JPS6116562A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6116562A
JPS6116562A JP13830484A JP13830484A JPS6116562A JP S6116562 A JPS6116562 A JP S6116562A JP 13830484 A JP13830484 A JP 13830484A JP 13830484 A JP13830484 A JP 13830484A JP S6116562 A JPS6116562 A JP S6116562A
Authority
JP
Japan
Prior art keywords
film
silicate glass
nsg
thin
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13830484A
Other languages
Japanese (ja)
Inventor
Yukio Takizawa
幸雄 滝沢
Hidetsugu Asada
浅田 英嗣
Hideyuki Kihara
秀之 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP13830484A priority Critical patent/JPS6116562A/en
Publication of JPS6116562A publication Critical patent/JPS6116562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor device with a thin-film resistance circuit, accuracy thereof can be elevated and reliability thereon improved, by depositing a non-doped silicate glass film, a phosphorus silicate glass film and a non-doped silicate glass film on a thin-film resistance element formed onto a substrate in the order. CONSTITUTION:A semiconductor element 13 is shaped in an N type epitaxial layer formed onto a substrate 12. An SiO2 film 14 is shaped, and a pattern for a resistance network 15 is formed onto the film 14. A non-doped silicate glass (NSG) passivation film 18, a phosphorus silicate glass (PSG) passivation film 19 and further a NSG passivation film 20 are grown continuously in order to coat and protect the semiconductor circuit and a thin-film resistance circuit. Accordingly, a thin-film material burnt down through laser trimming can be diffused easily into the NSG film, thus stably adjusting a resistance value, then obtaining conversion performance with high accuracy as a D-A converter.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディジタル−アナログ変換器(以下、DACと
いう)などに用いられる高精度の薄膜抵抗回路を有する
半導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor having a highly accurate thin film resistance circuit used in a digital-to-analog converter (hereinafter referred to as DAC).

従来例の構成とその問題点 一般に、DACにおいては、薄膜抵抗回路に形成した各
ビット電流の重みづけに対応する薄膜ラダー抵抗の抵抗
値調整によって高精度化をはかつている。
Conventional Structures and Problems Generally, in a DAC, high accuracy is achieved by adjusting the resistance value of a thin film ladder resistor formed in a thin film resistor circuit corresponding to the weighting of each bit current.

この抵抗値調整は、はとんどがレーザ光を用いた機能ト
リミング(以下、レーザトリミングという)で行なわれ
ているが、12ビットヲ超えるような高精度のDACに
対しては、必要かつ十分な性能を再現するレーザトリミ
ングが要求される。
This resistance value adjustment is mostly performed by functional trimming using laser light (hereinafter referred to as laser trimming), but it is necessary and sufficient for high-precision DACs exceeding 12 bits. Laser trimming is required to reproduce performance.

しかも、DACの変換性能は、使用される周囲環境条件
の全体にわたって、その必要精度を維持する高信頼性を
保証しなければならない。
Moreover, the conversion performance of the DAC must ensure high reliability, maintaining its required accuracy over the entire range of ambient conditions in which it is used.

しかし、その精度を十分に高めること、およびその必要
精度を維持し得る信頼性を確保することは容易でない。
However, it is not easy to sufficiently increase the accuracy and ensure reliability that can maintain the required accuracy.

なぜなら、薄膜抵抗回路に用いて構成する高精度のDA
Cにおいては、薄膜抵抗回路を湿気、塵埃、不純物イオ
ンなどの外部汚染から保護する目的で、回路を覆って形
成するパッシベーション膜が不可欠であるが、このパッ
シベーション膜によって、信頼性を確保できない欠点や
レーザトリミングの加工精度の低下や困難さを生じる欠
点を有している。
This is because high-precision DA constructed using thin film resistance circuits
In order to protect the thin film resistor circuit from external contamination such as moisture, dust, impurity ions, etc., a passivation film is required to cover the circuit. This method has the disadvantage of reducing processing accuracy and making laser trimming difficult.

