JPS61164132A - Vibration testing method - Google Patents

Vibration testing method

Info

Publication number
JPS61164132A
JPS61164132A JP60004111A JP411185A JPS61164132A JP S61164132 A JPS61164132 A JP S61164132A JP 60004111 A JP60004111 A JP 60004111A JP 411185 A JP411185 A JP 411185A JP S61164132 A JPS61164132 A JP S61164132A
Authority
JP
Japan
Prior art keywords
signal
vibration
transfer function
detector
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60004111A
Other languages
Japanese (ja)
Inventor
Nagaharu Hatsuya
長治 初谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Fuji Facom Corp
Original Assignee
Honda Motor Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Fuji Facom Corp filed Critical Honda Motor Co Ltd
Priority to JP60004111A priority Critical patent/JPS61164132A/en
Publication of JPS61164132A publication Critical patent/JPS61164132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To shorten a vibration testing time, by using random noises, whose frequency band is limited to those necessary for performing the vibration test, out of the oscillation frequencies of an aimed signal as a vibration signal of a prescribed waveform and finding a transfer function to frequency components in the same frequency band. CONSTITUTION:An aimed signal having the aimed waveform of a vehicle A at the location of a detector 5 is determined by measuring the output signal of the detector 5 by adding a vibration signal of a prescribed waveform to the exciter 1 of a system provided with the vehicle A, to which vibrations are added from the exciter 1, and the detector 5 fitted to an optional position of the vehicle A and finding the transfer function of the system. Then an initial excitation signal is found on the basis of the aimed signal and transfer function and added to the exciter 1. In this case, correction of the excitation signal is repeated until the error to the aimed signal of an actually working signal detected 5 at the time converges in a prescribed range. Since it is sufficient to use random noises, whose frequency band is limited to those necessary for performing the test, out of the oscillation frequencies of the aimed signal of the vehicle A as a vibration signal of a prescribed waveform and find a transfer function to the frequency component in the same frequency band, the calculating time is shortened and, accordingly, the testing time is also shortened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加振機により被試験体に実際の振動ど同様の
振動を与えて被試験体の耐久強度等を試験する振動試験
方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a vibration test method for testing the durability and strength of a test object by applying vibrations similar to actual vibrations to the test object using a vibrator. .

(従来の技術) 加振機ど該加振機にJ:り振動が加えられる被試験体ど
該被試験体の任意の点に取イ」【ノられこの点の振動を
検出する検出器とを含む系の伝達関数を求め、この伝達
関数と前記任意の点における振動の目標波形を有する目
標信号とに塞ぎ前記加振機への加振信号を求め、この加
振信号を前記加振機に加えたどき前記検出器の出力に得
られる出力信号の目標信号に対する誤差を求め、この誤
差で前記加振信号を修正し、以後この修正を繰返して前
記検出器の出力信号を前記目標信号に近ずけるようにす
ることにより、被試験体の実際の振動例えば車輪の実走
時の振動と同一条件で振動試験を行なうようにした振動
試験方法が知られている(特開昭57−168136号
公報)。
(Prior art) A vibration exciter or the like is used to apply vibrations to an arbitrary point on a test object, such as a vibration exciter. Find a transfer function of the system including this transfer function and a target signal having a target waveform of vibration at the arbitrary point to find an excitation signal to the vibrator, and transfer this excitation signal to the vibrator. , the error of the output signal obtained from the output of the detector with respect to the target signal is determined, the excitation signal is corrected using this error, and this correction is repeated thereafter to adjust the output signal of the detector to the target signal. A vibration test method is known in which the vibration test is conducted under the same conditions as the actual vibration of the test object, for example, the vibration during actual running of a wheel, by bringing the test object closer. Publication No.).

(発明が解決しようとする問題点) 従来の振動試験方法によれば、データ数が多いため大ぎ
な記憶容量のメモリを要し、また演算時間が長いため試
験時間が長くなる不都合があった。
(Problems to be Solved by the Invention) According to the conventional vibration testing method, since there is a large number of data, a memory with a large storage capacity is required, and the test time is increased due to the long calculation time.

