JPH0394155A - Measuring method for vibration damping ratio of metallic member - Google Patents

Measuring method for vibration damping ratio of metallic member

Info

Publication number
JPH0394155A
JPH0394155A JP1232572A JP23257289A JPH0394155A JP H0394155 A JPH0394155 A JP H0394155A JP 1232572 A JP1232572 A JP 1232572A JP 23257289 A JP23257289 A JP 23257289A JP H0394155 A JPH0394155 A JP H0394155A
Authority
JP
Japan
Prior art keywords
vibration damping
damping ratio
natural frequency
vibration
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232572A
Other languages
Japanese (ja)
Inventor
Shigeru Morita
茂 森田
Seiichi Nakabayashi
精一 中林
Hiroshi Ikeda
浩志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1232572A priority Critical patent/JPH0394155A/en
Publication of JPH0394155A publication Critical patent/JPH0394155A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes

Abstract

PURPOSE:To measure a vibration damping ratio by measuring a natural frequency by a simple method by deriving in advance a correlation of the natural frequency and the vibration damping ratio of a metallic member made of cast iron. CONSTITUTION:The responsiveness of input acceleration (a) to force F (voltage) inputted by an exciter 4 to the exciting surface 1a of a disk plate 1 of a brake device is inputted as a vibration transfer function a/F to a frequency analyzing device 6. By analyzing a frequency of the plate 1 from the function a/F, a natural frequency (fn) is measured. In this case, within a range of object frequencies 1 - 10kHz, a correlation exists between a ratio fn'/fn(MP)' of a natural frequency fn' obtained by a model analyzing device and a natural frequency fn(MP)' of the plate 1 which becomes a reference, and an average value (1/n).SIGMA.1/deltai of an inverse number 1/delta of a vibration damping ratio delta of each resonance of the plate 1. Based on this correlation, an average vibration damping ratio delta of the plate 1 is measured from the frequency (fn) obtained by the device 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳鉄製の金属部材の振動減衰比を計測する計
測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a measurement method for measuring the vibration damping ratio of a metal member made of cast iron.

(従来の技術) 一般に、この種の鋳鉄製金属部材は、ブレーキ装置のデ
ィスクプレートなどに用いられることがあり、ブレーキ
装置作動時に発生するブレーキノイズは、ディスクプレ
ート自体の振動減衰比との間に因果関係が存在している
。すなわち、ディスクプレートの振動減衰比が高いほど
ブレーキノイズに対して有利なものとなることから、近
来より、ディスクプレートの振動減衰比の計測が積極的
になされている。
(Prior Art) In general, this type of cast iron metal member is sometimes used for disc plates of brake equipment, etc., and the brake noise generated when the brake equipment is operated is affected by the vibration damping ratio of the disc plate itself. A causal relationship exists. That is, the higher the vibration damping ratio of the disc plate, the more advantageous it becomes to brake noise, and therefore, the vibration damping ratio of the disc plate has been actively measured in recent years.

そして、このような鋳鉄製金属部材(ディスクプレート
)の振動減衰比の計測方法の一つとして、先ず、金属部
材の加振テストを行い、しかる後、モダール解析装置に
おいて、加振テストにより得られたデータの集まりを、
デジタル処理可能な周波数軸に対してデジタル的な値つ
まり点の集まりに変換した後、これらの離散的な点の集
まりが連続的な点の集まりとなるように“カーブフィッ
ドさせ、これにより得られた波形から振動方程式をたて
る。そして、この振動方程式を解いて振動減衰比を算出
(計測)するようにしている。この場合、モダール解析
装置のネックともいえる“力一ブフィット”の確認が人
為的になされ、精度の良い金属部材の振動減衰比が得ら
れる。
One way to measure the vibration damping ratio of such a cast iron metal member (disc plate) is to first conduct a vibration test on the metal member, and then use a modal analysis device to measure the vibration damping ratio obtained from the vibration test. A collection of data,
After converting the digitally processable frequency axis into a digital value, that is, a collection of points, we curve-fed these discrete points into a continuous collection of points. A vibration equation is created from the waveform.This vibration equation is then solved to calculate (measure) the vibration damping ratio.In this case, the "force-one fit" check, which is the bottleneck of modal analysis equipment, is artificially performed. As a result, a highly accurate vibration damping ratio of the metal member can be obtained.

