JPS61161659A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPS61161659A
JPS61161659A JP60002794A JP279485A JPS61161659A JP S61161659 A JPS61161659 A JP S61161659A JP 60002794 A JP60002794 A JP 60002794A JP 279485 A JP279485 A JP 279485A JP S61161659 A JPS61161659 A JP S61161659A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
storage alloy
transition metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60002794A
Other languages
Japanese (ja)
Other versions
JPH0456426B2 (en
Inventor
Yoshimitsu Tajima
善光 田島
Motoo Mori
毛利 元男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60002794A priority Critical patent/JPS61161659A/en
Publication of JPS61161659A publication Critical patent/JPS61161659A/en
Publication of JPH0456426B2 publication Critical patent/JPH0456426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a hydrogen storage alloy having steady performance for a long time by adding transition metal ion complex to a solution in which a hydrogen storage metal is activated. CONSTITUTION:A substance which dissolves in a solution evolves hydrogen is mixed as an additive in a hydrogen storage alloy. The mixture is immersed in a solution containing transition metal ion complex and stirred. The hydrogen storage alloy is activated by hydrogen generated in the solution. Residual insoluble metal and transition metal are carried on the hydrogen storage alloy and the alloy is washed to obtain a hydrogen storage electrode. By repeating charge and discharge, the transition metal carried on the hydrogen storage alloy covers the surface of hydrogen storage alloy by its migration. The transition metal adsorbs and reduces active gas such as oxygen generated during overcharge. Therefore, the hydrogen storage alloy retains steady reversible hydrogen absorption and desorption for a long time.

Description

【発明の詳細な説明】 く技術分野〉 本発明はアルカリ蓄電池の負極等に用いて有効な水素吸
蔵電極の製造方法に関するものであり、長時間にわたっ
て安定な特性を呈する水素貯蔵電極を得ることを企図す
るものである。
[Detailed Description of the Invention] Technical Field The present invention relates to a method for producing a hydrogen storage electrode that is effective for use as a negative electrode of an alkaline storage battery, etc. The present invention relates to a method for producing a hydrogen storage electrode that is effective for use as a negative electrode of an alkaline storage battery, and is directed to a method for producing a hydrogen storage electrode that exhibits stable characteristics over a long period of time. It is planned.

〈従来技術〉 従来より金属酸化物を正極活物質とし、水素貯蔵合金を
負極活物質として用いるMeOx−Me’Hy型の蓄電
池が提唱され、実用化が促進されている。
<Prior Art> A MeOx-Me'Hy type storage battery using a metal oxide as a positive electrode active material and a hydrogen storage alloy as a negative electrode active material has been proposed, and its practical use is being promoted.

正極活物質としては、従来のアルカリ蓄電池の正極とし
て用いられているNi0OH,Ag2O等が適当と考え
られ、また負極活物質にはLaNi 5.Ti 2Ni
等の室温での水素平衡解離圧がIPaからIMPaであ
る水素貯蔵合金の利用が検討されている。
As the positive electrode active material, Ni0OH, Ag2O, etc., which are used as the positive electrode of conventional alkaline storage batteries, are considered suitable, and as the negative electrode active material, LaNi 5. Ti2Ni
The use of hydrogen storage alloys whose hydrogen equilibrium dissociation pressure at room temperature is IPa to IMPa is being considered.

水素貯蔵電極を活物質とする電極を作製するためには、
下記の諸工程を必要とする。
In order to create an electrode using a hydrogen storage electrode as an active material,
The following steps are required.

(1)任意の組成を持つ水素貯蔵合金の作製。(1) Production of hydrogen storage alloy with arbitrary composition.

(2)合金塊の機械的粉砕。(2) Mechanical crushing of alloy ingots.

(3)  水素活性化処理による合金の微粉化。(3) Pulverization of the alloy by hydrogen activation treatment.

(4)  ポリエチレン、テフロン等の結珊剤及び銅。(4) Polyethylene, silicate agents such as Teflon, and copper.

ニッケル等の導電剤の添加、混合。Addition and mixing of conductive agents such as nickel.