本発明は、従来のこのような不都合を無くすことをその
目r内どしたものである。
The present invention aims to eliminate these conventional inconveniences.

(問題点を解決するための手段) 本発明は、(1)所定波形の振動信号を作成すること、
(2)  加振機と該加振機にJ:り振動が加えられる
被試験体と該被試験体の任意の点に取付けられ該点の振
動を検出する検出器とを備えた系にお【ノる該加振機に
前記所定波形の振動信号を加え、このときの検出器の出
力信号を測定し、該振動信号ど出力信号どから族系の伝
達関数を求めること、(3)  被試験体の前記任意の
点における振動の目標波形を有する目標信号を決定する
こと、(4)  該目標信号と伝達関数とに基づいて加
振機への初期加振信号を求めること、(5)該初期加振
信号を加振機に加えそのとき検出器から冑られる実働信
号の前記目標信号に対する誤差を求め、該誤差で初期加
振信号を修正すること、(6)  前記誤差が所定範囲
に収束するまで加振信号の修正を繰返すことが行なわれ
る振動試験方法にa3いて、前記所定波形の振動信号ど
して被試験体の前記目標信号の振動周波数のうち試験上
必要な周波数帯域に限定されたランダムノイズを使用し
、該周波数帯域内の周波数成分に対して伝達関数を求め
ることを特徴とする。
(Means for solving the problems) The present invention includes (1) creating a vibration signal with a predetermined waveform;
(2) A system equipped with a vibrator, a test object to which vibration is applied to the vibrator, and a detector attached to an arbitrary point on the test object to detect the vibration at that point. [Adding the vibration signal of the predetermined waveform to the vibrator, measuring the output signal of the detector at this time, and determining the transfer function of the family system from the vibration signal and the output signal; (3) determining a target signal having a target waveform of vibration at the arbitrary point of the test object; (4) determining an initial excitation signal to the vibrator based on the target signal and a transfer function; (5) applying the initial excitation signal to the vibrator, determining the error of the actual signal received from the detector at that time with respect to the target signal, and correcting the initial excitation signal using the error; (6) adjusting the error within a predetermined range; A3 is a vibration test method in which modification of the excitation signal is repeated until convergence, and the vibration signal of the predetermined waveform is limited to a frequency band necessary for the test among the vibration frequencies of the target signal of the test object. The method is characterized in that a transfer function is determined for a frequency component within the frequency band using the random noise generated by the frequency band.

(実施例) 先ず、第1図及び第2図に示す本発明の振動試験方法の
実施に使用する振動試験装置の一例について説明する。
(Example) First, an example of a vibration testing apparatus used to carry out the vibration testing method of the present invention shown in FIGS. 1 and 2 will be described.

図面において、(1)は加振機で、この加振機(1)は
車両Aの車軸に取り付けて車両Aを上下方向及び前後方
向に振動させる加振部材(2)と加振源装@(3)とそ
れぞれこの加振源装置(3)に接続されると共に加振部
材(2)に連結されて上下方向及び前後方向に振動させ
る油圧モータ(41) (42) (4a)とから成り
、例えば車両Aの前車軸の左右に取付けた。(5)は車
両Aの任意の位置例えば車軸に取付けた加振部材(2)
に近接した位置に取付けられ上下方向、左右方向及び前
後方向の振動を検出する検出器(図面では1個のみを示
した)。(6)はこの検出器(5)及び加振源装置(3
)に接続され、後に詳述する本発明の試験方法を実施す
るために使用する例えばコンピュータ等から成る電子制
御ユニットである。
In the drawing, (1) is a vibration exciter, and this vibration exciter (1) is attached to the axle of vehicle A to vibrate vehicle A in the vertical and longitudinal directions. (3) and hydraulic motors (41), (42), and (4a) which are connected to the vibration source device (3) and to the vibration member (2) to vibrate in the vertical and longitudinal directions. , for example, were attached to the left and right sides of the front axle of vehicle A. (5) is a vibration member (2) attached to an arbitrary position of vehicle A, for example, the axle.
A detector (only one is shown in the drawing) that is installed close to the sensor and detects vibrations in the vertical, horizontal, and longitudinal directions. (6) is the detector (5) and the excitation source device (3).
), and is an electronic control unit comprising, for example, a computer, used to carry out the test method of the present invention, which will be described in detail later.

