to suppress fluctuations in oxygen flow rate by other methods. SUMMARY OF THE INVENTION An object of the present invention is to provide an oxygen concentrating method and an oxygen concentrating device that suppress fluctuations in oxygen flow rate when switching valves and allow stable oxygen extraction. In order to achieve this objective, the oxygen concentration method of the present invention uses a plurality of adsorption towers filled with an adsorbent that adsorbs nitrogen, and uses a pressure fluctuation method that includes pressurized adsorption operation and reduced pressure desorption operation as basic operations. In the oxygen concentration method for separating and recovering oxygen-rich gas from the air, the buffer tank is a multi-stage buffer tank, and when switching between adsorption and desorption, the gas remaining in the first stage buffer tank of the multi-stage buffer tank is returned to the adsorption tower and transferred to the second stage buffer tank. It is characterized by the fact that the gas that remains is taken out. Furthermore, the oxygen concentrator according to the present invention has a multi-stage buffer tank installed at the adsorption tower outlet as a means for eliminating fluctuations in the oxygen flow rate from the adsorption tower outlet when switching between adsorption and desorption. The feature is that a switching means such as a valve is provided between the two. The present invention will be further described below with reference to embodiments shown in the accompanying drawings. FIG. 1 is a system diagram showing an embodiment of an oxygen concentrator according to the present invention. In FIG. 1, reference numerals 1,
2 is a nitrogen adsorption tower, and air supplied through an air feed pipe 21 is compressed by a compressor 3. The air compressed by the compressor 3 is passed through the water droplet separator 4
is dehumidified. The dehumidified air is passed through pipe 22 and valve 1.
1, and further sent to adsorption towers 1 and 2 via valve 12. The oxygen coming out of the adsorption towers 1 and 2 is passed through valves 15 and 16.
The buffer tank of this embodiment has a two-stage buffer tank structure including a front-stage buffer tank 5 and a rear-stage buffer tank 6, and a valve 17 is provided between the buffer tanks 5 and 6 as a switching means. Therefore, the oxygen that has passed through the valves 15 and 16 is taken out by the extraction pipe 23 via the front stage buffer tank 5, the valve 17 and the rear stage buffer tank 6. Next, the operation of this embodiment will be explained. First, an adsorption process is carried out in adsorption tower 1, and adsorption tower 2
Perform the desorption process. In this case, valve 11,1
4, 15 and 17 are open, and valves 12, 13 and 16 are closed. By this valve operation, the air sent from the inlet pipe 21 is transferred to the compressor 3, the water droplet separator 4, and the pipe 2.
2. It passes through the valve 11 and is supplied to the adsorption tower 1. Nitrogen is adsorbed by the adsorption tower 1, and oxygen is sent to the valve 15, the front stage buffer tank 5, the valve 17, and the rear stage buffer tank 6. On the other hand, the adsorption tower 2 discharges the nitrogen adsorbed in the previous step through the valve 14 and the discharge pipe 24 while returning the pressure to the atmosphere. The above is the first cycle, and the next step is entered as the second cycle. That is, in the adsorption tower 2 after the desorption process,
First, open the valve 16 and close the valves 12 and 14 to return the concentrated oxygen remaining in the upstream buffer tank 5 to the adsorption tower 2, and equalize the pressure between the adsorption tower 2 and the upstream buffer tank 5 (pressure equalization step). ). In this case, the valve 17 located between the front stage buffer tank 5 and the rear stage buffer tank 6 is kept closed. Thereby, the oxygen remaining in the rear stage buffer tank 6 can be sent out to the extraction pipe 23, and product oxygen can be continuously extracted even when switching between adsorption and desorption. On the other hand, in the adsorption tower 1 that has completed the adsorption step, the valve 13 is opened, the valves 11 and 15 are closed, and the pressure is reduced from the pressurized state to the atmosphere for desorption and regeneration. Next, in the third cycle, the valves 12 and 16 are opened on the adsorption tower 2 side, the valve 14 is closed, and air is supplied to the adsorption tower 2 to enter the adsorption step. Oxygen concentrated in the adsorption step enters the pre-stage buffer tank 5 via the valve 16. The valve 17 is operated by the front stage buffer tank 5.
When the oxygen remains in the tank, it is opened and oxygen is sent to the rear buffer tank 6, and then the oxygen is taken out to the extraction pipe 2.
Send to 3. On the other hand, on the adsorption tower 1 side, which is the desorption step, the valve 13 is open and the valves 11 and 15 are closed, which is the same valve operating state as in the second cycle. In the fourth cycle, the pressure is equalized, and the adsorption tower 1, which has completed the desorption step, equalizes the pressure with the front stage buffer tank 5, and the adsorption tower 2, which has completed the adsorption step, exhausts the adsorbed nitrogen. One cycle is formed by the first to fourth cycles. As an example of the above operating method, actual measurements were conducted using the specifications and operating conditions of the oxygen concentrator shown in Table 1.