(5)集電体への担持。(5) Support on current collector.

(6)電極形成剤の熱処理。(6) Heat treatment of electrode forming agent.

これら一連の操作のなかで工程(3)は高温、高圧水素
雰囲気中で行なわれるためこの工程だけで非常に大掛り
な装置を必要とする。また、水素活性化処理後、酸素等
の活性気体に触れると、水素貯蔵合金の水素吸収・放出
特性が劣化してしまうため、常に不活性雰囲気中に保た
なければならない。この特性の劣化は酸素、−酸酸化炭
素氷水蒸気により生じる不活性膜に起因するもので、可
逆的吸収・放出可能な水素量の減少、水素吸収・放出過
程における平衡解離圧のヒステリシスの増加、平衡水素
解離圧のプラトー性の低下等の症状を呈する。
Among these series of operations, step (3) is performed in a high temperature, high pressure hydrogen atmosphere, and therefore this step alone requires very large-scale equipment. Furthermore, after the hydrogen activation treatment, if the hydrogen storage alloy comes into contact with active gases such as oxygen, the hydrogen absorption and release characteristics of the hydrogen storage alloy will deteriorate, so it must be kept in an inert atmosphere at all times. This deterioration of properties is due to the inert film formed by oxygen, acid carbon oxide, ice water vapor, decrease in the amount of hydrogen that can be reversibly absorbed and released, increase in the hysteresis of the equilibrium dissociation pressure during the hydrogen absorption and release process, Symptoms include a plateau decrease in equilibrium hydrogen dissociation pressure.

一旦、劣化した水素貯蔵合金を再び元の状態に戻すため
には、高温・高圧水素雰囲気下で水素還元を行なうか、
または電解液中で長時間にわたり電解還元を行なわなけ
ればならず、これらは容易なことではない。
In order to restore a degraded hydrogen storage alloy to its original state, hydrogen reduction must be performed in a high temperature and high pressure hydrogen atmosphere, or
Alternatively, electrolytic reduction must be carried out in an electrolytic solution for a long time, which is not an easy task.

完全に活性な状態にある水素貯蔵電極を負極とし、金属
酸化物を正極とするMeOx−Me’Hy型の蓄電池を
構成し、長期間にわたり充電・放電を繰り返すと、放電
容量が徐々に低下していく。これもまた電池内に存在す
る活性ガスに起因するものであり、ガス被毒の結果とし
て生成する不活性膜が原因となって、可逆的吸収・放出
可能な水素量の減少2分極特性の劣化等の障害が現われ
る。ここでの活性ガスは、電池を組む際に混入する酸素
When a MeOx-Me'Hy type storage battery is constructed with a fully activated hydrogen storage electrode as the negative electrode and a metal oxide as the positive electrode, and is repeatedly charged and discharged over a long period of time, the discharge capacity gradually decreases. To go. This is also caused by the active gas present in the battery, and the inert film that forms as a result of gas poisoning causes a reduction in the amount of hydrogen that can be reversibly absorbed and released, and a deterioration in the two-polarization characteristics. Such disorders appear. The active gas here is oxygen, which is mixed in when assembling the battery.

−酸化炭素及び過充電時に正極から発生する酸素ガスで
あると考えられる。開放型の蓄電池であれば、長時間充
電することにより負極を電解還元することができるが、
正極と負極の充電状態のバランスが崩れてしまう。また
、密閉型であるならば、長時間の充電は電池を破損する
慣れがあるため、実用上の信頼性を確保することができ
ない。
- It is thought that it is carbon oxide and oxygen gas generated from the positive electrode during overcharging. If it is an open type storage battery, the negative electrode can be electrolytically reduced by charging for a long time.
The balance between the charge states of the positive and negative electrodes will be disrupted. Furthermore, if the battery is a sealed type, charging for a long time tends to damage the battery, making it impossible to ensure practical reliability.

〈発明の目的〉 本発明は上述の問題点を解消するものであり、アルカリ
蓄電池の負極等として有効でかつ長期間にわたり安定し
た特性を維持できる水素貯蔵電極の製造方法を提供する
ことを目的とする。
<Objective of the Invention> The present invention solves the above-mentioned problems, and aims to provide a method for manufacturing a hydrogen storage electrode that is effective as a negative electrode of an alkaline storage battery and can maintain stable characteristics over a long period of time. do.