前記加振源装置(3)は、第2図に示すように、油圧源
に接続されたポンプ(Ivに調圧弁(7)を介して接続
された電磁切換弁(8)から成り、そのソレノイド(8
1)に振動信号あるいは加振信号を加えることにJ:り
油圧モータ(41) (42) (4a)のシリンダの
両側に交互に油圧を作用させ、そのピストンを交Hに往
復動させるもので、公知のものと特に異なるどころがな
い。尚、(9)はアギュムレータ、(IGは油圧モータ
(41) (42) (43)を油圧源に接続あるいは
遮断する電磁弁である。
The vibration source device (3), as shown in FIG. (8
By applying a vibration signal or an excitation signal to 1), hydraulic pressure is applied alternately to both sides of the cylinder of the hydraulic motor (41), (42), and (4a), causing the piston to reciprocate in alternating directions. , there is nothing particularly different from the known ones. In addition, (9) is an agumulator, and (IG is a solenoid valve which connects or shuts off the hydraulic motors (41), (42), and (43) to the hydraulic power source.

次に、第1図及び第2図に示す装置を用いた本発明の振
動試験方法について説明する。
Next, a vibration test method of the present invention using the apparatus shown in FIGS. 1 and 2 will be explained.

第3図に示す本発明の方法の実施の流れ図から明らかな
ように、先ず1つの加振機〈1)とこの加振11N(1
)により振動が加えられる車両Aと、この車両Aの任意
の点に取付けられこの加振機(1)に対応する検出器(
5)及び伯の加振機(1)に対応する検出器(5)とを
備えた系の伝達関数を求めるために加振1m(1)に加
える所定波形の振動信号としてのランダムノイズを作成
する(ステップ■)。
As is clear from the flowchart of the implementation of the method of the present invention shown in FIG.
), and a detector (
5) and a detector (5) corresponding to the Haku exciter (1). To find the transfer function of the system, create random noise as a vibration signal of a predetermined waveform to be added to the excitation 1m (1). (Step ■).

このランダムノイズの作成の手順を第4図示の流れ図に
にり説明すると、オペレータから与えられた例えば第5
図(A)に示すようなパワー分((iどソフトウェアで
発生した乱数を用い一πがらπまでの間で一様分布させ
た例えば第5図(B)に承りような位相成分を元に周波
数Oから例えば−に限局波数fMまでの周波数領域での
スペクトルを作成する(ステップ@)。
The procedure for creating this random noise will be explained with reference to the flowchart shown in Figure 4.
Based on the phase component shown in Figure 5 (B), for example, the power component shown in Figure (A) ((i) is uniformly distributed between 1π and π using random numbers generated by software. A spectrum in the frequency domain from frequency O to, for example, - localized wave number fM is created (step @).

被試験体Cある車両の実際の振動はかなり高い周波数成
分が含まれるでいるから、1F確な加振信号を1qるに
はこのJ:うな高周波成分も含める必要があるが、これ
等の周波数成分を含めるとデータ数の増大によって演算
時間及び記憶容量が増大し、一方50Ifz位以−[の
高周波成分は車両の耐久性及び乗り心地にほどんど関係
がないので、50Itz位以上の高周波成分を除外し、
を述のJ:うに上限周波数fM例えば501し位までの
周波数領域で解析するようにした。
The actual vibration of a vehicle under test C contains quite high frequency components, so in order to generate a 1F accurate excitation signal, it is necessary to include high frequency components like this J: Including the component increases the calculation time and storage capacity due to the increase in the number of data, and on the other hand, the high frequency components of about 50 Ifz or more have little relation to the durability and ride comfort of the vehicle, so the high frequency components of about 50 Itz or more are exclude,
The analysis is performed in the frequency range up to the upper limit frequency fM, for example, the 501st order.

