JP2829984B2 - Ultra micro hardness tester - Google Patents
Ultra micro hardness testerInfo
- Publication number
- JP2829984B2 JP2829984B2 JP63248405A JP24840588A JP2829984B2 JP 2829984 B2 JP2829984 B2 JP 2829984B2 JP 63248405 A JP63248405 A JP 63248405A JP 24840588 A JP24840588 A JP 24840588A JP 2829984 B2 JP2829984 B2 JP 2829984B2
- Authority
- JP
- Japan
- Prior art keywords
- indenter
- hardness
- load
- sample
- calculating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、圧子に試験荷重を負荷し、その時の圧子の
試料表面への押込深さから試料の硬さを求める超微小硬
度計に関する。Description: TECHNICAL FIELD The present invention relates to an ultra-micro hardness tester in which a test load is applied to an indenter and the hardness of the sample is determined from the depth of the indenter pressed into the sample surface at that time. .
[従来の技術] 従来超微小硬度計によって試料の硬度を求めるには、
あらかじめ設定されている荷重を圧子に負荷して試料表
面に押し込み、圧子が試料表面と接触してからの変位を
押込深さとして試料硬度を算出している。[Prior art] Conventionally, to obtain the hardness of a sample using an ultra-micro hardness tester,
A predetermined load is applied to the indenter and pressed into the sample surface, and the sample hardness is calculated using the displacement after the indenter contacts the sample surface as the indentation depth.
[発明が解決しようとする課題] 上記した従来の超微小硬度計による硬度測定は、第3
図に示す押込深さと試験荷重の特性曲線を求め、特性曲
線における特定の2点PO,PEから硬度を算出している
(点POは圧子が試料表面に接触した時点を示し、点PEは
試験荷重が設定荷重に到達した時点を示す。)。[Problem to be Solved by the Invention] Hardness measurement by the above-mentioned conventional ultra-micro hardness tester is the third method.
Seeking indentation depth and the characteristic curve of the load shown in the figure, two specific points P O, and calculates the hardness from P E (the point P O in the characteristic curve indicates the time when the indenter contacts the sample surface, the point P E represents the time at which the test load reaches the set load.).
しかしながら、これらPO,PEの2点から硬度を算出す
る場合、POでは接触検出のバラツキが直接硬度値算出に
影響を与えるとともに、PEでは試験荷重を保持させてい
るものの、この時にバラツキが生じると接触検出が正確
であっても硬度値算出へ直接影響を与えることになる。However, when calculating the hardness from these two points, P O and P E , the variation in the contact detection directly affects the hardness value calculation in P O and the test load is held in P E at this time. If the variation occurs, even if the contact detection is accurate, it directly affects the hardness value calculation.
このように上記した2点で硬度の算出を行なう場合、
振動、音など外部の影響によってデータの乱れが生じた
場合に非常に大きな誤差が生じることになる。そのた
め、従来の超微小硬度計ではデータのバラツキによる影
響が大きく再現性に乏しい測定結果になるという問題点
があった。When calculating the hardness at the two points as described above,
When data is disturbed by external influences such as vibration and sound, a very large error occurs. For this reason, the conventional ultra-micro hardness tester has a problem in that the measurement results are largely affected by the variation in data and have poor reproducibility.
そこで本発明は、振動等の外部からの影響が生じた場
合でも、その影響を極力受けないようにし、データのバ
ラツキを小さくして再現性の高い硬度値を得ることがで
きる超微小硬度計を提供することを目的とする。Therefore, the present invention provides an ultra-micro hardness meter capable of minimizing the influence of external influences such as vibrations and minimizing the dispersion of data to obtain a highly reproducible hardness value. The purpose is to provide.
[課題を解決するための手段] 本発明は上記課題を解決するために、次のような構成
を採用した。[Means for Solving the Problems] The present invention employs the following configuration in order to solve the above problems.