く構成と効果の説明〉 本発明は上記目的を達成するため、酸、アルカリ等の溶
液中において自ら溶解し水素を発生するニッケルーアル
ミニウムといった各種ラネー合金等の物質を予め添加物
として水素貯蔵合金中に混合し、この混合物を遷移金属
イオン錯体を含む溶液中に浸漬して撹拌することにより
、溶液中で発生する水素で水素貯蔵合金を水素活性化し
、がっ溶解後に残る不溶性金属及び遷移金属イオン錯体
より得られる遷移金属を水素貯蔵合金上に担持させた後
、洗浄して電極形状に成型し、これによって水素貯蔵電
極を得ることを特徴として構成されている。溶液中で発
生する水素は溶液と添加物の化学反応によって得られる
もので、発生期の水素と称され非常に活性度に富み、数
千気圧の水素ガスに相当する活性力があるといわれてい
る。従って、この発生期の水素を利用して水素貯蔵合金
を溶液中で容易にかつ短時間のうちに活性化することが
できる。尚溶解後に残る不溶性金属は非常に活性度が高
く水素貯蔵合金上に担持することができる。遷移金属錯
体中の遷移金属イオンは、発生期の水素乃至活性化され
た水素貯蔵合金中の水素により容易に還元され、金属微
粒子となり得る。
Description of Structure and Effects> In order to achieve the above object, the present invention provides a hydrogen storage alloy in which a substance such as various Raney alloys such as nickel-aluminum, which dissolves by itself in a solution such as an acid or alkali and generates hydrogen, is added as an additive. By immersing this mixture in a solution containing transition metal ion complexes and stirring, the hydrogen storage alloy is activated with the hydrogen generated in the solution, and the insoluble metals and transition metals that remain after the gas is dissolved are activated. The structure is characterized in that a transition metal obtained from an ion complex is supported on a hydrogen storage alloy, and then washed and molded into an electrode shape, thereby obtaining a hydrogen storage electrode. Hydrogen generated in a solution is obtained through a chemical reaction between the solution and additives, and is called nascent hydrogen, which is extremely active and is said to have an activation force equivalent to several thousand atmospheres of hydrogen gas. There is. Therefore, this nascent hydrogen can be used to easily activate the hydrogen storage alloy in solution in a short time. The insoluble metal remaining after dissolution has a very high activity and can be supported on the hydrogen storage alloy. The transition metal ions in the transition metal complex are easily reduced by hydrogen in the nascent hydrogen or activated hydrogen storage alloy, and can become fine metal particles.

この金属微粒子もまた活性度が高く容易に水素貯蔵合金
上に析出・担持することができる。
These metal fine particles also have high activity and can be easily deposited and supported on the hydrogen storage alloy.

本発明によれば、水素貯蔵合金の活性化が溶液の清浄作
用で水素貯蔵合金表面が清浄化されることと相撲って迅
速かつ容易に行なわれ、活性化後の混合粉末を乾燥させ
ることなく湿潤状態で電極形状に圧縮成型することが可
能であり、また不活性雰囲気中で操作する必要がなく、
作業性が飛躍的に向上する。得られる水素貯蔵電極は、
活性化処理によって高い電気容量を有し、また長期間に
わたる充電・放電の繰り返しにより、水素貯蔵合金上に
担持されている遷移金属が水素貯蔵電極中でマイグレー
シランを起こし水素貯蔵合金を覆うようになる。この遷
移金属は過充電時に発生する酸素等の活性なガスを吸着
し、還元することができ水素貯蔵合金を活性ガスによる
被毒から保護することができるため、水素貯蔵合金は、
長期間にわたり安定した可逆的水素吸収・放出量を維持
することができる。又、この遷移金属により水素貯蔵合
金と集電体との接触面積を大きくすることができ、分極
特性の向上及び活物質利用率の向上につながる。即ち、
簡単な製造方法及び装置で蓄電池等に適した特性の良い
電極が得られ、がっ大量生産に適し、製造コストが安価
となるため、水素貯蔵電極の実用化に即した製造技術を
確立することができる。
According to the present invention, the activation of the hydrogen storage alloy is carried out quickly and easily while the surface of the hydrogen storage alloy is cleaned by the cleaning action of the solution, and the activated mixed powder is not dried. It can be compression molded into an electrode shape in a wet state, and there is no need to operate it in an inert atmosphere.
Work efficiency is dramatically improved. The obtained hydrogen storage electrode is
It has a high electrical capacity due to activation treatment, and due to repeated charging and discharging over a long period of time, the transition metal supported on the hydrogen storage alloy causes migration silane in the hydrogen storage electrode and covers the hydrogen storage alloy. Become. These transition metals can adsorb and reduce active gases such as oxygen generated during overcharging, and can protect hydrogen storage alloys from being poisoned by active gases.
A stable and reversible amount of hydrogen absorption and release can be maintained over a long period of time. In addition, this transition metal can increase the contact area between the hydrogen storage alloy and the current collector, leading to improved polarization characteristics and active material utilization. That is,
To establish a manufacturing technology suitable for practical use of hydrogen storage electrodes, since electrodes with good characteristics suitable for storage batteries etc. can be obtained using a simple manufacturing method and equipment, suitable for mass production, and manufacturing costs are low. I can do it.

水素貯蔵合金として利用される物質としてCa。Ca is a substance used as a hydrogen storage alloy.

Mg、Ti、Zr、Hf、V、Nb、Ta、Yあるいは
ランタニド系元素等の水素と結合し易い元素とAn、C
r。
Elements that easily combine with hydrogen such as Mg, Ti, Zr, Hf, V, Nb, Ta, Y, or lanthanide elements, and An, C
r.

Fe、Ni、Co、Cu、Mn、Si等の水素と結合し
難い元素との合金が使用に供され、また酸、アルカリ等
の溶液と反応して水素を発生する物質としては、アルカ
リ金属、アルカリ土類金属I An l F e + 
Ni+ Sn等の水素よりイオン化傾向の高い単体元素
もしくはNi −AI 、Ni −S i 、Cu−A
J等の各種ラネー合金。
Alloys with elements that are difficult to bond with hydrogen, such as Fe, Ni, Co, Cu, Mn, and Si, are used, and substances that generate hydrogen by reacting with solutions such as acids and alkalis include alkali metals, Alkaline earth metal I An l F e +
Single elements with higher ionization tendency than hydrogen such as Ni+ Sn or Ni-AI, Ni-S i, Cu-A
Various Raney alloys such as J.

その他種々の材料がある。溶液内に添加する遷移金属イ
オン錯体としては各種遷移金属を中心金属とし、配位子
としてNH3,H2O,CN  、SCN 、C0その
他各種無機物配位子またはEDTA 、 NH2CH2
CH2NH2,その他各種有機物配位子等の材料の使用
が可能である。
There are various other materials. The transition metal ion complex to be added to the solution has various transition metals as the central metal, and NH3, H2O, CN, SCN, CO and other various inorganic ligands as the ligands, or EDTA, NH2CH2.
Materials such as CH2NH2 and various other organic ligands can be used.

〈実施例〉 以下に水素貯蔵合金としてT1Niを酸、アルカリ等の
溶液と反応して水素を発生する物質としてCu−AJI
ラネー合金を、そして遷移金属イオン錯体として〔Cu
(NH3)4)(OH)zを添加した水酸化力+J S
ム水溶液を反応溶液とした場合を実施例として本発明の
製造方法の詳細を説明する。
<Example> Below, T1Ni is used as a hydrogen storage alloy, and Cu-AJI is used as a substance that generates hydrogen by reacting with a solution such as acid or alkali.
Raney alloy and transition metal ion complex [Cu
(NH3)4) Hydroxylation power with addition of (OH)z + J S
The details of the production method of the present invention will be explained using an example in which an aqueous solution of silica is used as the reaction solution.

粒径44μm以下のT1Ni合金粉末とCu:50w/
%−A4 : 50 ′v/w%からなるラネー合金粉
末を重量比で5:3になるように秤量し均一になるまで
混合する。CCu(NH3)4)(OH)2の濃度が3
0 ’I/12である水酸化カリウム水溶液を70″C
に加熱して充分に撹拌した溶液内に上記T1Ni合金粉
末とラネー合金粉末の混合物を徐々に投入する。このと
き、Cu−A1合金中のAλがアルカリと反応しアルミ
ン酸イオンと水素ガスが発生する。全ての混合物の投入
が完了した後も溶液の温度を70℃に保ち水素ガスが発
生しなくなるまで撹拌を続ける。この操作中、銅アンモ
ニア錯体は分解し、アンモニアガスの発生を伴い銅微粒
子が活性化された水素貯蔵合金の活性点上に析出する。
T1Ni alloy powder with a particle size of 44 μm or less and Cu: 50w/
%-A4: 50'v/w% Raney alloy powder was weighed out at a weight ratio of 5:3 and mixed until uniform. The concentration of CCu(NH3)4)(OH)2 is 3
0'I/12 potassium hydroxide aqueous solution at 70''C
The mixture of the T1Ni alloy powder and the Raney alloy powder is gradually added into the solution which has been heated to a temperature and stirred thoroughly. At this time, Aλ in the Cu-A1 alloy reacts with an alkali to generate aluminate ions and hydrogen gas. Even after all the mixtures have been added, the temperature of the solution is kept at 70° C. and stirring is continued until no hydrogen gas is generated. During this operation, the copper ammonia complex is decomposed and copper fine particles are deposited on the active sites of the activated hydrogen storage alloy with the generation of ammonia gas.

反応終了後大量の水で洗浄し、再溶性のアルミン酸イオ
ンが認められなくなった時点で上澄液を流し出し、フッ
素系樹脂が8W/w96になるようその懸濁液を加えて
混練し、ペーストとする。このペーストを集電体である
パンチングニッケル板に充填し、1+/adの圧力で圧
縮成型し、更にアルゴンガス雰囲気中で予備乾燥後30
0℃、1時間の熱処理を施して電極を作製する。以上に
より、T1Niを負極活物質とする水素貯蔵電極が得ら
れる。
After the reaction is completed, the mixture is washed with a large amount of water, and when re-soluble aluminate ions are no longer observed, the supernatant liquid is poured out, and the suspension is added and kneaded so that the fluorine resin becomes 8W/w96. Make a paste. This paste was filled into a punched nickel plate as a current collector, compression molded at a pressure of 1+/ad, and then pre-dried in an argon gas atmosphere for 30 minutes.
An electrode is produced by performing heat treatment at 0° C. for 1 hour. Through the above steps, a hydrogen storage electrode using T1Ni as the negative electrode active material is obtained.

比較のために従来技術に示した工程により水素貯蔵電極
を作製し、本実施例の水素電極と性能比較を行なう。尚
、製造方法が異なる以外T1Ni合金組成、結着剤含有
量、導電剤含有量、成型圧力。
For comparison, a hydrogen storage electrode was fabricated by the process shown in the prior art, and its performance was compared with the hydrogen electrode of this example. In addition, except for the manufacturing method, the T1Ni alloy composition, binder content, conductive agent content, and molding pressure are different.

熱処理温度等は全て同一条件に設定されている。The heat treatment temperature, etc. are all set to the same conditions.

