JPH0520691B2 - - Google Patents

Info

Publication number
JPH0520691B2
JPH0520691B2 JP13986289A JP13986289A JPH0520691B2 JP H0520691 B2 JPH0520691 B2 JP H0520691B2 JP 13986289 A JP13986289 A JP 13986289A JP 13986289 A JP13986289 A JP 13986289A JP H0520691 B2 JPH0520691 B2 JP H0520691B2
Authority
JP
Japan
Prior art keywords
indenter
load
hardness
displacement
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13986289A
Other languages
Japanese (ja)
Other versions
JPH034138A (en
Inventor
Yasunobu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13986289A priority Critical patent/JPH034138A/en
Publication of JPH034138A publication Critical patent/JPH034138A/en
Publication of JPH0520691B2 publication Critical patent/JPH0520691B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 〓産業上の利用分野〓 本発明は、圧子に試験荷重を負荷し、その時の
圧子の試料表面への押込み深さから試料の硬さを
求める硬度計に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hardness tester that applies a test load to an indenter and determines the hardness of the sample from the depth of indentation of the indenter into the sample surface.

〓従来の技術〓 圧子の押込み深さから硬度を求める硬度計で
は、あらかじめ設定されている荷重を圧子に負荷
して試料表面に押込み、圧子が試料表面と接触し
てからの変位を押込み深さとして試料硬度を算出
している。この場合、荷重による負荷系の機械的
たわみについては、再現性があるので、予備的測
定又は試験を行なつてこれらの変位/荷重に対す
る比例係数を求めておき、この係数を用いて硬度
値を補正している。
〓Conventional technology〓 In a hardness tester that calculates hardness from the indentation depth of an indenter, a preset load is applied to the indenter and the indenter is injected into the sample surface, and the displacement after the indenter contacts the sample surface is calculated as the indentation depth. The sample hardness is calculated as follows. In this case, since the mechanical deflection of the loading system due to the load is reproducible, preliminary measurements or tests are performed to determine the proportionality coefficient for these displacements/loads, and this coefficient is used to calculate the hardness value. It is being corrected.

〓発明が解決しようとする課題〓 しかしながら、実際の硬度測定では、試料自身
のたわみも生じており、特に超低荷重形の超微小
硬度計では、試料自身のたわみが問題となるが、
このたわみについては補正手段が講じられていな
いという問題点があつた。すなわち、試料のたわ
みについては、試料台への取付け状態によつて変
化するので、接着剤などを使用して取付けた場合
や、表面層が硬く、内部が軟質な試料の試験で
は、試料自身のたわみを補正しないと正確な硬度
が算出できないことになる。
〓Problem to be solved by the invention〓 However, in actual hardness measurement, the sample itself is deflected, and especially with ultra-low load type ultra-micro hardness meters, the deflection of the sample itself is a problem.
There was a problem in that no corrective measures were taken for this deflection. In other words, the deflection of the sample changes depending on how it is attached to the sample stand, so when it is attached using adhesive or when testing a sample with a hard surface layer and a soft interior, the deflection of the sample itself may change. Unless the deflection is corrected, accurate hardness cannot be calculated.

〓課題を解決するための手段〓 本発明では上記課題を解決するために、次のよ
うな構成を採用した。
<Means for Solving the Problems> In order to solve the above problems, the present invention employs the following configuration.

すなわち、本発明にかかる硬度計は、圧子と、
該圧子に試験荷重を負荷する負荷手段と、圧子の
変位を検出する圧子変位量検出手段とを備え、前
記負荷手段によつて圧子に加えられる荷重をP、
この荷重に対応して検出される圧子の変位をd、
真の押込み深さをd0、荷重負荷時の変位荷重比例
定数をK、圧子の形状によつて決定される定数を
〓、動的硬度をDH0とするとき、 DH0=〓P/d0 2 =P/(d−KP)2 の計算式に基づいて、前記比例定数Kを最小自乗
法により算出し、試料の動的硬度DH0を演算す
る演算手段が設けられていることを特徴としてい
る。
That is, the hardness meter according to the present invention includes an indenter,
The indenter is equipped with a loading means for applying a test load to the indenter, and an indenter displacement detection means for detecting displacement of the indenter, and the load applied to the indenter by the loading means is P,
The displacement of the indenter detected in response to this load is d,
When the true indentation depth is d 0 , the displacement load proportional constant when applying a load is K, the constant determined by the shape of the indenter is 〓, and the dynamic hardness is DH 0 , DH 0 =〓P/d 0 2 =P/(d-KP) 2 Based on the calculation formula, the proportionality constant K is calculated by the least squares method, and a calculation means is provided for calculating the dynamic hardness DH 0 of the sample. It is said that