【表】 実測に当つては、本発明における取出しガス流
量の変動抑制の効果を比較するため次の3通りの
操作によつて行い、その結果を第2図から第4図
に示した。各図は酸素取出し流量の経時変化を示
したものである。 第2図は、本発明による第1図の実施例の系統
における後段2段のバツフアタンク5,6を設置
しないで、弁15または16から取出された酸素
流量の変動状態を表わしたもので、横軸は操作経
過時間、縦軸は酸素取出し流量である。吸脱着切
替時間を30秒とし、定常状態の酸素取出し流量を
100とした場合、吸脱着切替時の流量は定常時の
約50%まで低下し、さらに切替てから定常の流量
状態まで復帰するのに22秒間要した。 第3図は、前段2第のバツフアタンク5及び6
を設置し、弁17は常に開として、吸・脱着切替
時間を30秒とした場合の酸素流量変動状態であ
る。上記と同様に定常流量を100とした場合、吸
脱着切替時の酸素流量は定常の約70%まで低下
し、さらに切替てから定常流量状態まで復帰する
のに15秒間要した。 第4図は、第1図に示した本発明の一実施例に
従つて、前後2段のバツフアタンク5及び6を設
け、かつ弁17を均圧下時に開閉する操作を採用
した場合の結果を示すものである。吸着時間30秒
で、この30秒の中に均圧化時間10秒を導入した。
弁17は均圧下10秒間及び吸着工程後の5秒間の
合せて15秒間を閉として、その後に開にすること
が、流量変動を抑制するのに最適条件である。 なお、バツフアタンクの容積はできるだけ小さ
く、かつ流量変動抑制効果の大きいものとして検
討した結果、前段バツフアタンク5は吸着塔容積
と同程度、また後段バツフアタンク6は吸着塔容
積の2倍がよいことがわかつた。すなわち、2倍
よりも大きければ、流量の伝達遅れが生じて、定
量流に戻る時間に遅れる傾向があり、かつ大型化
による不経済性がある一方、2倍よりも小さけれ
ば流量変動抑制効果がなくなつてしまうが、2倍
であればこれらのいずれの欠点もない調和のとれ
た効果が得られるものである。 上記の条件により測定した結果、酸素流量の定
常時を100としたとき、流量変動は98%以内で、
かつ定常流量に復帰するまで7秒程度であつた。
この時の酸素取出し量60N/hで、酸素濃度90
%を達成した。 なお、酸素取出し流量の増大によつてバツフア
タンクの必要容量も大きくなることが考えられる
ことであるが、取出し流量を60から10N/hに
増加させた場合でも、流量変動を十分に抑制でき
た。また、酸素取出し流量を100N/h以上で
は酸素の濃縮効果がよくなく、実用的範囲から外
れるものである。 上記の場合、第2、第3及び第4図において、
酸素流量の変動を、その変動の底辺によつて定常
時流量と比較したが、より正確に比較するため積
算流量によつて検討した。第2図から第4図の各
図の流動変動幅を斜線で示したが、の面積でもつ
て比較すると、第2図の斜線面積を100とした場
合、第3図は60、また本発明の2段バツフアタン
ク設置では12となり、積算流量によつて比べると
8倍の効果になる。さらには、脱着工程から吸着
工程に移る前に、吸着塔と前段バツフアタンクと
の均圧化によつて、吸着塔を酸素ガスによつて満
すことにより、高濃度の酸素ガスを安定した状態
で取出すことのできる効果がある。 なお、実施例としての吸着、均圧化及び前段と
後段バツフアタンクの中間に位置する弁操作など
各時間は、吸着塔の大きさによつて決定されるも
のであり、特に限定するものではない。 なお、本発明における多段バツフアタンクは一
塔式バツフアタンク内に仕切りを設けたもので構
成してもよく、第5図はその一実施例を示すもの
である。 すなわち、本実施例では、一塔式のバツフアタ
ンク7の中間位置にダンパ8等の切替手段により
仕切りを設けてバツフアタンク7内を前段バツフ
アタンク7Aと後段バツフアタンク7Bとに区分
して多段バツフアタンクとし、吸着工程ではダン
パ8を開にし、均圧化工程に入つたら該ダンパ8
を閉にする。この操作により均圧化工程でバツフ
アタンク7の下部に入つていた酸素を脱着工程が
終了した吸着塔に戻し圧力を均圧にする。一方、
該バツフアタンク7の上部に留つている酸素を、
酸素取出管23より送り出すものである。これに
よつて吸・脱着切替時にも製品酸素を連続的に取
出せる。 以上説明したように、本発明に係る2段バツフ
アタンクの中間に位置する切替手段の開閉を吸脱
着の切替時に最適に操作することにより、取出し
酸素位置の変化を抑制でき、高濃度の酸素を安定
した状態で取出すことができる。
[Table] Actual measurements were carried out using the following three operations in order to compare the effect of suppressing fluctuations in the flow rate of the extracted gas according to the present invention, and the results are shown in FIGS. 2 to 4. Each figure shows the change over time in the oxygen extraction flow rate. FIG. 2 shows the fluctuation state of the oxygen flow rate taken out from the valve 15 or 16 in the system of the embodiment shown in FIG. 1 according to the present invention without installing the latter two buffer tanks 5 and 6. The axis is the elapsed operation time, and the vertical axis is the oxygen extraction flow rate. The adsorption/desorption switching time was set to 30 seconds, and the steady state oxygen extraction flow rate was
When set to 100, the flow rate at the time of switching between adsorption and desorption decreased to about 50% of the steady state, and it took 22 seconds to return to the steady flow state after switching. Figure 3 shows the buffer tanks 5 and 6 of the 2nd front stage.
The oxygen flow rate is fluctuating when the valve 17 is always open and the adsorption/desorption switching time is 30 seconds. Similarly to the above, when the steady flow rate was set to 100, the oxygen flow rate at the time of switching to adsorption/desorption decreased to about 70% of the steady state, and it took 15 seconds to return to the steady flow state after switching. FIG. 4 shows the results obtained when two stages of buffer tanks 5 and 6 are provided, in accordance with the embodiment of the present invention shown in FIG. 1, and the valve 17 is opened and closed when the pressure is equalized. It is something. The adsorption time was 30 seconds, and a pressure equalization time of 10 seconds was introduced within this 30 seconds.
The optimal condition for suppressing flow rate fluctuations is to close the valve 17 for a total of 15 seconds, 10 seconds under pressure equalization and 5 seconds after the adsorption step, and then open it. In addition, as a result of considering that the volume of the buffer tank is as small as possible and has a large flow rate fluctuation suppressing effect, it was found that it is preferable that the first stage buffer tank 5 is the same as the adsorption tower volume, and the second stage buffer tank 6 is twice the adsorption tower volume. . In other words, if it is larger than twice, there will be a delay in transmission of the flow rate, and there will be a delay in the time it takes to return to a constant flow, and there will be uneconomical effects due to the increase in size, while if it is smaller than twice, the effect of suppressing flow fluctuations will be However, if the amount is doubled, a harmonious effect without any of these drawbacks can be obtained. As a result of measurement under the above conditions, when the steady state of oxygen flow rate is taken as 100, the flow rate fluctuation is within 98%.