また、別の方法として、加振テストにより金属部材を振
動させた後、この加振テストにより得られた振動波形の
収まる時間を、所定のサンプリング時間に対応させるこ
とによって、金属部材の振動減衰比を計測するようにし
たものもある。この場合、金属部材の振動減衰比が計測
工数の少ない方法により得られる。
Another method is to make the vibration damping ratio of the metal member by vibrating the metal member by an excitation test and then making the time when the vibration waveform obtained by the excitation test settles correspond to a predetermined sampling time. There are also some that measure . In this case, the vibration damping ratio of the metal member can be obtained by a method that requires less measurement steps.

(発明が解決しようとする課題) ところが、モダール解析装置により振動減衰比を計測す
る方法では、モダール解析装置により行われるデータの
処理および演算などの複雑な計測行程に加え、“カーブ
フィット“させた波形を確認する人為的な計測行程が必
要となり、金属部材の振動減衰比を計測する計測工数が
多くなるという問題がある。また、データの処理および
演算などの複雑な計測行程を行うモダール解析装置が必
要であることから、モダール解析装置を設けるに当たっ
て設備コストが高くなるという問題もある。
(Problem to be solved by the invention) However, in the method of measuring vibration damping ratio using a modal analysis device, in addition to the complicated measurement process such as data processing and calculation performed by the modal analysis device, it requires “curve fitting”. This requires an artificial measurement process to check the waveform, and there is a problem in that the number of measurement steps required to measure the vibration damping ratio of the metal member increases. Furthermore, since a modal analysis device that performs complicated measurement processes such as data processing and calculation is required, there is also the problem that the equipment cost increases when providing a modal analysis device.

また一方、振動波形により振動減衰比を計測する方法で
は、所定のサンプリング時間内に振動波形が収まらない
“リーケージ”が発生する恐れがある。これにより、“
リーケージ”が発生しているにも拘らず振動波形が恰も
収まったように判断されて、金属部材の振動減衰比の計
測精度にバラツキが生じるという問題がある。
On the other hand, in the method of measuring the vibration damping ratio using a vibration waveform, there is a risk of "leakage" in which the vibration waveform does not settle within a predetermined sampling time. This allows “
There is a problem in that the vibration waveform is determined to have subsided even though "leakage" has occurred, resulting in variations in the measurement accuracy of the vibration damping ratio of the metal member.

本発明は、鋳鉄製金属部材の場合、固有振動数と振動減
衰比との間に綿密な相関関係があることに着目してなさ
れたものであり、固有振動数の測定値に基づいて振動減
衰比を精度良く且つ少ない工数でもって計測することを
目的としている。
The present invention was made based on the fact that in the case of cast iron metal members, there is a close correlation between the natural frequency and the vibration damping ratio, and vibration damping is performed based on the measured value of the natural frequency. The purpose is to measure the ratio with high precision and with a small number of man-hours.

(課題を解決するための手段) 上記目的を達成するため、本発明の解決手段は、鋳鉄製
の金属部材の振動減衰比計測方法として、鋳鉄製金属部
材を加振し、その固有振動数を求めた後、この固有振動
数に基づいて、固有振動数と振動減衰比との相関関係か
ら振動減衰比を計測する構戊としたものである。
(Means for Solving the Problem) In order to achieve the above object, the solving means of the present invention is a method for measuring the vibration damping ratio of a cast iron metal member, in which the cast iron metal member is vibrated and its natural frequency is measured. After obtaining the natural frequency, the vibration damping ratio is measured based on the correlation between the natural frequency and the vibration damping ratio.

(作用) 上記の構戊により、本発明では、振動減衰比の計測にあ
たり、その鋳鉄製金属部刊の固有振動数と振動減衰比と
の相関関係さえ用意すれば、加振テストなどの簡易な方
法によって固有振動数を計測することで振動減衰比が得
られるので、モーダル解析装置による計測方法または振
動波形による計測方法などの煩雑な方法を用いることな
く振動減衰比が計測工数を少なくして計測される。その
上、上記の如くモダール解析装置によるデータの処理お
よび演算などの複雑な計測行程が不要となり、モダール
解析装置の廃止に伴って設備コストを低減することがで
きる。
(Function) With the above structure, in the present invention, when measuring the vibration damping ratio, as long as the correlation between the natural frequency of the cast iron metal department and the vibration damping ratio is prepared, simple vibration tests etc. can be performed. Since the vibration damping ratio can be obtained by measuring the natural frequency using this method, the vibration damping ratio can be measured with less measurement man-hours without using complicated methods such as the measurement method using a modal analysis device or the measurement method using vibration waveforms. be done. Furthermore, as described above, complicated measurement processes such as data processing and calculation by the modal analysis device are no longer necessary, and equipment costs can be reduced as the modal analysis device is discontinued.