〓作用〓 一般に試料の動的硬度DH0は負荷重Pにおけ
る圧子の真の押込み深さd0に対して、 DH0=〓P/d0 2(〓は圧子による定数)として
表わされるが、測定された圧子の押込み深さdに
含まれる機械的たわみ、試料のたわみ、試料を取
付ける際の接着樹脂層のたわみ等を補正するため
の変位荷重比例定数をKとすると、d0はd0=d−
KPとなる。
〓Effect〓 In general, the dynamic hardness DH 0 of the sample is expressed as DH 0 =〓P/d 0 2 (〓 is a constant due to the indenter) with respect to the true indentation depth d 0 of the indenter under the load P. If K is the displacement load proportionality constant for correcting the mechanical deflection included in the measured indentation depth d, the deflection of the sample, the deflection of the adhesive resin layer when attaching the sample, etc., then d 0 is d 0 =d-
Becomes KP.

そこで、式DH0=〓P/(d−KP)2を用い、
試験開始後の任意の測定点における荷重と圧子変
位のデータから最小自乗法によつて比例係数Kと
真の動的硬度DH0が求められる。
Therefore, using the formula DH 0 =〓P/(d-KP) 2 ,
The proportionality coefficient K and the true dynamic hardness DH 0 are determined by the least squares method from the load and indenter displacement data at arbitrary measurement points after the start of the test.

〓実施例〓 第1図は本発明の1実施例装置の構成を示す図
である。この硬度計は超微小硬度計として構成さ
れており、枠体20内の荷重装置1は、中央部を
ナイフエツジ3により支持された天秤2の一端に
圧子5が設けられ、他端には電磁コイル6と協動
して電磁力を発生する鉄心7が設けられた可変式
負荷装置として構成されている。圧子5は天秤2
に設けれた天秤棹8の先端に取り付けられ、圧子
5の上部には圧子5の変位量を検出する差動トラ
ンス式の変位検出器10が設けられている。
Embodiment FIG. 1 is a diagram showing the configuration of an apparatus according to an embodiment of the present invention. This hardness tester is constructed as an ultra-micro hardness tester, and a loading device 1 in a frame 20 is equipped with an indenter 5 at one end of a balance 2 whose central part is supported by a knife edge 3, and an electromagnetic at the other end. It is configured as a variable load device provided with an iron core 7 that generates electromagnetic force in cooperation with a coil 6. Indenter 5 is balance 2
A differential transformer type displacement detector 10 is attached to the tip of a balance rod 8 provided at the top of the indenter 5 and detects the amount of displacement of the indenter 5.

荷重装置1は、負荷電流供給装置16から供給
される負荷電流で生ずる電磁コイル6の電磁力に
よつて荷重を増減させるもので、試料台13上に
載置された試料14へ圧子を介して伝えられる荷
重を任意に増加し、減少、停止させることができ
る。したがつて、該天秤のバランスをくずして圧
子5を試料表面に押し込む際に供給される負荷電
流を計測することにより負荷時の荷重をリアルタ
イムで計測することができる。
The loading device 1 increases or decreases the load by the electromagnetic force of the electromagnetic coil 6 generated by the load current supplied from the load current supply device 16. The transmitted load can be increased, decreased, or stopped at will. Therefore, by unbalancing the balance and measuring the load current supplied when the indenter 5 is pushed into the sample surface, the load at the time of loading can be measured in real time.

荷重をかけている間、圧子5によつて押し付け
られた試料14表面での変位検出器10によつて
検出される。変位検出器によつて検出された変位
量、すなわち圧子5の移動量検出信号は、増幅器
15で増幅され、A/D変換器17を介して
CPU18へ送られる。このため、ある荷重下で
の変位もリアルタイムで計測される。これら荷
重、変位データはRAM20で記憶されるととも
に、CPU18で後述のように演算処理されて試
料の硬度が求められる。また、I/O装置21を
介して第2図に示す押込み深さ−荷重曲線がXY
プロツタ22によつて描かれる。
While the load is being applied, displacement on the surface of the sample 14 pressed by the indenter 5 is detected by the displacement detector 10. The displacement amount detected by the displacement detector, that is, the movement amount detection signal of the indenter 5 is amplified by the amplifier 15 and sent via the A/D converter 17.
Sent to CPU 18. Therefore, displacement under a certain load is also measured in real time. These load and displacement data are stored in the RAM 20, and are processed by the CPU 18 as described later to determine the hardness of the sample. In addition, the indentation depth-load curve shown in FIG.
Drawn by plotter 22.