次いで、ステップ@においてこのノイズを高速フーリエ
変換プロセッサにより逆変換し−てCP11内部での表
現型式になっている時間領域に変換し、ステップ■にお
いてこれをD−A変換器で出力できるデータ型式に変換
及び並べ換えを行ない、ステップ■でこのデータをラン
ダムノイズファイルに格納1゛る。再び第3図の流れ図
に戻り、ステップ■にa3いて、このランダムノイズを
用いて伝達関数を求める。そのために先ず、ランダムノ
イズファイルから取り出したランダムノイズを加振機(
1)の1つに供給し、この加振機(1)で車両Aを振動
さ1!、この加振機(1)に対応J”る検出器(5)及
び加振機(1)に対応する検出器(5)の出力信号を測
定する。次いでこの測定データから伝達関数をhI算す
る。以上の測定及び計算は加振機(1)の数だ(1行な
う。求めた結果は伝達関数ファイルに格納する。
Next, in step @, this noise is inversely transformed by a fast Fourier transform processor to convert it into the time domain, which is in the representation format inside the CP11, and in step (2), it is converted into a data format that can be output by a DA converter. Conversion and rearrangement are performed, and in step (2) this data is stored in a random noise file. Returning to the flowchart of FIG. 3 again, go to step (a3) to find a transfer function using this random noise. To do this, first, the random noise extracted from the random noise file was generated using a vibrator (
1), and this vibrator (1) vibrates vehicle A 1! , measure the output signals of the detector (5) corresponding to the vibrator (1) and the detector (5) corresponding to the vibrator (1). Next, calculate the transfer function from this measurement data. The above measurements and calculations are performed for the number of vibration exciters (1).The obtained results are stored in the transfer function file.

次いでステップ■において、このファイルからデータを
読み出し、このデータから逆伝達関数を求め、逆伝達関
数ファイルに格納する。
Next, in step (2), data is read from this file, an inverse transfer function is determined from this data, and is stored in an inverse transfer function file.

以降のステップではステップ■で得られた逆伝達関数を
用いて各加振機(1)の初期加振データを作成する。ス
テップ■において、被試験体の任意の点にJ3ける振動
の目標波形を有する目標信号すなわち、車両への任意の
点における振動の実走データを収集処理する、すなわち
、データレコーダから収録した実走データを再生し、/
10変換器でこのデータをディジタル信号に変換し、こ
のディジタル信号を高速フーリエ変換プ1コセッリによ
る1回のフーリエ変換中位(1−10ツク)分角にサン
プリングして実走データファイルに格納する。次いでス
テップ■において第6図に示すように実走データの先頭
のブロックを実走データファイルから読出し、これにO
から1まで徐々に増大するランプ値を乗算し、また実走
データの最終のブロックな実走データファイルから読出
し、これに1からOまで徐々に減少するランプ値を乗算
しくステップ0)、乗算値をそれぞれ再び実走データフ
ァイルに格納する。このデータの加工後、実走データフ
ァイルから1ブロツク分の実走データy(【)を読出し
くステップ@)、このデータy (t)をフーリエ変換
しく Y(f)−F [y(t) ] 、ステップO)
逆伝達関数ファイルから読込んだ逆伝達関数行列Q−1
を用い゛C周波数領域の初期加振信号Xff)を割算し
く X <f> = G −1−’ Y (f)、ステ
ップ0)、この初期加振信号X (f)を逆フーリエ変
換して時間領域の初期加振信号χ([)を算出しくχ(
t> = F−I [X(f)] 、ステップQ)この
初期加振信号χ([)に100%未満の初期加振率を乗
算しくステップ0)この乗算値を初期加振信号として加
振信号ファイルに格納する(ステップ(電。
In the subsequent steps, initial vibration data for each vibration exciter (1) is created using the inverse transfer function obtained in step (2). In step (2), a target signal having a target waveform of vibration at an arbitrary point on the test object, that is, actual driving data of vibration at an arbitrary point on the vehicle is collected and processed, that is, an actual driving data recorded from a data recorder is processed. Play the data and /
This data is converted into a digital signal using a 10 converter, and this digital signal is sampled into the middle (1-10 units) arc minute of one Fourier transform using a fast Fourier transform processor and stored in an actual running data file. . Next, in step (2), as shown in FIG. 6, the first block of the actual running data is read from the actual running data file, and O
Step 0) Multiply the ramp value that gradually increases from Each is stored in the actual running data file again. After processing this data, step @) reads one block of actual running data y ([) from the actual running data file, and performs a Fourier transform on this data y (t) as follows: Y(f) - F [y(t) ] , step O)
Inverse transfer function matrix Q-1 read from the inverse transfer function file
The initial excitation signal Xff in the C frequency domain is divided using Calculate the initial excitation signal χ([) in the time domain using χ(
t> = F−I [X(f)], Step Q) Multiply this initial excitation signal χ([) by an initial excitation rate of less than 100%.Step 0) Add this multiplied value as the initial excitation signal. Store in the vibration signal file (step (electronic).

この初期加振率は非線形の系に適応した値を有し、この
初期加振率の乗算によれば、初期加振信号を低い値に設
定し、誤差修正により徐々に実際の値に近づけることに
より加振機が支障なく且つ車両に悪影響を与えることな
く作動するようにした。
This initial excitation rate has a value adapted to the nonlinear system, and by multiplying this initial excitation rate, the initial excitation signal can be set to a low value and gradually approach the actual value by error correction. This enabled the vibration exciter to operate without any problems and without adversely affecting the vehicle.

この初期加振信号χ(1)の算出及び格納はブロック数
分について行なう。
This initial excitation signal χ(1) is calculated and stored for the number of blocks.

ステップ■においては、この加振信号ファイルから読出
した1ブロツクの初期加振信号を加振111(1)に加
えて車両へを振動させ、そのときの検出器(5)から出
力する実働信号V E (t)を収録し次いで実走デー
タファイルから読取った実走信号y(【)と実働信号y
E (t)との誤差△y (t)を4紳する。この時間
領域の誤差信号Δy(t)は、一旦フアイルに格納し、
次いで読出してフーリエ変換しくΔY(f)=F[△y
(t)])、再びファイル内に格納する。以上の処理は
プ[1ツク数分行なわれる。ステップ■においては、前
記ファイルから誤差信号△Y (f)を読出し、この誤
差信号△Y(「)がΔY(f)/ Y(f)≦E 9 
(所定値)の条件が満されないときはステップ(8)に
移る。
In step (2), one block of initial excitation signals read from this excitation signal file is added to excitation 111 (1) to vibrate the vehicle, and the actual working signal V output from the detector (5) at that time. E (t) was recorded and then the actual running signal y ([) and the actual operating signal y were read from the actual running data file.
The error Δy (t) with E (t) is set at 4 mm. This time domain error signal Δy(t) is temporarily stored in a file,
Next, read out and perform Fourier transformation ΔY(f)=F[Δy
(t)]) and stored in the file again. The above processing is performed for several times. In step (■), the error signal △Y (f) is read from the file, and this error signal △Y (') is ΔY (f)/Y (f)≦E 9
If the condition (predetermined value) is not satisfied, the process moves to step (8).

ステップ(8)においては、ファイルから誤差信号△Y
 (f)を1ブロック分読出すと共に逆伝達関数ファイ
ルから逆伝達関数行列Q−1を読出し、加振信号修正分
の演算を行ない(ΔX (f) −G −1・ΔY(f
))、この修正分を逆フーリエ変換を行ない(ΔX(t
)=F−1[ΔXff)])、次いで、加振信号ファイ
ルから修正前の加振信号を読出し、この加振信号に修正
分を加算する( X (t) −X (t)十ΔX (
t) )。修正後の加振信号は再び加振信号ファイルへ
格納する。
In step (8), the error signal ΔY is extracted from the file.
(f) for one block, reads the inverse transfer function matrix Q-1 from the inverse transfer function file, and calculates the excitation signal correction (ΔX (f) −G −1・ΔY(f
)), and performs inverse Fourier transform on this correction (ΔX(t
)=F-1[ΔXff)]), then read the excitation signal before correction from the excitation signal file, and add the correction amount to this excitation signal (X (t) −X (t) + ΔX (
t) ). The modified excitation signal is stored in the excitation signal file again.