この従来例について、基準電圧源回路や電流スイッチン
グ回路など周知の半導体集積回路技術を用いて形成する
能動的回路(以下、半導体回路という)と各ビット電流
の重みづけに対応するラダー抵抗網回路など、周知の薄
膜形成技術を用いて形成する薄膜抵抗回路が一体化構成
されたモノリシックDAC’(i7具体例にして、第1
図を参照して説明する。
Regarding this conventional example, active circuits (hereinafter referred to as semiconductor circuits) formed using well-known semiconductor integrated circuit technology such as reference voltage source circuits and current switching circuits, and ladder resistance network circuits that correspond to weighting of each bit current, etc. , a monolithic DAC' (i7 specific example, the first
This will be explained with reference to the figures.

第1図はDACチップ11の断面図である。周知のバイ
ポーラ集積回路製造技術を用いて、半導体基板2、たと
えば、シリコン゛(St )の内部に半導体素子3を形
成した後、その表面に、絶縁膜4、たとえば、二酸化シ
リコン(SiO2)膜を形成し、ついでこの上にNi 
−Cr 系合金やSi −Cr 系合金などの薄膜抵抗
素子6を形成し、さらに、それらの素子を電気的に接続
して回路構成するためのM配線6を形成する。そして、
この半導体回路や薄膜抵抗回路を外部汚染から保護する
ために、全回路要素面を覆って、SiO2あるいは窒化
シリコン(SiN)または5102とSiNとの二層パ
ッシベーション膜7のいづれかが選択されて形成される
FIG. 1 is a cross-sectional view of the DAC chip 11. After forming a semiconductor element 3 inside a semiconductor substrate 2, such as silicon (St), using a well-known bipolar integrated circuit manufacturing technique, an insulating film 4, such as a silicon dioxide (SiO2) film, is formed on the surface thereof. formed, and then Ni
A thin film resistance element 6 made of a -Cr alloy or a Si-Cr alloy is formed, and an M wiring 6 for electrically connecting these elements to form a circuit is formed. and,
In order to protect this semiconductor circuit and thin film resistance circuit from external contamination, either SiO2, silicon nitride (SiN), or a two-layer passivation film 7 of 5102 and SiN is selected and formed to cover all circuit element surfaces. Ru.

しかしながら、上述のS io2. S iN 、S 
io2+S iNのパッシベーション膜下は多くの問題
をかかえてい60例エバ、5102ハノシベーション膜
to、6〜1.6μの厚さで形成したDACにあっては
、薄膜抵抗回路に形成された薄膜ラダー抵抗のレーザト
リミングは、容易に十分な加工条件が求められ、しかも
安定に変換精度を高めることができる長所を有している
ものの、このDACチップを樹脂封止パッケージに実装
して、温度85℃の高温通電試験や121℃、2気圧の
プレッシャークツカー試験などの加速寿命試験を実施す
ると、薄膜抵抗回路にあるNi −Cr 系合金または
、Cr−8i 系合金の薄膜ラダー抵抗などの抵抗変化
率が時間と共に大きく増大し、レーザトリミングで得ら
れた精度を著しく変化せしめ、DAC性能を劣化させる
ものであった。これらは、5i02ハノシベーシヨ膜が
ポーラスな膜質であったシ、クラックを生じやすいこと
などのため、十分なパッシベーション効果を発揮してい
ないことに起因している。
However, the above-mentioned S io2. S iN , S
There are many problems under the passivation film of IO2+S iN.For DACs formed with a thickness of 6 to 1.6μ, the thin film ladder formed on the thin film resistor circuit. Laser trimming of resistors requires easy processing conditions and has the advantage of being able to stably improve conversion accuracy. When accelerated life tests such as high-temperature energization tests and pressure Kutzker tests at 121°C and 2 atmospheres are carried out, the rate of change in resistance of thin film ladder resistors made of Ni-Cr alloys or Cr-8i alloys in thin film resistor circuits is significantly reduced. increases significantly over time, significantly changing the accuracy obtained by laser trimming and degrading DAC performance. These problems are due to the fact that the 5i02 Hanoshiba film was porous and easily cracked, so it did not exhibit a sufficient passivation effect.

筺た、他の例として、SiNパッシベーション膜ヲ0.
2〜1.0μの厚さで形成し1DAcvC,%つては、
薄膜抵抗回路にある薄膜ラダー抵抗のレーザトリミング
において、良好なトリミング加工条件が求められず、し
かも抵抗値調整の安定性に乏しいために、高精度のDA
変換性能を実現できない。
As another example, a SiN passivation film was used.
Formed with a thickness of 2 to 1.0μ, 1DAcvC,%,
Laser trimming of thin-film ladder resistors in thin-film resistor circuits does not require good trimming processing conditions, and the stability of resistance value adjustment is poor.
Conversion performance cannot be achieved.