FPU18は荷重、変位データに基づいて採用
された真の動的硬度DH0を求める基本式、 DH0=〓P/d0 2=〓P/(d−KP) ……(1) により演算処理を行なう。ここに〓は圧子の形状
によつて決定される定数、Pは負荷重(gf)、d
は変位測定値、d0は真の押込み深さ、Kは負荷系
のたわみ、試料自身のたわみ、試料の接着部の接
着樹脂層のたわみ等を補正する変位荷重比例定数
である。したがつて、第3図に示すように、測定
値dに対してたわみKPを減ずることにより真の
押込み深さd0が求められる。(d0=d−KP)。
The FPU 18 performs arithmetic processing using the basic formula for determining the true dynamic hardness DH 0 based on load and displacement data: DH 0 =〓P/d 0 2 =〓P/(d-KP)...(1) Do the following. Here, 〓 is a constant determined by the shape of the indenter, P is the load weight (gf), and d
is the measured displacement value, d 0 is the true indentation depth, and K is a displacement load proportionality constant that corrects the deflection of the loading system, the deflection of the sample itself, the deflection of the adhesive resin layer of the bonded part of the sample, etc. Therefore, as shown in FIG. 3, the true indentation depth d 0 can be found by subtracting the deflection KP from the measured value d. ( d0 =d-KP).

計算方法について説明すれば以下の通りであ
る。
The calculation method is explained below.

まず、(1)式から、 K2P2−2KPd−(〓/DH0)P+d2 =0 ……(2) したがつて K2〓P2=2K〓Pd−(〓/DH0)〓P +〓d2=0 ……(3) K2〓P2d−2K2〓Pd2 −(〓/DH0)〓Pd+〓d3=0 ……(4) 最小自乗法に基づき、(3),(4)式より、任意の測
定点におけるデータP,dより〓P,〓P2,〓
Pd,〓Pd2,〓d2,〓d3等を算出し、深さ−荷重
曲線を2次近似してその2次項の係数から比例定
数K、硬度DH0を算出する。 KはK1,K2の2
個の解が存在するが、DH0が正という条件のも
のが選ばれる。
First, from equation (1), K 2 P 2 −2KPd−(〓/DH 0 )P+d 2 =0 ……(2) Therefore, K 2 〓P 2 =2K〓Pd−(〓/DH 0 )〓 P + 〓d 2 = 0 ……(3) K 2 〓P 2 d−2K 2 〓Pd 2 −(〓/DH 0 )〓Pd+〓d 3 =0 ……(4) Based on the method of least squares, ( From equations 3) and (4), from data P and d at any measurement point, 〓P, 〓P 2 , 〓
Pd, 〓Pd 2 , 〓d 2 , 〓d 3, etc. are calculated, and the depth-load curve is quadratic approximated, and the proportionality constant K and hardness DH 0 are calculated from the coefficient of the quadratic term. K is 2 of K 1 and K 2
There are solutions, but the one with the condition that DH 0 is positive is selected.

かかる算出方法の他に計算方法はないが、P1
P2の2つの荷重条件から次の(5),(6)式によつて
求めることも可能である。
There is no calculation method other than this calculation method, but P 1 ,
It is also possible to obtain it from the two load conditions of P 2 using the following equations (5) and (6).

K2P1 2−2KP1d1 −(〓/DH0)P1+d1 2=0 ……(5) KP2 2−2KP2d2 −(〓/DH0)P2+d2 2=0 ……(6) このように、上記実施例装置によれば、負荷部
機械系のたわみ、試料台のたわみ、試料取付け部
の接着樹脂層のたわみ、試料自身のたわみ等を補
正した真の押込み深さを求めることができ、正確
な試料の動的硬さを求めることができる。また、
内部が柔らかい試料の表面硬度の測定、試料内部
の弾性変形量の補正等も行なうことができる。
K 2 P 1 2 −2KP 1 d 1 − (〓/DH 0 ) P 1 + d 1 2 = 0 ……(5) KP 2 2 −2KP 2 d 2 − (〓/DH 0 ) P 2 + d 2 2 = 0 ... (6) In this way, according to the above-mentioned example device, the true value is calculated by correcting the deflection of the mechanical system of the load section, the deflection of the sample stage, the deflection of the adhesive resin layer of the sample mounting section, the deflection of the sample itself, etc. The indentation depth can be determined, and the dynamic hardness of the sample can be determined accurately. Also,
It is also possible to measure the surface hardness of a sample with a soft interior, and to correct the amount of elastic deformation inside the sample.

〓発明の効果〓 上記説明から明らかなように、本発明にかかる
硬度計によれば、試料自身のたわみも補正した上
で試料の動的硬度を正確に求めることができるよ
うになた。また、表面層が硬く内部の柔らかい試
料の表面硬度も正確に測定することができるよう
になつた。
Effects of the Invention As is clear from the above description, the hardness meter according to the present invention makes it possible to accurately determine the dynamic hardness of a sample after also correcting the deflection of the sample itself. In addition, it has become possible to accurately measure the surface hardness of samples that have a hard surface layer and a soft interior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例である超微小硬度計の
構成を示す模式図、第2図は実施例における押込
み深さ−荷重曲線を示す図、第3図は補正式を説
明する図である。 1……負荷装置、2……天秤、5……圧子、6
……電磁コイル(荷重発生手段)、10……変位
検出器、18……PCU(硬度値演算手段)。
Fig. 1 is a schematic diagram showing the configuration of an ultra-microhardness meter that is an embodiment of the present invention, Fig. 2 is a diagram showing the indentation depth-load curve in the embodiment, and Fig. 3 is a diagram explaining the correction formula. It is. 1... Load device, 2... Balance, 5... Indenter, 6
... Electromagnetic coil (load generation means), 10 ... Displacement detector, 18 ... PCU (hardness value calculation means).