以にの演わ処理はブロック数分について行なわれる。ス
テップ■で得られた修正後の加振信号で再びステップ■
及び■の処理が行なわれ、前記収束の条件が満されるま
でステップ■、■、■が繰返して行なう。
The above processing is performed for the number of blocks. Step ■ again using the corrected excitation signal obtained in step ■
Steps (2) and (2) are performed, and steps (2), (2), and (2) are repeated until the convergence condition is satisfied.

前記収束の条件が満たされたときは、一連の加振信号の
修1作業が終了し、加振イに号ファイルには実定時の車
両への振動と同様の振動を車両に与えることができる加
振信号が格納される。
When the above-mentioned convergence conditions are met, the series of excitation signal modification operations are completed, and it is possible to give the same vibration to the vehicle as the vibration to the vehicle during actual operation in the excitation file. The excitation signal is stored.

以上の一連の手段は、第1図示の電子制御ユニッ1〜(
6)を有する振動試験装置によって行なわれる。かくて
この装置を作動すると、加振機(1)に先ず初期加振信
号が加わり、加振機(1)により車両Aは初期加振信号
に応じて振動する。引続きステップ(6) (7)及び
(8)が繰返されることによりその振動は修正されて最
終的に車両へは実走時と同じ状態で振動でる。
The above series of means are implemented in the electronic control units 1 to (1) shown in the first diagram.
6) using a vibration testing device. When this device is activated, an initial excitation signal is first applied to the vibrator (1), and the vehicle A is vibrated by the vibrator (1) in accordance with the initial excitation signal. By subsequently repeating steps (6), (7), and (8), the vibrations are corrected, and finally the vehicle vibrates in the same state as when it is actually running.

例えば車両が周回路を走行する状態を連続1ノでシミュ
レートづるために前記加振信号ファイルに格納された修
正後の加振信号を繰返して使用Jる時、加振信号はその
先頭のブロックにおい−C零から所定値まで徐々に増大
する振幅を右し、最終のブロックにおいて零まで徐々に
減少する振幅を有するので、前の加振信号の最終ブロッ
クから後の加振信号の先頭のブロックに移るところの振
動波形が連続し、そのため加振機の耐久性を悪くし車両
に悪影響を与えるような急変する力が加振機に加わらず
、車両Aは円滑に且つ継続して振動する。
For example, when a modified excitation signal stored in the excitation signal file is repeatedly used to simulate the state in which a vehicle travels on a circuit in one consecutive cycle, the excitation signal is the first block of the excitation signal stored in the excitation signal file. Smell-C has an amplitude that gradually increases from zero to a predetermined value, and has an amplitude that gradually decreases to zero in the final block, so it changes from the last block of the previous excitation signal to the first block of the subsequent excitation signal. The vibration waveform where the vibration waveform shifts to is continuous, and therefore, the vehicle A vibrates smoothly and continuously without being subjected to sudden changes in force that would deteriorate the durability of the vibrator and adversely affect the vehicle.