Moreover, it took about 7 seconds to return to a steady flow rate.
At this time, the oxygen extraction amount is 60N/h, and the oxygen concentration is 90
% achieved. Although it is conceivable that the required capacity of the buffer tank would increase with an increase in the oxygen extraction flow rate, even when the extraction flow rate was increased from 60 to 10 N/h, the flow rate fluctuations could be sufficiently suppressed. Further, if the oxygen extraction flow rate is 100 N/h or more, the oxygen concentration effect is not good and it is out of the practical range. In the above case, in Figures 2, 3 and 4,
The fluctuation of oxygen flow rate was compared with the steady flow rate based on the base of the fluctuation, but in order to make a more accurate comparison, it was examined using the integrated flow rate. The range of flow fluctuations in each figure from Fig. 2 to Fig. 4 is indicated by diagonal lines, but when comparing the areas of Fig. 2, if the shaded area in Fig. 2 is 100, Fig. 3 is 60, and the area of the present invention is 60. If a two-stage buffer tank is installed, the effect will be 12, which is 8 times more effective than the cumulative flow rate. Furthermore, before moving from the desorption process to the adsorption process, by equalizing the pressure between the adsorption tower and the pre-stage buffer tank, the adsorption tower is filled with oxygen gas, thereby maintaining high concentration oxygen gas in a stable state. There are effects that can be taken out. It should be noted that the respective times for adsorption, pressure equalization, and valve operation located between the front stage and rear stage buffer tanks in the examples are determined by the size of the adsorption tower, and are not particularly limited. The multi-stage buffer tank in the present invention may be constructed by providing a partition within a single-tower buffer tank, and FIG. 5 shows one embodiment thereof. That is, in this embodiment, a partition is provided at an intermediate position of the single-column buffer tank 7 by a switching means such as a damper 8, and the inside of the buffer tank 7 is divided into a front-stage buffer tank 7A and a rear-stage buffer tank 7B to form a multi-stage buffer tank, and the adsorption process Now, open the damper 8, and when the pressure equalization process begins, the damper 8
close. Through this operation, the oxygen that had entered the lower part of the buffer tank 7 during the pressure equalization process is returned to the adsorption tower where the desorption process has been completed, and the pressure is equalized. on the other hand,
The oxygen remaining in the upper part of the buffer tank 7 is
The oxygen is sent out from the oxygen take-off pipe 23. This allows product oxygen to be extracted continuously even when switching between adsorption and desorption. As explained above, by optimally operating the opening and closing of the switching means located in the middle of the two-stage buffer tank according to the present invention at the time of switching between adsorption and desorption, changes in the extraction oxygen position can be suppressed, and high concentration oxygen can be stabilized. It can be taken out in the same state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による酸素濃縮装置の実施例を
示す系統図、第2図、第3図及び第4図は酸素取
出し流量の変動状態を比較して説明する図、第5
図は本発明の他の実施例を示す系統図である。 1,2……吸着塔、3……圧縮機、5……前段
バツフアタンク、6……後段バツフアタンク、7
……バツフアタンク、7A……前段バツフアタン
ク、7B……後段バツフアタンク、8……ダン
パ、17……弁。
FIG. 1 is a system diagram showing an embodiment of the oxygen concentrator according to the present invention; FIGS. 2, 3, and 4 are diagrams comparing and explaining the fluctuation states of the oxygen extraction flow rate;
The figure is a system diagram showing another embodiment of the present invention. 1, 2...Adsorption tower, 3...Compressor, 5...Previous stage buffer tank, 6...Rear stage buffer tank, 7
... Buffer tank, 7A... Front stage buffer tank, 7B... Rear stage buffer tank, 8... Damper, 17... Valve.