Claims (1)

【特許請求の範囲】 1 圧子と、該圧子に試験荷重を負荷する負荷手
段と、圧子の変位を検出する圧子変位量検出手段
とを備え、前記負荷手段によつて圧子に加えられ
る荷重をP、この荷重に対応して検出される圧子
の変位をd、真の押込み深さをd0、荷重負荷時の
変位荷重比例定数をK、圧子の形状によつて決定
される定数を〓、動的硬度をDH0とするとき、 DH0=〓P/d0 2 =P/(d−KP)2 の計算式に基づいて、前記比例定数Kを最小自乗
法により算出し、試料の動的硬度DH0を演算す
る演算手段が設けられていることを特徴とする硬
度計。
[Scope of Claims] 1. An indenter comprising: an indenter, a loading means for applying a test load to the indenter, and an indenter displacement amount detecting means for detecting displacement of the indenter, the load applied to the indenter by the loading means being P , the displacement of the indenter detected in response to this load is d, the true indentation depth is d 0 , the displacement load proportional constant when the load is applied is K, the constant determined by the shape of the indenter is 〓, the dynamic When the physical hardness of the specimen is DH 0 , the proportionality constant K is calculated by the least squares method based on the calculation formula DH 0 =〓P/d 0 2 =P/(d-KP) 2 , and the dynamic A hardness meter characterized by being provided with calculation means for calculating hardness DH 0 .
JP13986289A 1989-05-31 1989-05-31 Ultramicro-hardness meter Granted JPH034138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13986289A JPH034138A (en) 1989-05-31 1989-05-31 Ultramicro-hardness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13986289A JPH034138A (en) 1989-05-31 1989-05-31 Ultramicro-hardness meter

Publications (2)

Publication Number Publication Date
JPH034138A JPH034138A (en) 1991-01-10
JPH0520691B2 true JPH0520691B2 (en) 1993-03-22

Family

ID=15255275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13986289A Granted JPH034138A (en) 1989-05-31 1989-05-31 Ultramicro-hardness meter

Country Status (1)

Country Link
JP (1) JPH034138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540275A (en) * 2010-10-22 2013-10-31 セルガード エルエルシー Penetration and / or compression test system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863473B2 (en) * 2005-10-31 2012-01-25 独立行政法人物質・材料研究機構 Indentation curve creation method and hardness test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540275A (en) * 2010-10-22 2013-10-31 セルガード エルエルシー Penetration and / or compression test system and method

Also Published As

Publication number Publication date
JPH034138A (en) 1991-01-10

Similar Documents

Publication Publication Date Title
US5357786A (en) Device for determining mechanical properties of materials
Hird et al. The use of proximity transducers for local strain measurements in triaxial tests
US11959934B2 (en) High precision weighing system and weighing method, thermogravimetric analyser and storage medium
JP2000088891A (en) Bridge circuit and detector using the same
JPH0520691B2 (en)
US6430520B1 (en) Dynamic friction measurement apparatus and method
US3938037A (en) Device for measuring the ferrite content in an austenitic stainless steel weld material
CN104792464A (en) Revolution solid mass center testing method
JP2005172589A (en) Method and machine for testing material
CN113074680B (en) Device and method for measuring axial maximum play amount of rotor
JP2829984B2 (en) Ultra micro hardness tester
JP2979769B2 (en) Silicon wafer thickness sorting method
US4283955A (en) Method of and measuring apparatus for determining the standard tensile yield point under load conditions
US4464937A (en) Extensometer readout circuit
Park et al. Column-type multi-component force transducers and their evaluation for dynamic measurement
JP2671096B2 (en) Micro indentation tester
Payne et al. Dynamometer for tensile testing of high polymers
JP2001324375A (en) Minute weighting detector and minute weighting measuring device
JPH0617064Y2 (en) Displacement calibration mechanism of hardness tester
JPH0532752Y2 (en)
JPH034139A (en) Hardness meter
Wang et al. Research on calibration method of mechanical belt tension meter
JPH0797072B2 (en) Indentation hardness test method and device
JPS64644B2 (en)
Albright et al. Practical Aspects of Dynamic Verification of Extensometers: Part I—The Concepts