これは、5IO2パツシベーシヨン膜に比較してSiN
パッシベーション膜の膜質が緻密で強固な密に 着力を有しているためXこれが災いして、レーザトリミ
ングによって焼失するNi −Cr 系または5i−C
r系の薄膜抵抗体材料の拡散現象を抑圧していることに
起因して、十分に精度を高めるレーザトリミングを阻害
しているものと考えられる。
This is compared to the 5IO2 passivation film.
Because the film quality of the passivation film is dense and has strong adhesion, this causes the Ni-Cr series or 5i-C to be burned out during laser trimming.
It is thought that the suppression of the diffusion phenomenon of the r-based thin film resistor material inhibits laser trimming to sufficiently improve accuracy.

さらに、他の例として、5in2+SiNの二層構造の
パッシベーション膜? ’c し’c’ し0.2〜0
.5μ。
Furthermore, as another example, a passivation film with a two-layer structure of 5in2+SiN? 'c''c' shi0.2~0
.. 5μ.

0.2〜1.0μの厚さで形成したDACKあっては、
前述のレーザトリミングの加工に関する問題は解決され
るものの、高温連続通電試験などに対して、レーザトリ
ミングによって得られたDACとしての高精度変換性能
が著しく劣化してしまう欠点を有している。これは、最
初に形成するS z02パッシベーション膜中または膜
表面に吸着した水分や不純物イオンがその上に形成した
SiNパッシベーション膜により封じ込められてしまう
ことによるものと考えられる。
For DACK formed with a thickness of 0.2 to 1.0μ,
Although the above-mentioned problems related to laser trimming processing are solved, there is a drawback that the high-precision conversion performance as a DAC obtained by laser trimming is significantly degraded in high-temperature continuous energization tests and the like. This is considered to be due to the fact that moisture and impurity ions adsorbed in or on the surface of the Sz02 passivation film formed first are confined by the SiN passivation film formed thereon.

以上の説明から明らかなように、従来の3102やSi
Nパッシベーション膜を形成した薄膜抵抗回路を用いた
DACなどで、その精度を十分に高めること、および信
頼性の保証には一長一短があり、製品化の実現を困難に
していた。
As is clear from the above explanation, conventional 3102 and Si
There are advantages and disadvantages in sufficiently increasing the precision and guaranteeing reliability of DACs and the like that use thin-film resistor circuits with N passivation films, making it difficult to commercialize them.

発明の目的 本発明はこのような従来技術の問題点を解消し高精度化
および、信頼性の保証を可能とした薄膜抵抗回路を有す
る半導体装置を提供するものであるO 発明の構成 本発明は、上記目的を達成するため、基板上に形成され
た薄膜抵抗素子の上部にノンドーグシリケートガラス(
以下、NSCという)パッシベーション膜と、更にこの
上にリンドソプシリケートガラス(以下PSGという)
パッシベーション膜と、更にこの上にN S G パッ
シベーション膜を形成して、N5G−PSG−NSGの
三層をなしたものでアシ、これにより、高精度のレーザ
トリミング適応性ならびに信頼性の向上をはかることが
できる。
OBJECTS OF THE INVENTION The present invention provides a semiconductor device having a thin film resistor circuit that solves the problems of the prior art and makes it possible to achieve high precision and guarantee reliability. , In order to achieve the above objective, a non-dogue silicate glass (
A passivation film (hereinafter referred to as NSC) and a lindsop silicate glass (hereinafter referred to as PSG) on top of this.
A passivation film and an NSG passivation film are formed on top of the passivation film to form a three-layer structure of N5G-PSG-NSG.This improves the adaptability and reliability of high-precision laser trimming. be able to.

実施例の説明 以下、本発明の実施例について、モノリクックDACi
具体例にして説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described using a monolithic DACi.
This will be explained using a specific example.