Claims (1)

【特許請求の範囲】 1 圧縮機から送られる空気を窒素吸着剤が充填
された吸着塔に導き、空気中から窒素を吸着剤に
加工吸着させる吸着工程と、バツフアタンクと該
吸着塔の圧力を均圧化する工程と、吸着塔を減圧
して窒素を除去し、吸着剤の脱着を行う脱着工程
とを順次繰返す酸素濃縮方法において、バツフア
タンクを多段バツフアタンクとし、吸・脱着の切
替時に該多段バツフアタンクの内、前段バツフア
タンクに留つたガスを吸着塔に戻し、後段バツフ
アタンクに留つたガスを取出すことを特徴とする
酸素濃縮方法。 2 空気を圧縮する圧縮機と、この圧縮機から空
気の供給を受け、その空気中から窒素吸着剤によ
り窒素を吸着するための吸着塔と、この吸着塔の
後段に設置されるバツフアタンクとからなる酸素
濃縮装置において、バツフアタンクを多段バツフ
アタンクで構成し、この多段バツフアタンクの前
段バツフアタンクと後段バツフアタンクとの中間
に切替手段を設けたことを特徴とする酸素濃縮装
置。
[Scope of Claims] 1. An adsorption step in which air sent from a compressor is guided to an adsorption tower filled with a nitrogen adsorbent, and nitrogen is processed and adsorbed from the air onto the adsorbent, and the pressure in the buffer tank and the adsorption tower is equalized. In an oxygen concentration method that sequentially repeats a pressurizing process and a desorption process in which the adsorption tower is depressurized to remove nitrogen and the adsorbent is desorbed, the buffer tank is a multi-stage buffer tank, and when switching between adsorption and desorption, the multi-stage buffer tank is An oxygen concentration method characterized by returning the gas remaining in the first stage buffer tank to the adsorption tower and taking out the gas remaining in the second stage buffer tank. 2 Consists of a compressor that compresses air, an adsorption tower that receives air from the compressor and adsorbs nitrogen from the air using a nitrogen adsorbent, and a buffer tank that is installed after the adsorption tower. An oxygen concentrator characterized in that the buffer tank is composed of a multi-stage buffer tank, and a switching means is provided between a front-stage buffer tank and a rear-stage buffer tank of the multi-stage buffer tank.
JP11935679A 1979-09-19 1979-09-19 Oxygen concentrating method and apparatus Granted JPS5645804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11935679A JPS5645804A (en) 1979-09-19 1979-09-19 Oxygen concentrating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11935679A JPS5645804A (en) 1979-09-19 1979-09-19 Oxygen concentrating method and apparatus