また、上記の如く鋳鉄製金属部材の固有振動数と振動減
衰比との間に綿密な相関関係が存在していることから、
振動減衰比が精度良く得られることになる。しかも、上
述した従来の振動波形により振動減衰比を計測する方法
のように所定のサンプリング時間内に振動波形が収まら
ない“リーケージ“が発生することがないので、金属部
材の振動減衰比の計測精度にバラツキが生じることがな
く、精度の良い振動減衰比を得ることができる。
In addition, since there is a close correlation between the natural frequency and vibration damping ratio of cast iron metal members as mentioned above,
The vibration damping ratio can be obtained with high accuracy. Moreover, unlike the conventional method of measuring the vibration damping ratio using vibration waveforms mentioned above, "leakage" in which the vibration waveform does not settle within a predetermined sampling time does not occur, so the measurement accuracy of the vibration damping ratio of metal members is accurate. It is possible to obtain a highly accurate vibration damping ratio without causing any variation.

(尖施例) 以下、本発明の実施例を図面に基づいて説明する。(Tip example) Embodiments of the present invention will be described below based on the drawings.

5 第1図および第2図は本発明の一実施例に係る振動減衰
比計測方法を用いた鋳鉄製金属部材の計測行程を示す。
5. FIGS. 1 and 2 show a measurement process for a cast iron metal member using a vibration damping ratio measuring method according to an embodiment of the present invention.

これらの図に示すように、鋳鉄製金属部材として用いた
ブレーキ装置のディスクプレート1の振動減衰比を計測
する場合、先ず始めに、ディスクプレート1の加振面1
aに加速度ピックアップ2を取付け、フォースゲージ3
を取付けたインバクトハンマ4(加振器)によりデイス
クプレート1の加振面1aに入力を加えて加振テストを
行う(S1)。
As shown in these figures, when measuring the vibration damping ratio of the disc plate 1 of a brake device used as a cast iron metal member, first, the excitation surface 1 of the disc plate 1 is measured.
Attach acceleration pickup 2 to a and force gauge 3
A vibration test is performed by applying an input to the vibration surface 1a of the disk plate 1 using the impact hammer 4 (vibrator) to which the impact hammer 4 is attached (S1).

そして、ディスクプレート1の加振面1aへの人力時に
おいて、フォースゲージ3(インパクトハンマ4)によ
るディスクプレート1の加振面1aに入力された力F(
電圧)と、加速度ピツクアップ2から発生する,ディス
クプレート1の加振面1aに対するインバクトハンマ4
の人力加速度aに比例する出力(電圧)とがそれぞれア
ンプ5,5により増幅された後、力Fに対する入力加速
度aの応答性を振動伝達関数a / Fとしてilll
l定する。
Then, when the human force is applied to the excitation surface 1a of the disc plate 1, the force F(
voltage) and the impact hammer 4 generated from the acceleration pickup 2 against the excitation surface 1a of the disk plate 1.
After the output (voltage) proportional to the human acceleration a is amplified by the amplifiers 5 and 5, the response of the input acceleration a to the force F is expressed as the vibration transfer function a/F.
Determine.

し、この振動伝達関数a / Fを周波数分析装置66 に人力する(S2)。Then, this vibration transfer function a/F is measured by a frequency analyzer 66. (S2).

次に、振動伝達関数a / Fを周波数分析装置6に入
力し、該周波数分析装置6によりこの振動伝達関数a 
/ Fからディスクプレート1の周波数を分析すること
によって、その周波数のピークとなる固有振動数fnを
計測する(S3)。
Next, the vibration transfer function a/F is input into the frequency analyzer 6, and the frequency analyzer 6 calculates the vibration transfer function a.
By analyzing the frequency of the disk plate 1 from /F, the natural frequency fn that is the peak of that frequency is measured (S3).