第2図は、本発明の一実施例に係るモノリシックDAC
チップ21の断面図である。同図において、81 基板
12上に形成されたN型エビタキシル 1層の内部に、周知のバイポーラ集積回路技術を用いて
、基準電圧源回路や電流スイッチ回路々どを構成する半
導体素子13を形成した後、この表面に8102膜14
を形成し、さらに、このS 102゜膜14膜上にたと
えば電子ビーム蒸着法によって、Ni −Cr (80
: 20 ) f抵抗材料として、100〜250人の
厚みを有するNi −Cr 系合金薄膜を形成する。そ
の後、通常のフォ) IJソグラフィ技術を用いて、各
ビット電流の重みづけに対応するR−2R抵抗ネツトワ
ーク15のパターン全形成する。なお、ここでは抵抗薄
膜材料にNi −Cr f使用したが、必要に応じてS
i −Or などの抵抗材料を使用してもよい。
FIG. 2 shows a monolithic DAC according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the chip 21. FIG. In the figure, a semiconductor element 13 constituting a reference voltage source circuit, a current switch circuit, etc. is formed inside a single layer of N-type Ebitaxyl formed on a substrate 12 using well-known bipolar integrated circuit technology. After that, 8102 film 14 is applied to this surface.
Further, Ni-Cr (80
:20) Form a Ni--Cr based alloy thin film having a thickness of 100 to 250 mm as f-resistance material. Thereafter, the entire pattern of the R-2R resistor network 15 corresponding to the weighting of each bit current is formed using conventional photo-IJ lithography techniques. Although Ni-Crf was used here as the resistive thin film material, S
Resistive materials such as i-Or may also be used.

そして、これら半導体素子および薄膜抵抗素子などを電
気的に接続し、回路構成するためのアルミニウム配線パ
ターン16を形成する。
Then, an aluminum wiring pattern 16 is formed to electrically connect these semiconductor elements, thin film resistance elements, etc. to form a circuit.

次に、この半導体回路と薄膜抵抗回路を覆って保護する
ために、常圧または減圧CVD法によって、NSGパッ
シベーション膜1日を1600〜4000人、ついで、
リンを約4重量%含有するPSGパッシベーション膜1
9’11500〜6000人の厚みで、さらに、NSG
パッシベーション膜20’11500〜4000Aの厚
みで連続的に成長させる。そしてこの三層パッシベーシ
ョン膜の一部をワイヤボンディング用窓を開口した後、
460℃のN2雰囲気中で熱処理を施して、ウェノ蔦一
工程カニ完了する。
Next, in order to cover and protect this semiconductor circuit and thin film resistance circuit, an NSG passivation film was applied to 1,600 to 4,000 people per day using normal pressure or low pressure CVD.
PSG passivation film 1 containing about 4% by weight of phosphorus
With a thickness of 9'11500 to 6000 people, in addition, NSG
The passivation film 20' is continuously grown to a thickness of 11500 to 4000A. After opening a window for wire bonding in a part of this three-layer passivation film,
A heat treatment is performed in a N2 atmosphere at 460° C. to complete the first step of making the wenotsuta crab.

この後、す、上の工程で製造したモノリシックDACの
変換性能を十分に高精度化するために、薄膜抵抗回路に
形成した薄膜ラダーネットワークの抵抗値調整を行うレ
ーザトリミングを実施した〇本発明の薄膜抵抗回路では
、Ni −Cr 系合金の薄膜抵抗素子上にNSG+P
SG+NSG の三層構造の保護膜を被覆したことによ
り、レーザトリミングによって焼失するNi −Cr 
系合金の薄膜材料がNSG膜中に容易に拡散できるため
、安定な抵抗値調整が5T能となシ、DACとしての高
精度の変換性能を実現できる。
After this, in order to sufficiently improve the conversion performance of the monolithic DAC manufactured in the above process, laser trimming was performed to adjust the resistance value of the thin film ladder network formed in the thin film resistor circuit. In a thin film resistance circuit, NSG+P is placed on a Ni-Cr alloy thin film resistance element.
By coating the protective film with a three-layer structure of SG+NSG, the Ni-Cr that is burnt out during laser trimming is removed.
Since the thin film material of the alloy can be easily diffused into the NSG film, stable resistance value adjustment is possible with 5T performance, and high precision conversion performance as a DAC can be achieved.