すなわち、本発明にかかる超微小硬度計は、圧子に加
えられる試験荷重と、該試験荷重によって試料表面に押
込まれる圧子の押込み深さとから試料の硬度を求める超
微小硬度計であって、圧子に任意に試験荷重Li(i=1
〜n)を加えることができる可変形負荷手段と、該可変
形負荷手段によって試料表面に押込まれる圧子の変化li
(i=1〜n)を検出する圧子変位量検出手段と、前記
可変形負荷手段によって圧子に加えられる荷重のうち任
意の測定点における荷重Liと、これら各荷重に対応して
前記圧子変位量検出手段によって検出される圧子の変化
liとから、Dを試料の硬度とし、Kを圧子による定数と
するとき、 の計算式に基づいて逐次ΣLi,Σli,Σli2等を求め、l2
の係数aを最小自乗法により算出して試料の硬度Dを演
算する演算手段とを備えてなることを特徴とする。That is, the ultra-micro hardness tester according to the present invention is an ultra-micro hardness tester that obtains the hardness of a sample from a test load applied to an indenter and the indentation depth of an indenter pressed into the sample surface by the test load. , The test load Li (i = 1)
To n), and a change li of the indenter pressed on the sample surface by the variable load means.
(I = 1 to n), an indenter displacement amount detecting means, a load Li at an arbitrary measurement point among loads applied to the indenter by the variable load means, and the indenter displacement amount corresponding to each of these loads. Change of indenter detected by detection means
From li, when D is the hardness of the sample and K is a constant by the indenter, Calculated formulas sequentially based on ΣLi, Σli, the Shigumali 2, etc., l 2
And a calculating means for calculating the hardness D of the sample by calculating the coefficient a by the least square method.
[作用] 一般に試料の硬度Dは負荷重Lにおける圧子の押込み
深さlに対して として表されるが、実際には負荷系の移動に伴ってある
弾性力が加わり、 となる。[Operation] In general, the hardness D of the sample is determined by the indentation depth l of the indenter under the load L. However, in reality, a certain elastic force is added with the movement of the load system, Becomes
そこで、試験開始後の任意の測定点における荷重Li
(i=1〜n)と圧子の変位li(i=1〜n)のデータ
からΣLi,Σli,Σli2等が逐次算出され、演算手段によ
りl2の係数D/kを最小自乗法に基づいて演算して硬度D
が求められるので、データ収集時に振動等の外部影響が
生じてもその影響が非常に小さく、再現性のよい測定結
果を得ることができる。Therefore, the load Li at any measurement point after the start of the test
ILi, Σli, Σli 2 etc. are sequentially calculated from the data of (i = 1 to n) and the displacement li of the indenter (i = 1 to n), and the coefficient D / k of l 2 is calculated by the calculating means based on the least square method. To calculate the hardness D
Is required, even if an external influence such as vibration occurs at the time of data collection, the influence is very small, and a measurement result with good reproducibility can be obtained.
[実施例] 第1図は本発明の実施例である超微小硬度計の構成を
電子天秤タイプの負荷装置1と圧子8とを中心として模
式的に示す図で、中央部をナイフエッジ5により支持し
た天秤2の一端には角錐状の圧子8が、他端にはソレノ
イド3と協働して電磁力を発生する鉄心7が取り付けら
れている。圧子8の上部には差動トランス式の変位検出
器9が設けられている。Embodiment FIG. 1 is a view schematically showing the configuration of an ultra-micro hardness tester according to an embodiment of the present invention, centering on an electronic balance type load device 1 and an indenter 8. A pyramid-shaped indenter 8 is attached to one end of the balance 2 supported by the above, and an iron core 7 that generates an electromagnetic force in cooperation with the solenoid 3 is attached to the other end. Above the indenter 8, a differential transformer type displacement detector 9 is provided.
負荷装置1は、負荷電流供給装置13からソレノイド3
へ供給される直流電流により、電磁力を増減させ、圧子
8を介して試料台に載置された試料6への荷重を増加、
減少させることができる。直流電流はCPU15によって制
御されるので負荷電流供給装置13によって供給されてい
るので、負荷装置1で発生させる荷重はリアルタイムで
知ることができる。また、圧子に荷重をかけている間、
圧子によって押し付けられた試料6表面での変位は、変
位検出器9によって検出される。変位検出器9からの出
力信号はアンプ11で増幅され、A/D変換器12でA/D変換さ
れてCPU15へ送られ、ある荷重下での変位もリアルタイ
ムで計測される。これら荷重、変位データはRAM16で記
憶されるとともに、CPU15で後述のように演算処理され
て試料の硬度が求められる。また、I/O装置19を介して
第2図に示す押込深さ−荷重曲線がXYプロッタ20によっ
て描かれる。The load device 1 includes a solenoid 3 from the load current supply device 13.