Publications (2)

Publication Number Publication Date
JPS5645804A JPS5645804A (en) 1981-04-25
JPS6116722B2 true JPS6116722B2 (en) 1986-05-01

Family

ID=14759455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11935679A Granted JPS5645804A (en) 1979-09-19 1979-09-19 Oxygen concentrating method and apparatus

Country Status (1)

Country Link
JP (1) JPS5645804A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561865A (en) * 1983-11-01 1985-12-31 Greene & Kellogg, Inc. Single bed pressure swing adsorption gas separation system

Also Published As

Publication number Publication date
JPS5645804A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
US5015272A (en) Adsorptive separation process
JPH04330913A (en) Absorption process for separating gaseous mixture
CA1065769A (en) Adsorption system
US6045603A (en) Two phase pressure swing adsorption process
JPH0788316A (en) Separation of nitrogen-enriched gas and device therefor
CN104066493A (en) Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus
EP0151186B1 (en) Method and apparatus for separating mixed gas
CN111971251A (en) Method of movable pressure swing adsorption oxygen production device
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
CN111989149A (en) Method of movable pressure swing adsorption oxygen production device
WO2004014523A1 (en) Method of separating target gas
JP2691991B2 (en) Gas separation method
JPS6116722B2 (en)
TWM626483U (en) Vacuum pressure swing adsorption system for separation of carbon dioxide
JPH10272332A (en) Gas separation device and its operation method
JPH0194915A (en) Separation of gaseous nitrogen by pressure fluctuation absorption system
JPS6247802B2 (en)
JPH0938443A (en) Gas separator
CN220609748U (en) Pressure swing adsorption pressure equalizing recovery system
JP3073061B2 (en) Gas separation device
JPH0226610A (en) Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process
TW202325382A (en) Vacuum pressure swing adsorption method and system thereof for separation of carbon dioxide
CN116531900A (en) Two-tower series pressure swing adsorption device and replacement process
JPH01290516A (en) Separation of gaseous co and co2
JPH1157375A (en) Separation of gas