この際、第3図に示すように、対象周波数1〜1. 0
 k H zの範囲内において、上述した従来のモダー
ル解析装置により得られた固有振動数fn’と、基準と
なるディスクプレート1の固有振動数fn(MP) ’
との比f n’/ f n(MP)’を横軸に、ディス
クプレート1の各共振の振動減衰比ζの逆数1/ζの平
均値(1/n) ・Σ・1/ζiを縦軸にそれぞれとり
、上記のモダール解析装置により得られた精度の良いデ
ィスクプレートの固有振動数の比fn“/ f n(M
P) ’に対する振動減衰比の逆数の平均値(1/n)
  ・Σ・1/ζ1の特性を破線で示すと、この固有振
動数の比f n’/ f 1(Hp) ’と、振動減衰
比の逆数の平均値(1/n)  ・Σ・1/ζiとの間
には、綿密な相関関係が存在している。
At this time, as shown in FIG. 3, target frequencies 1 to 1. 0
Within the range of kHz, the natural frequency fn' obtained by the conventional modal analysis device described above and the natural frequency fn (MP) of the reference disc plate 1.
The horizontal axis is the ratio f n' / f n (MP)', and the average value (1/n) of the reciprocal 1/ζ of the vibration damping ratio ζ of each resonance of the disk plate 1 (1/n) ・Σ・1/ζi is the vertical axis The ratio of the natural frequencies of the disc plate with good precision obtained by the above modal analysis device fn"/fn(M
P) Average value of the reciprocal of the vibration damping ratio for '(1/n)
・If the characteristic of Σ・1/ζ1 is shown by a broken line, the ratio of this natural frequency f n'/ f 1 (Hp) ' and the average value of the reciprocal of the vibration damping ratio (1/n) ・Σ・1/ There is a close correlation between ζi and ζi.

そして、このディスクプレート1の固有振動数比f n
’/ f n(MP) ’と振動減衰比の逆数の平均値
(1/n)  ・Σ・1/ζiとの間の綿密な相関関係
に基づいて、上記周波数分析装置6により得られた固有
振動数fnよりディスクプレート1の平均振動減衰比ζ
を計測する(S4)。
Then, the natural frequency ratio f n of this disk plate 1
Based on the careful correlation between '/f n (MP) ' and the average value of the reciprocal of the vibration damping ratio (1/n) ・Σ・1/ζi, the eigenvalue obtained by the frequency analyzer 6 is From the frequency fn, the average vibration damping ratio ζ of the disk plate 1
is measured (S4).

この場合、鋳鉄製金属部材の振動減衰比は、その大きさ
および重量などにより予め決まるものであり、モーダル
解析装置などにより得られた1つの桔度の良いデータ特
性{固有振動数の比f n’/fn(MP}’に対する
振動減衰比の逆数の平均値(1/n)  ・Σ・1/ζ
i}に基づいて他の鋳鉄製金属部材の振動減衰比が固有
振動数から計測されるようにしている。
In this case, the vibration damping ratio of the cast iron metal member is determined in advance by its size, weight, etc., and is based on the data characteristic of one good degree obtained by a modal analysis device etc. {Ratio of natural frequencies f n Average value of the reciprocal of the vibration damping ratio for '/fn(MP}' (1/n) ・Σ・1/ζ
i}, the vibration damping ratio of other cast iron metal members is measured from the natural frequency.

このように、振動減衰比の計測にあたり、第3図に示す
ような鋳鉄製金属部材の固有振動数の比f n’/ f
 n(MP) ’と振動減衰比の逆数の平均値{1/ 
n )  ・Σ・1/ζ1}との相関関係さえ用意すれ
ば、加振テストなどの簡易な方法によって固有振動数f
nを計測することで振動減衰比ζが得られるので、モー
ダル解析装置による計i’ll1方法または振動波形に
よる計測方法などの煩雑な方法を用いることなく振動減
衰比ζが計測されて計測工数の削減化を図ることができ
る。その上、上記の如くモダール解析装置によるデータ
の処理および演算などの複雑な計測行程が不要となり、
モダール解析装置の廃止に伴って設備コストのσ(減化
を図ることができる。
In this way, when measuring the vibration damping ratio, the ratio of natural frequencies f n'/f of a cast iron metal member as shown in Fig. 3 is used.
n(MP)' and the average value of the reciprocal of the vibration damping ratio {1/
n) ・Σ・1/ζ1}, the natural frequency f can be determined by a simple method such as an excitation test.
Since the vibration damping ratio ζ can be obtained by measuring n, the vibration damping ratio ζ can be measured without using complicated methods such as the measurement method using a modal analysis device or the measurement method using vibration waveforms, thereby reducing the number of measurement man-hours. It is possible to reduce the amount. Furthermore, as mentioned above, the complicated measurement process such as data processing and calculation using the modal analysis device is no longer necessary.
With the abolition of modal analysis equipment, it is possible to reduce the equipment cost (σ).

また、上記の如くディスクプレ−1・1の固有振動数比
f n’/ f n(MP) ’と振動減衰比の逆数の
平均値( 1 / n ) ・Σ・1/ζiとの間に綿
密な相関関係が存在していることから、振動減衰比ζが
精度良く得られることになる。しかも、上述した従来の
振動波形により振動減衰比を計測する方法のように所定
のサンプリング時間内に振動波形が収まらない“リーケ
ージ“が発生することがないので、ディスクプレート1
の振動減衰比の計測精度にバラツキが生じることがなく
、精度の良い振動減衰比ζを得ることができる。
In addition, as mentioned above, between the natural frequency ratio f n' / f n (MP) ' of the disc plate 1.1 and the average value of the reciprocal of the vibration damping ratio (1/n) ・Σ・1/ζ Since there is a close correlation, the vibration damping ratio ζ can be obtained with high accuracy. Moreover, unlike the conventional method of measuring the vibration damping ratio using the vibration waveform described above, "leakage" in which the vibration waveform does not settle within a predetermined sampling time does not occur, so the disk plate
There is no variation in the measurement accuracy of the vibration damping ratio, and a highly accurate vibration damping ratio ζ can be obtained.

(発明の効果) 9 以上の如く、本発明における鋳鉄製の金属部材の振動減
衰比計測方法によれば、鋳鉄製金属部材の振動減衰比が
、その鋳鉄製金属部材の加振テストなどにより得られ且
つ振動減衰比との間に綿密な相関関係のある固H振動数
に話づいて容易に計測されるので、複雑な計測行扛や人
為的な計測行程などを不要にしつつ振動減衰比白身を計
δIIILていたものに比して計+1111工数の低減
化を図ることができる上、データの処理および演算など
の複雑な計測行程が必要なモダール解析装置が廃止され
て設備コストの低減化を図ることができる。しかも、鋳
鉄製金属部材の振動減衰比と振動減衰比との間に綿密な
相関関係が存在していることから、金属部材の振動減衰
比の計測精度にバラッキが生じることなく精度の良い振
動減衰比を得ることができる。
(Effects of the Invention) 9 As described above, according to the method for measuring the vibration damping ratio of a cast iron metal member according to the present invention, the vibration damping ratio of the cast iron metal member can be determined by an excitation test of the cast iron metal member. Since it is easily measured by talking about the solid H frequency, which has a close correlation with the vibration damping ratio, the vibration damping ratio can be easily measured while eliminating the need for complicated or artificial measurement processes. It is possible to reduce the total number of man-hours by +1111 compared to the previous model that required a total of δIIIL, and the modal analysis equipment that requires complex measurement processes such as data processing and calculations is abolished, resulting in a reduction in equipment costs. can be achieved. Moreover, since there is a close correlation between the vibration damping ratio and the vibration damping ratio of cast iron metal parts, there is no variation in the measurement accuracy of the vibration damping ratio of metal parts, resulting in highly accurate vibration damping. You can get the ratio.

【図面の簡単な説明】[Brief explanation of drawings]

図向は本発明の実施例を示すもので、第1図はディスク
プレートの振動減衰比計測方法の工程図、第2図はディ
スクプレートの固有振動数の計測に10 係る説明図、第3図はディスクプレートの固も一振動数
の比に対する振動減衰比の逆数の平均ffi’iの特性
を示す特性図である。 1・・ディスクプレート(鋳鉄製金属部祠)fn・・・
固有振動数 ζ・・・振動減衰比 特 許 出 願 人     マツダ株式会社代   
 理    人       前 田   弘ほか2名 11 第3図
The drawings show examples of the present invention; Fig. 1 is a process diagram of a method for measuring the vibration damping ratio of a disc plate, Fig. 2 is an explanatory diagram for measuring the natural frequency of a disc plate, and Fig. 3 is an explanatory diagram for measuring the natural frequency of a disc plate. FIG. 2 is a characteristic diagram showing the characteristics of the average ffi'i of the reciprocal of the vibration damping ratio to the ratio of the solid vibration frequency of the disk plate. 1... Disc plate (cast iron metal part shrine) fn...
Natural frequency ζ...Vibration damping ratio patent Applicant: Mazda Motor Corporation
Hiroshi Maeda and two others11 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)鋳鉄製の金属部材の振動減衰比を計測する方法で
あって、鋳鉄製金属部材を加振し、その固有振動数を求
めた後、この固有振動数に基づいて、固有振動数と振動
減衰比との相関関係から振動減衰比を計測することを特
徴とする金属部材の振動減衰比計測方法。
(1) A method of measuring the vibration damping ratio of a cast iron metal member, in which the cast iron metal member is vibrated, its natural frequency is determined, and then the natural frequency is determined based on this natural frequency. A method for measuring a vibration damping ratio of a metal member, the method comprising measuring the vibration damping ratio from a correlation with the vibration damping ratio.
JP1232572A 1989-09-06 1989-09-06 Measuring method for vibration damping ratio of metallic member Pending JPH0394155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232572A JPH0394155A (en) 1989-09-06 1989-09-06 Measuring method for vibration damping ratio of metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232572A JPH0394155A (en) 1989-09-06 1989-09-06 Measuring method for vibration damping ratio of metallic member

Publications (1)

Publication Number Publication Date
JPH0394155A true JPH0394155A (en) 1991-04-18

Family

ID=16941448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232572A Pending JPH0394155A (en) 1989-09-06 1989-09-06 Measuring method for vibration damping ratio of metallic member

Country Status (1)

Country Link
JP (1) JPH0394155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483265B1 (en) * 2001-12-21 2005-04-15 현대모비스 주식회사 Apparatus for measuring natural frequency of brake drum
EP1619404A1 (en) * 2004-07-22 2006-01-25 ROBERT BOSCH GmbH Design method for low noise level brake system and system obtained by such a method
WO2016060032A1 (en) * 2014-10-17 2016-04-21 株式会社ブリヂストン Vibration damping device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483265B1 (en) * 2001-12-21 2005-04-15 현대모비스 주식회사 Apparatus for measuring natural frequency of brake drum
EP1619404A1 (en) * 2004-07-22 2006-01-25 ROBERT BOSCH GmbH Design method for low noise level brake system and system obtained by such a method
FR2873419A1 (en) * 2004-07-22 2006-01-27 Bosch Gmbh Robert METHOD FOR DESIGNING A BRAKE SYSTEM WITH A LOW NOISE LEVEL AND SYSTEM OBTAINED BY SUCH A METHOD
WO2016060032A1 (en) * 2014-10-17 2016-04-21 株式会社ブリヂストン Vibration damping device
JPWO2016060032A1 (en) * 2014-10-17 2017-06-08 株式会社ブリヂストン Vibration isolator
CN107076257A (en) * 2014-10-17 2017-08-18 株式会社普利司通 Isolation mounting

Similar Documents

Publication Publication Date Title
US20150062330A1 (en) Method of measuring damping using optical imaging technique
JP3145625B2 (en) Piping system fatigue evaluation device
JPH0394155A (en) Measuring method for vibration damping ratio of metallic member
JPH07113721A (en) Vibration testing device, vibration testing method, and vibration testing jig for structure
JPS6122251B2 (en)
JPH03295437A (en) Vehicle vibration testing method
Meier et al. Application of total loss factor measurements for the determination of sound insulation
CN109579976A (en) A kind of piezoelectric acceleration transducer sensitivity coefficient method of calibration
JP3935645B2 (en) Vehicle weight measuring device and vehicle weight measuring method
Lee et al. Experimental cross verification of damping in three metals: The internal damping of aluminum, steel and brass in longitudinal vibration was measured using five techniques and theories to verify the easier technique
JP3055788B2 (en) Vibration characteristic analysis method and device
Padois et al. Comparison of the reception plate method and the inverse force method for assessing the power of a dummy vibratory source
JP2829984B2 (en) Ultra micro hardness tester
JP2006084371A (en) Loss factor measuring device
Babak et al. Optimization of signal features under object's dynamic test
JPH08297069A (en) Evaluation apparatus for bench vibrating stress
JP3843756B2 (en) Degradation diagnosis method for conveyor frames
Smith et al. Verification of numerical acoustic radiation predictions
RU2152603C1 (en) Method for determining time constants of mechanical and electromechanical vibrating systems with measuring circuit incorporating integrating amplifier
Havranek Visualization of sound fields on vibrating steel beam using linear microphone array
RU2085890C1 (en) Method of dynamic test of deformed members
JP2002228540A (en) Dynamic characteristic evaluation method of building
RU2639044C1 (en) Vibroacoustic tests bench of samples and models
JPH10339685A (en) Vibration tester
JP2002228541A (en) Vibration table and its control device and control method