更に、本実施例のモノリシックDACチップを従来例と
同様に樹脂封止パッケージに実装して、高温連続通電テ
ストやプレノシャークッカーテストヲ実施した結果、薄
膜抵抗回路にあるNi −Cr系合金の薄膜ラダー抵抗
の抵抗変化率は著しく小さく、非常に安定しているもの
であった。このため、レーザトリミングによって得られ
た高精度のDA変換性能を長時間にわたって維持し、保
証できることを確認した。
Furthermore, the monolithic DAC chip of this example was mounted in a resin-sealed package in the same manner as the conventional example, and as a result of conducting a high-temperature continuous energization test and a Planosha cooker test, it was found that the Ni-Cr alloy in the thin film resistance circuit was The resistance change rate of the thin film ladder resistor was extremely small and very stable. Therefore, it was confirmed that the highly accurate DA conversion performance obtained by laser trimming can be maintained and guaranteed for a long time.

このように、本発明の薄膜抵抗回路はN S G 十P
SG+NSG  の3層のパッシベーション膜ヲ形成す
ることによって、レーザトリミングの加工精練全向上さ
せるとともに、保護膜中の水分や不純物イオンの除去や
ゲッター効果を有するだけでなく、外部汚染から回路全
十分保護するパッシベーション膜果をも著しく向上させ
得る特徴を発揮するものである。
In this way, the thin film resistor circuit of the present invention has N S G
By forming a three-layer passivation film of SG+NSG, it not only improves the processing quality of laser trimming, removes moisture and impurity ions in the protective film, and has a getter effect, but also sufficiently protects the entire circuit from external contamination. It exhibits characteristics that can significantly improve passivation film performance.

なお、上述した実施例では、パッシベーション膜の形成
を常圧または、減圧CVD法によって実施したが、本発
明はこの形成法に限定されるものではなく、プラズマC
VD法やスパッタ法などの他の形成法によって形成した
ものにも適用が可能である。
In the above embodiments, the passivation film was formed by normal pressure or low pressure CVD, but the present invention is not limited to this method.
It is also applicable to those formed by other forming methods such as the VD method and the sputtering method.

1だ、実施例で(d二モノリシックDACの薄膜抵抗回
路について説明したが、本発明の要旨はこれに限定され
るものではなく、薄膜抵抗回路を用いる他の電子部品に
おいても同様に成立するものである。
1. Although the thin film resistance circuit of a monolithic DAC was explained in the example (d2), the gist of the present invention is not limited to this, and the present invention can similarly be applied to other electronic components using a thin film resistance circuit. It is.

発明の効果 以上の説明のごとく、本発明はDACなどに用いられる
薄膜抵抗回路において、この回路上に、NSG+PSG
+NSGパッシベーション膜を形成することによって、
高精度のレーザトリミングを可能にし、更にこの高精度
の抵抗性能?保証する高信頼性を実現し得るものであシ
、工業上非常に大きな効果を発揮するものである。
Effects of the Invention As explained above, the present invention provides a thin film resistor circuit used for DAC etc., in which NSG+PSG
+By forming a NSG passivation film,
Is this high-precision resistor performance possible, as well as high-precision laser trimming? It is possible to achieve guaranteed high reliability, and it has a very large industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜抵抗回路を用いたモノリシックDA
Cのチップ断面構造図、第2図は本発明の一実施例を用
いたモノリシックDACのチップ断面構造図である。 12・・・・・・半導体基板、13・・・・・半導体素
子、14・・・・・・S 102膜、16・・・・・薄
膜抵抗素子、16・・・・・・A2配線、17−・・・
・・N型エピタキシャル層、18・・・・・・N S 
G パッシベーション膜、19・・・・・・PSGパッ
シベーション膜、2o・・・・・・NSGパッシベーシ
ョン膜。
Figure 1 shows a monolithic DA using a conventional thin film resistor circuit.
FIG. 2 is a cross-sectional view of a chip of a monolithic DAC using an embodiment of the present invention. 12...Semiconductor substrate, 13...Semiconductor element, 14...S102 film, 16...Thin film resistance element, 16...A2 wiring, 17-...
...N-type epitaxial layer, 18...N S
G passivation film, 19...PSG passivation film, 2o...NSG passivation film.

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成された薄膜抵抗素子上に、この薄膜抵抗素
子を覆うごとくノンドープドシリケートガラス(NSG
)膜と燐シリケートガラス(PSG)膜とノンドープド
シリケートガラス(NSG)膜とをこの順序に堆積して
なる半導体装置。
Non-doped silicate glass (NSG) is placed on the thin film resistive element formed on the substrate to cover the thin film resistive element.
) film, a phosphorous silicate glass (PSG) film, and a non-doped silicate glass (NSG) film are deposited in this order.
JP13830484A 1984-07-03 1984-07-03 Semiconductor device Pending JPS6116562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13830484A JPS6116562A (en) 1984-07-03 1984-07-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13830484A JPS6116562A (en) 1984-07-03 1984-07-03 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6116562A true JPS6116562A (en) 1986-01-24

Family

ID=15218743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13830484A Pending JPS6116562A (en) 1984-07-03 1984-07-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6116562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642167A3 (en) * 1993-08-05 1995-06-28 Matsushita Electronics Corp Semiconductor device having capacitor and manufacturing method thereof.
EP0673069A2 (en) * 1994-03-18 1995-09-20 Seiko Instruments Inc. Insulated gate semiconductor device and method for fabricating the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642167A3 (en) * 1993-08-05 1995-06-28 Matsushita Electronics Corp Semiconductor device having capacitor and manufacturing method thereof.
US5624864A (en) * 1993-08-05 1997-04-29 Matsushita Electronics Corporation Semiconductor device having capacitor and manufacturing method thereof
EP0739037A3 (en) * 1993-08-05 1998-04-29 Matsushita Electronics Corporation Semiconductor device having capacitor and manufacturing method thereof
US6015987A (en) * 1993-08-05 2000-01-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device having capacitor exhibiting improved mositure resistance and manufacturing method thereof
US6107657A (en) * 1993-08-05 2000-08-22 Matsushita Electronics Corporation Semiconductor device having capacitor and manufacturing method thereof
US6169304B1 (en) 1993-08-05 2001-01-02 Matsushita Electric Industrial Co., Ltd. Semiconductor device having a passivation layer which minimizes diffusion of hydrogen into a dielectric layer
US6294438B1 (en) 1993-08-05 2001-09-25 Matsushita Electronics Corporation Semiconductor device having capacitor and manufacturing method thereof
US6333528B1 (en) 1993-08-05 2001-12-25 Matsushita Electric Industrial Co., Ltd. Semiconductor device having a capacitor exhibiting improved moisture resistance
EP0673069A2 (en) * 1994-03-18 1995-09-20 Seiko Instruments Inc. Insulated gate semiconductor device and method for fabricating the same

Similar Documents

Publication Publication Date Title
US4462018A (en) Semiconductor strain gauge with integral compensation resistors
US5165283A (en) High temperature transducers and methods of fabricating the same employing silicon carbide
US4640001A (en) Solar cell manufacturing method
US4498071A (en) High resistance film resistor
FR2517503A1 (en) SUBSTRATE COMPRISING A PATTERN CONSISTING OF A GOLD ALLOY, A NOBLE METAL AND A BASE METAL, THE PATTERN BEING ISOLATED BY OXIDES OF NOBLE AND BASE METALS
US6287933B1 (en) Semiconductor device having thin film resistor and method of producing same
JPS6190445A (en) Semiconductor device
JPS6116562A (en) Semiconductor device
JPS61100956A (en) Monobrid integrated circuit
JPH02303064A (en) Formation of thin film resistor
JPS6128213B2 (en)
JPS5933859A (en) Thin film resistance circuit
JPH0322062B2 (en)
JPH01238126A (en) Manufacture of semiconductor device
JPS5984460A (en) Manufacture of capacitor for semiconductor device
JPH0786004A (en) Method of manufacture thin film resistor material and thin film resistor
JPS63227043A (en) Manufacture of thin film resistance circuit
JPH0132363Y2 (en)
JPS6328069A (en) Semiconductor device
JPH0539473Y2 (en)
JP3372109B2 (en) Semiconductor device
JPS60103668A (en) Semiconductor device
JPH03171732A (en) Semiconductor device
JPH0669426A (en) Semiconductor device
JP2533088B2 (en) Method of manufacturing thermal head