(発明の効果) 本発明は、(1)所定波形の振動信号を作成すること、
(2)加振機と該加振機により振動が加えられる被試験
体と該被試験体の任意の点に取付けられ該点の振動を検
出する検出器とを備えた系における加振機に前記所定波
形の振動信号を加え、このときの検出器の出力信号を測
定し、該振動信号と出力信号とから族系の伝達関数を求
めること、(3)被試験体の前記任意の点における振動
の目標波形を有する目標信号を決定するこ=  12 
 − と、(4)該目標信号と伝達関数とに基づいて加振機へ
の初期加振信号を求めること、(5)該初期加振信号を
加振機に加え、そのどき検出器から得られる実働信号の
前記目標信号に対する誤差を求め、該誤差で初期加振信
号を修正すること、(6)前記誤差が所定範囲に収束り
“るまで加振信号の修正を繰返寸ことが行なわれる振動
試験方法おいて、前記所定波形の振動信号どして被試験
体の前記目標信号の振動周波数のうち試験上必要な周波
数帯域に限定されたランダムノイズを使用し、該周波数
帯域内の周波数成分に対して伝達関数を求めればよいの
で、加振信号を算出するために必要なメモリの記憶容量
が少なくてすみ、また油筒時間が短くてすみそのため振
動試験時間が短縮できる効果を有する。
(Effects of the Invention) The present invention includes (1) creating a vibration signal with a predetermined waveform;
(2) A vibrator in a system that includes a vibrator, a test object to which vibration is applied by the vibrator, and a detector that is attached to an arbitrary point on the test object and detects the vibration at that point. adding the vibration signal of the predetermined waveform, measuring the output signal of the detector at this time, and determining a family-based transfer function from the vibration signal and the output signal; (3) at the arbitrary point of the test object; Determining a target signal having a target waveform of vibration = 12
- (4) determining an initial excitation signal to the shaker based on the target signal and the transfer function; (5) applying the initial excitation signal to the shaker and then obtaining the signal from the detector; (6) repeatedly modifying the excitation signal until the error converges within a predetermined range; In the vibration test method, random noise limited to a frequency band necessary for the test among the vibration frequencies of the target signal of the test object is used as the vibration signal of the predetermined waveform, and a frequency within the frequency band is used. Since it is only necessary to find a transfer function for each component, the storage capacity of the memory required to calculate the excitation signal is small, and the oil cylinder time is also short, which has the effect of shortening the vibration test time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の振動試験方法を実施する車両に適用
された振動試験装置の線図、第2図はその要部の線図、
第3図は本発明の振動試験方法の流れ図、第4図はその
ステップ■の流れ図、第5図(^)及び(B)はランダ
ムノイズの周波数に対Jるパワー分布及び位相分布を示
づ図、第6図はスデップ■の流れ図である。 (1)・・・加振機 (2)・・・加振部材 (3)・・・加振源装置 (4+1 (42) (43)・・・油圧モータ(5)
・・・検出器 (6)・・・電子制御コニット (8)・・・電磁切換弁 特泊 出願人 本田技研工業株式会ネ1第5図 特開昭G1−164132(7) 第6図 ■ ■ QQ−
FIG. 1 is a diagram of a vibration test device applied to a vehicle implementing the vibration test method of the present invention, FIG. 2 is a diagram of the main parts thereof,
Fig. 3 is a flowchart of the vibration test method of the present invention, Fig. 4 is a flowchart of step ①, and Figs. 5 (^) and (B) show the power distribution and phase distribution with respect to the frequency of random noise. Figure 6 is a flowchart of step ①. (1)... Vibration machine (2)... Vibration member (3)... Vibration source device (4+1 (42) (43)... Hydraulic motor (5)
...Detector (6)...Electronic control conit (8)...Special electromagnetic switching valve Applicant Honda Motor Co., Ltd. Ne1 Figure 5 Japanese Patent Application Laid-open No. Sho G1-164132 (7) Figure 6 ■ ■ QQ-

Claims (1)