同一電解槽内で標準水銀−酸化水銀電極の参照電極を用
いて、水素貯蔵電極としての特性評価を行なった結果を
添附図面に示す。図面は水素貯蔵電極の放tN、気量に
対する充電−放電操作の繰り返しによる影響を表わして
いる。曲線Aは本実施例で得られた水素電極、曲線Bは
従来の方法で作製した水素電極の特性曲線である。充電
は水素貯蔵に対し−0,75Vまで放電した。本実施例
の製造方法により得られる水素貯蔵電極は、従来法によ
り得られる水素貯蔵電極に比べ、活物質の利用率が高く
、かつ長寿命であることがわかる。従って、本実施例の
水素貯蔵電極はアルカリ蓄電池の負極等として有効であ
り、かつ長期間にわたり安定した特性を維持することが
できる。
The attached drawings show the results of characterizing the electrode as a hydrogen storage electrode using a standard mercury-mercury oxide reference electrode in the same electrolytic cell. The figure shows the effect of repeated charge-discharge operations on the discharged tN and capacity of a hydrogen storage electrode. Curve A is the characteristic curve of the hydrogen electrode obtained in this example, and curve B is the characteristic curve of the hydrogen electrode produced by the conventional method. Charging was performed by discharging to -0.75V with respect to hydrogen storage. It can be seen that the hydrogen storage electrode obtained by the manufacturing method of this example has a higher active material utilization rate and a longer life than the hydrogen storage electrode obtained by the conventional method. Therefore, the hydrogen storage electrode of this example is effective as a negative electrode of an alkaline storage battery, and can maintain stable characteristics over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

図面は水素貯蔵電極の充放電回数と放電容量の関係を示
す特性図である。
The drawing is a characteristic diagram showing the relationship between the number of charging and discharging cycles of a hydrogen storage electrode and the discharge capacity.

Claims (1)

【特許請求の範囲】[Claims] 1、溶液と反応して水素を発生する添加物を水素貯蔵合
金中に混合して成る混合物を前記溶液内に浸漬し、発生
する水素で前記水素貯蔵合金を活性化した後、電極形状
に成型する水素貯蔵電極の製造方法において、前記溶液
に遷移金属イオン錯体を添加することを特徴とする水素
貯蔵電極の製造方法。
1. A mixture consisting of a hydrogen storage alloy mixed with an additive that reacts with a solution to generate hydrogen is immersed in the solution, the hydrogen storage alloy is activated with the generated hydrogen, and then molded into an electrode shape. A method for manufacturing a hydrogen storage electrode, comprising adding a transition metal ion complex to the solution.
JP60002794A 1985-01-09 1985-01-09 Manufacture of hydrogen storage electrode Granted JPS61161659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002794A JPS61161659A (en) 1985-01-09 1985-01-09 Manufacture of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002794A JPS61161659A (en) 1985-01-09 1985-01-09 Manufacture of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS61161659A true JPS61161659A (en) 1986-07-22
JPH0456426B2 JPH0456426B2 (en) 1992-09-08

Family

ID=11539274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002794A Granted JPS61161659A (en) 1985-01-09 1985-01-09 Manufacture of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPS61161659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129669A (en) * 1989-09-08 1991-06-03 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode
US6073493A (en) * 1997-01-10 2000-06-13 Nippon Steel Corporation Method of diagnosing fatigue life of structural steelwork and a member of steelwork having life diagnostic function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129669A (en) * 1989-09-08 1991-06-03 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode
JPH0799690B2 (en) * 1989-09-08 1995-10-25 工業技術院長 Method for manufacturing hydrogen storage electrode
US6073493A (en) * 1997-01-10 2000-06-13 Nippon Steel Corporation Method of diagnosing fatigue life of structural steelwork and a member of steelwork having life diagnostic function

Also Published As

Publication number Publication date
JPH0456426B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
JP5388397B2 (en) Method for improving the properties of alloy powders for NiMH batteries
JPS61161659A (en) Manufacture of hydrogen storage electrode
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0221098B2 (en)
US3966493A (en) Rechargeable mercury electrode
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JPH01107465A (en) Manufacture of sealed alkaline secondary battery
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPH0426058A (en) Manufacture of nickel electrode plate
JPH11185745A (en) Hydrogen storage mixed powder and manufacture thereof
CN101210326A (en) Surface treatment method for hydrogen-storing alloy powder
JP2000285913A (en) Hydrogen storage alloy, and hydrogen storage alloy electrode using the same
JP2002260645A (en) Manufacturing method of hydrogen storage alloy electrode, and the hydrogen storage alloy electrode
JP2003197185A (en) Hydrogen occlusion alloy electrode, its manufacturing method, and nickel hydrogen storage battery using it