The electromagnetic force is increased or decreased by the DC current supplied to the sample stage, and the load on the sample 6 placed on the sample stage via the indenter 8 is increased.
Can be reduced. Since the DC current is controlled by the CPU 15 and is supplied by the load current supply device 13, the load generated by the load device 1 can be known in real time. Also, while applying a load to the indenter,
The displacement on the surface of the sample 6 pressed by the indenter is detected by a displacement detector 9. The output signal from the displacement detector 9 is amplified by the amplifier 11, A / D converted by the A / D converter 12, and sent to the CPU 15, and the displacement under a certain load is also measured in real time. These load and displacement data are stored in the RAM 16 and are processed by the CPU 15 as described later to determine the hardness of the sample. 2 is drawn by the XY plotter 20 via the I / O device 19 as shown in FIG.
CPU15は、任意の測定点Pi(li,Li)(i=1〜n)に
おけるデータよりΣLi,Σli,Σli2等を算出し、深さ−
荷重曲線を2次式近似してその2次項の係数から試料の
硬度Dの算出を行なう。すなわち、一般に硬度Dは負荷
量Lにおける圧子の押込み深さlに対して として表わされる。実際には負荷系の移動に伴ってある
弾性力が加わるため、 となる。そこで、第2図における測定点P1,P2,‥‥Pnの
データよりΣLi,Σli,Σli2等を逐次算出し、l2の係数
a(a=D/k)を最小自乗法に基づいて算出し、D=ka
より硬度値Dを求めるのである。CPU15 calculates arbitrary measurement points Pi (li, Li) (i = 1~n) ΣLi than the data in, Shigumali, the Shigumali 2, etc., depth -
The load curve is approximated by a quadratic expression, and the hardness D of the sample is calculated from the coefficient of the quadratic term. That is, generally, the hardness D is equal to the indentation depth l of the indenter at the load L. Is represented as Actually, a certain elastic force is added with the movement of the load system, Becomes Therefore, ΣLi, Σli, Σli 2, etc. are sequentially calculated from the data of the measurement points P 1 , P 2 , ‥‥ P n in FIG. 2 , and the coefficient a (a = D / k) of l 2 is calculated by the least square method. D = ka
The hardness value D is determined more.
このように上記実施例装置によれば、負荷の途中段階
をもすべて同レベルにとらえることができる超微小硬度
計の特長を生かしてバラツキの小さい平均的な硬度値の
算出を行なうことができる。また、試験の開始より終了
まで全データをとる必要がないので、測定範囲中央の60
〜80%のデータで硬度値を算出することも可能となる。
また、試料表面の形状による影響も小さくなる。As described above, according to the above-described embodiment apparatus, it is possible to calculate an average hardness value with a small variation by taking advantage of the feature of the ultra-micro hardness tester that can capture all the intermediate stages of the load at the same level. . In addition, since it is not necessary to collect all data from the start to the end of the test, the center of the
It is also possible to calculate a hardness value with data of ~ 80%.
Further, the influence of the shape of the sample surface is reduced.
[発明の効果] 上記説明から明らかなように、本発明にかかる超微小
硬度計によれば、振動等の外部の影響による測定誤差が
小さくなり、バラツキの小さい平均的な硬度値の算出を
再現性よく行なうことができるようになった。[Effects of the Invention] As is clear from the above description, according to the ultra-micro hardness tester of the present invention, measurement errors due to external influences such as vibrations are reduced, and calculation of an average hardness value with small variation can be performed. It can be performed with good reproducibility.