【特許請求の範囲】 1、(1)所定波形の振動信号を作成すること(2)加
振機と該加振機により振動が加えられる被試験体と該被
試験体の任意の点に 取付けられ該点の振動を検出する検出器 とを備えた系における該加振機に前記所 定波形の振動信号を加え、このときの検 出器の出力信号を測定し、該振動信号と 出力信号とから該系の伝達関数を求める こと (3)被試験体の前記任意の点における振動の目標波形
を有する目標信号を決定する こと (4)該目標信号と伝達関数とに基づいて加振機への初
期加振信号を求めること (5)該初期加振信号を加振機に加え、そのとき検出器
から得られる実働信号の前記 目標信号に対する誤差を求め、該誤差で 初期加振信号を修正すること (6)前記誤差が所定範囲に収束するまで加振信号の修
正を繰返すこと が行なわれる振動試験方法において、前記所定波形の振
動信号として被試験体の前記目標信号の振動周波数のう
ち試験上必要な周波数帯域に限定されたランダムノイズ
を使用し、該周波数帯域内の周波数成分に対して伝達関
数を求めることを特徴とする振動試験方法。
[Claims] 1. (1) Creating a vibration signal with a predetermined waveform (2) A vibrator, a test object to which vibration is applied by the vibrator, and mounting at an arbitrary point on the test object. A vibration signal of the predetermined waveform is applied to the vibration exciter in the system equipped with a detector for detecting vibration at the point, the output signal of the detector at this time is measured, and the vibration signal and the output signal are combined. (3) determining a target signal having a target waveform of vibration at the arbitrary point of the test object; (4) determining a transfer function of the system; (4) determining a target signal having a target waveform of vibration at the arbitrary point of the test object; Determining an initial excitation signal (5) Adding the initial excitation signal to the exciter, determining the error of the actual working signal obtained from the detector with respect to the target signal, and correcting the initial excitation signal with the error. (6) In a vibration test method in which the excitation signal is repeatedly corrected until the error converges within a predetermined range, the vibration signal of the predetermined waveform is selected from among the vibration frequencies of the target signal of the test object. A vibration testing method characterized by using random noise limited to a necessary frequency band and determining a transfer function for frequency components within the frequency band.
JP60004111A 1985-01-16 1985-01-16 Vibration testing method Pending JPS61164132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60004111A JPS61164132A (en) 1985-01-16 1985-01-16 Vibration testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60004111A JPS61164132A (en) 1985-01-16 1985-01-16 Vibration testing method

Publications (1)

Publication Number Publication Date
JPS61164132A true JPS61164132A (en) 1986-07-24

Family

ID=11575672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60004111A Pending JPS61164132A (en) 1985-01-16 1985-01-16 Vibration testing method

Country Status (1)

Country Link
JP (1) JPS61164132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865464A (en) * 2015-04-28 2015-08-26 深圳市华讯方舟科技有限公司 Quality testing method used on microwave frequency converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865464A (en) * 2015-04-28 2015-08-26 深圳市华讯方舟科技有限公司 Quality testing method used on microwave frequency converter

Similar Documents

Publication Publication Date Title
JPS61164132A (en) Vibration testing method
JP2006189388A (en) Vibration testing device and vibration testing method
US6414452B1 (en) Waveform control device for vibrating tables and method thereof
JPH03295437A (en) Vehicle vibration testing method
JP5852935B2 (en) Transfer function estimation device, transfer function estimation method, and transfer function estimation program
JP3809880B2 (en) Method and apparatus for acquiring transfer function within a short time in vibration control system
JPS61164135A (en) Vibration testing method
JPS61164134A (en) Vibration testing method
US4182190A (en) Method for simulating dynamic loads and apparatus for carrying out the method
JPH0735646A (en) Apparatus for measuring characteristic of leaf spring
JPS61164131A (en) Vibration testing method
JPH0743243A (en) Exciter
JP3935645B2 (en) Vehicle weight measuring device and vehicle weight measuring method
JPS61164136A (en) Vibration testing method
JPS61164133A (en) Vibration testing method
JPS61164137A (en) Vibration testing method
JP6313920B2 (en) Test apparatus control apparatus and test apparatus control method
JP3119610U (en) Fatigue testing machine and inverse transfer function computing device
JP2731160B2 (en) Excitation level controller
JP4219099B2 (en) Prediction method of frequency response characteristics
JPH0534245A (en) Method for controlling road simulator
JPS6217765B2 (en)
JPH1019657A (en) Exciting force estimating device
JP2003156480A (en) Frequency analysis device, frequency analysis method, frequency analysis program, tapping test device and tapping test method
JPH0394155A (en) Measuring method for vibration damping ratio of metallic member