第1図は本発明の実施例である超微小硬度計の要部の構
成を示す模式図、第2図は実施例における深さ−荷重曲
線、第3図は従来の深さ−荷重曲線を示す図である。 1……負荷装置、6……試料 8……圧子、9……変位検出器 15……CPU(硬度値演算手段)FIG. 1 is a schematic view showing a configuration of a main part of an ultra-micro hardness tester according to an embodiment of the present invention, FIG. 2 is a depth-load curve in the embodiment, and FIG. 3 is a conventional depth-load curve. FIG. 1 ... load device, 6 ... sample 8 ... indenter, 9 ... displacement detector 15 ... CPU (hardness value calculation means)
Claims (1)
によって試料表面に押込まれる圧子の押込み深さとから
試料の硬度を求める超微小硬度計であって、圧子に任意
に試験荷重Li(i=1〜n)を加えることができる可変
形負荷手段と、該可変形負荷手段によって試料表面に押
込まれる圧子の変化li(i=1〜n)を検出する圧子変
位量検出手段と、前記可変形負荷手段によって圧子に加
えられる荷重のうち任意の測定点における荷重Liと、こ
れら各荷重に対応して前記圧子変位量検出手段によって
検出される圧子の変位liとから、Dを試料の硬度とし、
Kを圧子による定数とするとき、 の計算式に基づいて逐次ΣLi,Σli,Σli2等を求め、l2
の係数aを最小自乗法によりlの全域または特定領域で
算出して試料の硬度Dを演算する演算手段とを備えてな
ることを特徴とする超微小硬度計。An ultra-micro hardness tester for determining the hardness of a sample from a test load applied to an indenter and a depth of indentation of the indenter pressed into the surface of the sample by the test load. (I = 1 to n), and indenter displacement detecting means for detecting a change li (i = 1 to n) of an indenter pressed onto the sample surface by the variable load means. From the load Li at an arbitrary measurement point among the loads applied to the indenter by the deformable loading means, and the displacement li of the indenter detected by the indenter displacement amount detecting means corresponding to each of these loads, D is sampled. And the hardness of
When K is a constant by an indenter, Calculated formulas sequentially based on ΣLi, Σli, the Shigumali 2, etc., l 2
And a calculating means for calculating the hardness D of the sample by calculating the coefficient a of the whole area or the specific area of l by the least square method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63248405A JP2829984B2 (en) | 1988-09-30 | 1988-09-30 | Ultra micro hardness tester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63248405A JP2829984B2 (en) | 1988-09-30 | 1988-09-30 | Ultra micro hardness tester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0295239A JPH0295239A (en) | 1990-04-06 |
JP2829984B2 true JP2829984B2 (en) | 1998-12-02 |
Family
ID=17177623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63248405A Expired - Fee Related JP2829984B2 (en) | 1988-09-30 | 1988-09-30 | Ultra micro hardness tester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2829984B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6945097B2 (en) | 2002-04-10 | 2005-09-20 | Mts Systems Corporation | Characteristic strain and fracture resistance for scratch independently of indenter geometry |
JP4902371B2 (en) * | 2007-01-26 | 2012-03-21 | 株式会社ミツトヨ | Hardness testing machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2681913B2 (en) * | 1986-09-27 | 1997-11-26 | 株式会社島津製作所 | Indentation hardness test method and device |
-
1988
- 1988-09-30 JP JP63248405A patent/JP2829984B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0295239A (en) | 1990-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5357786A (en) | Device for determining mechanical properties of materials | |
CN101784862B (en) | Method for measuring surface profile of sample and apparatus for measuring surface profile of sample | |
US3805598A (en) | Indenting rheometer | |
US5355715A (en) | Strain transducer calibration device | |
CN108956006B (en) | Quick verification and calibration system for small-force measuring instrument | |
CA2022847A1 (en) | Method and apparatus for determining anaerobic capacity | |
JP2829984B2 (en) | Ultra micro hardness tester | |
CN211013057U (en) | Detection equipment for proportional servo valve | |
US6430520B1 (en) | Dynamic friction measurement apparatus and method | |
JPH0678974B2 (en) | Young's modulus automatic measuring device | |
CN111579748A (en) | Metal material performance parameter measuring device and method | |
JP2681913B2 (en) | Indentation hardness test method and device | |
US4464937A (en) | Extensometer readout circuit | |
CN105784303A (en) | Aircraft product control envelope determining method based on vibration testing equipment capability | |
JPH0520691B2 (en) | ||
JPH11230875A (en) | Micro spring constant measuring device and measuring method therefor | |
GB2026168A (en) | Determining tensile yield point | |
WO1983001836A1 (en) | Method for measuring fatigue strength of ferromagnetic materials non-destructively | |
Payne et al. | Dynamometer for tensile testing of high polymers | |
JP2542190B2 (en) | Viscoelasticity measuring device | |
RU10260U1 (en) | BEND MEASUREMENT DEVICE | |
JPH0617064Y2 (en) | Displacement calibration mechanism of hardness tester | |
JPH0532752Y2 (en) | ||
JPH0625723B2 (en) | Hardness tester | |
JPH044996Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |