JPS61160985A - Gas laser - Google Patents

Gas laser

Info

Publication number
JPS61160985A
JPS61160985A JP130985A JP130985A JPS61160985A JP S61160985 A JPS61160985 A JP S61160985A JP 130985 A JP130985 A JP 130985A JP 130985 A JP130985 A JP 130985A JP S61160985 A JPS61160985 A JP S61160985A
Authority
JP
Japan
Prior art keywords
pin
gas
nozzle
electrode
shaped electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP130985A
Other languages
Japanese (ja)
Inventor
Makoto Yano
眞 矢野
Hidetomo Nishimura
西村 秀知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP130985A priority Critical patent/JPS61160985A/en
Publication of JPS61160985A publication Critical patent/JPS61160985A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Abstract

PURPOSE:To enable stable discharge under high gas pressure by efficiently cooling pin electrodes, by a method wherein a gas laser is provided with a nozzle in the tubular path equipped with pin electrodes, and the pin electrodes are vibrated with gas flows by eccentricity to the center hole of this nozzle. CONSTITUTION:This device is provided with a means of vibrating pin electrodes 11, 12 in the direction almost rectangular to gas flows 8. For example, when a gas flow 8 passes through a nozzle 19, a force Fa acts on the tip of the pin electrode 11 in the direction rectangular to the gas flow 8 because of the eccentricity of this pin electrode 11 to the center hole 19a of the nozzle 19. Thereby, on the deflection of the pin electrode 11, it will be restored to the original position by the action of a force Fb reverse to the Fa under the elasticity belonging to this electrode 11. On account of rapid expansion after passage through the nozzle 19, the gas flow 8 is disturbant and so leads to vibration of the pin electrode 11 without the coincidence of Fa with Fb. This device is also effective in cooling the pin electrode 11 at the same time because of the adiabatic expansion of the gas flows 8.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーザを発振するガスレーザに係り、特に容量
型ブロアを用い放電管内部に高速ガスを流す高速軸流型
ガスレーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gas laser that oscillates a laser, and particularly to a high-speed axial flow gas laser that uses a capacitive blower to flow high-speed gas inside a discharge tube.

〔発明の背景〕[Background of the invention]

放電管内にピン状陽極と円筒状陰極とを設け、この放電
管内に高速ガスを流しつつ前記電極間で放電させてレー
ザ光を発生させ、金属の切断、溶接などの加工や布地の
切断などを行う高速軸流型ガスレーザは現在広く用いら
れている。しかしながら陽極を形成するピン状電極は直
径1■程度であり、陰極を形成する円筒状電極に比較し
て熱容量が小さいため放電部の温度上昇が著しく、放電
停止後も赤色化しているほどである。この原因としては
、ピン状電極の周囲にガスは流れているものの、ピン状
電極表面にはガスの流れの遅い部分があり、この部分が
温度境界層として働くため充分に電極を冷却できないこ
とにあると推定される。
A pin-shaped anode and a cylindrical cathode are provided in the discharge tube, and while high-speed gas is flowing inside the discharge tube, a discharge is generated between the electrodes to generate laser light, which can be used for processing such as cutting and welding of metals, cutting of cloth, etc. High-speed axial flow gas lasers are currently widely used. However, the pin-shaped electrode that forms the anode has a diameter of about 1 square inch, and has a smaller heat capacity than the cylindrical electrode that forms the cathode, so the temperature of the discharge area rises significantly, so much so that it remains red even after the discharge has stopped. . The reason for this is that although gas flows around the pin-shaped electrode, there is a part on the surface of the pin-shaped electrode where the gas flows slowly, and this part acts as a temperature boundary layer, making it impossible to cool the electrode sufficiently. It is estimated that there is.

その結果としてスパッタ現象が発生し放電管内部にスパ
ッタが付着したり、放電出力が低下したり。
As a result, a sputter phenomenon occurs, causing spatter to adhere to the inside of the discharge tube and reducing the discharge output.

また放電点が不規則に動き回って出力の変動をきたした
りするため、ガス圧を高めたり投入電力を高めたりする
ことができず、低出力で運転しなければならないという
問題があった。
Furthermore, since the discharge point moves around irregularly, causing fluctuations in output, there is a problem in that it is not possible to increase the gas pressure or input power, and the device must be operated at low output.

この問題を解決するためにY、 Knait and 
O。
To solve this problem, Y, Knait and
O.

Bib1arz : J、 Appl、 Phys、 
50 (7) 、 P4692. July1979や
特開昭58−178579号公報などにピン状電極の周
囲のガスの流れを攪拌する提案がなされているが、これ
らはいずれもピン電極は固定されておりピン状電極自身
を冷却するものでなく、冷却の効率が悪いという欠点が
あった。
Bib1arz: J, Appl, Phys.
50 (7), P4692. July 1979 and Japanese Unexamined Patent Publication No. 58-178579 have proposed stirring the gas flow around a pin-shaped electrode, but in all of these proposals the pin-shaped electrode is fixed and the pin-shaped electrode itself is cooled. However, it had the disadvantage of poor cooling efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、ピン状電極を効率よく冷却でき、高ガス
圧下で安定した放電ができるガスレーザを提供するにあ
る。
The present invention has been made in view of the above circumstances, and its object is to provide a gas laser that can efficiently cool a pin-shaped electrode and that can perform stable discharge under high gas pressure.

[発明の概要〕 本発明はガスレーザの密閉管路内を高速で流れるガス流
とほぼ平行に該管路内に設けられ、その間で放電させて
レーザ光を発生するピン状陽極電極と円筒状陰極電極の
うち、ピン状電極を前記ガス流に対してほぼ直交する方
向に振動させるようにしたものである。
[Summary of the Invention] The present invention provides a pin-shaped anode electrode and a cylindrical cathode that are provided in a closed pipeline of a gas laser substantially parallel to the gas flow flowing at high speed in the pipeline, and generate a laser beam by discharging between them. Among the electrodes, a pin-shaped electrode is vibrated in a direction substantially perpendicular to the gas flow.

上述の構成によるとピン状電極の表面近傍における温度
境界層の影響が少くなり、ピン電極の冷却を効率よく行
うことができるので安定した放電が得られる。
According to the above configuration, the influence of the temperature boundary layer near the surface of the pin electrode is reduced, and the pin electrode can be efficiently cooled, so that stable discharge can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明に係るガスレーザの一実施例を図面を参照し
て説明する。
An embodiment of the gas laser according to the present invention will be described below with reference to the drawings.

第1図及び第2図に本発明の一実施例を示す。An embodiment of the present invention is shown in FIGS. 1 and 2. FIG.

第1図において、管状の放電管1の図中左側の一端には
例えば銅板に金を被覆した全反射する反射鏡2が固設さ
れ、右側の一端には半導体Zn5aな、とて形成されビ
ームを出力する半透過鏡3が固設されている。前記放電
管1の両端近くと中央部にはそれぞれ管路4,5.6が
この放電管1とほぼ直角に連結されており、これらの3
本の管路4,5゜6の下端は上熱交換器7を介して連結
されており。
In FIG. 1, at one end of a tubular discharge tube 1 on the left side in the figure, a reflecting mirror 2 for total reflection made of, for example, a copper plate coated with gold is fixed, and at one end on the right side, a reflector mirror 2 formed of a semiconductor Zn5a, etc., is fixed. A semi-transmissive mirror 3 that outputs is fixedly installed. Near both ends and in the center of the discharge tube 1, conduits 4, 5.6 are connected to the discharge tube 1 at approximately right angles, and these three
The lower ends of the main pipes 4 and 5° 6 are connected via an upper heat exchanger 7.

前記放電管1とともに外気に対して密閉されている。そ
してこれらの管内にはCO* + N z + Haか
らなる高圧ガス8が閉じ込められている。また前記中央
の管路6には容量型ブロア9と上熱交換器10が設けら
れている。前記管路4,5の上端部近くにはそれぞれそ
の先端が前記放電管1内に突出しないように、かつ管路
4,5にほぼ平行にタングステンなどで形成されたピン
状電極11゜12が設けられており、放電管1内の前記
管路6近くにはこれらのピン状電極11.12に対向す
る銅などで形成された円筒状電極13.14が設けられ
ていて、それぞれ陽極及び陰極を形成している。これら
の両極間にはそれぞれ直流電源15゜16及び安定抵抗
17.18が直列に設けられており、両極間でグロー放
電を生じてレーザ光を発するようになっており、上述の
放電方向、ガス流方向及びレーザ光方向は一致した軸流
を持つようになっている。
It is sealed together with the discharge tube 1 from the outside air. A high-pressure gas 8 consisting of CO* + N z + Ha is confined within these tubes. Further, a capacitive blower 9 and an upper heat exchanger 10 are provided in the central pipe line 6. Near the upper ends of the pipes 4 and 5 are pin-shaped electrodes 11 and 12 made of tungsten or the like so that their tips do not protrude into the discharge tube 1 and are approximately parallel to the pipes 4 and 5. Cylindrical electrodes 13.14 made of copper or the like are provided near the conduit 6 inside the discharge tube 1 and are opposed to these pin-shaped electrodes 11.12, and serve as an anode and a cathode, respectively. is formed. A DC power supply 15°16 and a stabilizing resistor 17.18 are respectively provided in series between these two poles, and a glow discharge is generated between the two poles to emit a laser beam. The flow direction and the laser beam direction have a coincident axial flow.

前記管路4,5の前記ピン状電極11.12に対向する
位置の内径面にはそれぞれノズル19゜20が設けられ
ている。このノズル19.20の構造をノズル19につ
いて第2図に示す、該図においてノズル19は管軸とほ
ぼ一致する中心軸を有するつづみ状をなしており、テフ
ロンなどで構成されていて中間に内径が小さくなった中
心孔19aが形成されている。この中心孔19aの中心
軸に対して前記ピン状電極11へ偏心して設けられてい
る。
Nozzles 19 and 20 are provided on the inner diameter surfaces of the conduits 4 and 5 at positions facing the pin-shaped electrodes 11 and 12, respectively. The structure of the nozzle 19, 20 is shown in FIG. 2. In the figure, the nozzle 19 has a ring shape with a central axis that almost coincides with the tube axis, and is made of Teflon or the like and has a middle part. A center hole 19a with a reduced inner diameter is formed. The pin-shaped electrode 11 is provided eccentrically with respect to the central axis of the center hole 19a.

上述の通り構成された本実施例につき、以下にその動作
を説明する。管路内に封じ込まれたガス8の組成中N3
は放電の励起を助け、Heは放電を安定させる効果があ
り、CO,が脇起されるガスの主体となる。このような
組成の高圧ガス8は矢印で示すようにブロア9で上熱交
換器7に入り、レーザ発振の効率をよくするため約20
℃に冷却されて、管路4,5内に分岐して吹き出される
The operation of this embodiment configured as described above will be described below. N3 in the composition of gas 8 sealed in the pipe
helps excite the discharge, He has the effect of stabilizing the discharge, and CO is the main gas that is excited. The high-pressure gas 8 having such a composition enters the upper heat exchanger 7 through the blower 9 as shown by the arrow, and is heated to about 20 ml to improve the efficiency of laser oscillation.
℃, branched into pipes 4 and 5, and blown out.

この高圧ガス8はそれぞれ管路4,5を経て似電管1に
入り、直流電源15.16によりそれぞれ安定抵抗17
.18を介してピン状電極11゜12と円筒状電極13
.14の間に発生したグロー放電にさらされた後、絶縁
性の管路6に合流し、上熱交換器(0で冷却されて再び
ブロア9に吸い込まれて循環する。この上熱交換器(0
による冷却はブロア9の熱膨張を押える効果がある。こ
の高圧ガス8の流速は100〜300m/seeである
This high-pressure gas 8 enters the electrical tube 1 through pipes 4 and 5, respectively, and is connected to a ballast resistor 17 by a DC power source 15, 16, respectively.
.. Pin-shaped electrode 11゜12 and cylindrical electrode 13 via 18
.. After being exposed to the glow discharge generated during 14, it joins the insulating conduit 6, is cooled in the upper heat exchanger (0), is sucked into the blower 9 again, and circulates. 0
This cooling has the effect of suppressing the thermal expansion of the blower 9. The flow velocity of this high pressure gas 8 is 100 to 300 m/see.

またブロア9は圧損があっても一定流量が吐出される容
量型が好ましい、このようにしてグロー放電によって発
生したレーザ光は反射鏡2によって反射されて円筒状電
極13.14の中心部を円柱状の光束となって通過し半
透過鏡3より出力する。
The blower 9 is preferably a capacitive type that discharges a constant flow rate even if there is a pressure drop.The laser light generated by the glow discharge is reflected by the reflector 2 and travels around the center of the cylindrical electrode 13,14. It passes through as a columnar light beam and is output from the semi-transmissive mirror 3.

このときガス流8がノズル19を通過するとき、ピン状
電極11がノズル19の中心孔19aに対して偏心して
いるため、このピン状電極11の先端部にはガス流8と
直角方向にFaの力が作用する。このためピン状電極1
1がたわむと、このピン伏型Fii11が持つ弾性力に
よりFaとは逆の方向の力Flsが作用して原位置に復
帰しよ°うとする。
At this time, when the gas flow 8 passes through the nozzle 19, the pin-shaped electrode 11 is eccentric with respect to the center hole 19a of the nozzle 19. The force of is applied. Therefore, the pin-shaped electrode 1
1 is deflected, a force Fls in the direction opposite to Fa acts due to the elastic force of this pin-down type Fii 11, and it attempts to return to its original position.

ガス流8はノズル19を通過したのち急激に膨張するた
めガス流8は乱れており、FaとFbが一致することが
なくピン状電極11を振動させる結果となる。このとき
同時にガス流8の断熱膨張のためピン状電極11を冷却
する効果もある。これらのことはノズル20についても
全く同様のことが云える。
Since the gas flow 8 rapidly expands after passing through the nozzle 19, the gas flow 8 is turbulent, and Fa and Fb do not match, causing the pin-shaped electrode 11 to vibrate. At this time, there is also the effect of cooling the pin-shaped electrode 11 due to the adiabatic expansion of the gas flow 8. The same thing can be said about the nozzle 20 as well.

上述の通り構成された本実施例によれば、ピン状電極1
1の振動によってその表面におけるガス流を遅くするこ
とがなくなり、十分にピン状電極を冷却することができ
るので安定したグロー放電が可能となり、レーザ光を効
率よく安定して発生させることができる。
According to this embodiment configured as described above, the pin-shaped electrode 1
Since the vibration of 1 does not slow down the gas flow on the surface and the pin-shaped electrode can be sufficiently cooled, stable glow discharge is possible, and laser light can be generated efficiently and stably.

上述の実施例において、ノズル19によりピン状電極1
1を振動させる場合について説明したが。
In the embodiment described above, the pin-shaped electrode 1 is
The explanation has been made regarding the case where 1 is vibrated.

ピン状電極11を磁性体で形成するか、または磁性材を
一部にコーティングして管路4の外部より磁界をかけて
振動させてもよく、または圧電素子をピン状電極に設け
て外部より電界をかけて振動させてもよく、さらにまた
公知の機械的振動手段によってもよい、これらの場合に
おいても前述の第1の実施例と同様の効果がある。なお
本実施例では管路が放電管1に対して3軸直交の形状の
場合について説明したが、2軸直交の場合にも適用でき
ることは勿論である。またノズル19を設ける場合のノ
ズルの形状はつづみ形に限定されるものではない。
The pin-shaped electrode 11 may be made of a magnetic material, or may be partially coated with a magnetic material and vibrated by applying a magnetic field from the outside of the conduit 4. Alternatively, a piezoelectric element may be provided on the pin-shaped electrode to make it vibrate from the outside. Vibration may be caused by applying an electric field or by known mechanical vibration means. In these cases, the same effects as in the first embodiment described above can be obtained. In this embodiment, the case where the pipe line is perpendicular to three axes with respect to the discharge tube 1 has been described, but it is of course applicable to the case where the pipe line is perpendicular to two axes. Further, when the nozzle 19 is provided, the shape of the nozzle is not limited to the serpentine shape.

〔発明の効果〕〔Effect of the invention〕

上述の通り、本発明によれば、ガスレーザのピン状電極
を設けた管路にノズルを設けるとともに。
As described above, according to the present invention, a nozzle is provided in a conduit provided with a pin-shaped electrode of a gas laser.

このノズルの中心孔に対して該ピン状電極を偏心させて
ガス流によって振動させるようにしたものであるから、
ピン状電極を効率よく冷却することができ、高ガス圧下
で安定した放電が可能となる。
The pin-shaped electrode is eccentric to the center hole of the nozzle so that it is vibrated by the gas flow.
The pin-shaped electrode can be efficiently cooled, allowing stable discharge under high gas pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るガスレーザの一実施例を示す装置
構成図、第2図は第1図の陽極部の詳細を示す構成図で
ある。 1・・・放電管、4,5.6・・・管路、8・・・高圧
ガス。 11.12・・・ピン状電極、13.14・・・円筒状
電極、19.20・・・ノズル、19a・・・中心孔。
FIG. 1 is a configuration diagram of an apparatus showing an embodiment of the gas laser according to the present invention, and FIG. 2 is a configuration diagram showing details of the anode portion of FIG. 1. 1...Discharge tube, 4,5.6...Pipe line, 8...High pressure gas. 11.12... Pin-shaped electrode, 13.14... Cylindrical electrode, 19.20... Nozzle, 19a... Center hole.

Claims (1)

【特許請求の範囲】 1、高圧ガスの流れる密閉管路内に、このガス流方向と
ほぼ平行に陽極を形成するピン状電極と陰極を形成する
円筒状電極とを設けてなり、前記陽極側から前記陰極側
に向つて前記ガス流を形成するとともにこれらの電極間
に放電されてレーザ光を発生するガスレーザにおいて、
前記ピン状電極を前記ガス流に対してほぼ直交する方向
に振動させる手段を設けたことを特徴とするガスレーザ
。 2、前記ピン状電極を振動させる手段は、このピン状電
極が配設された位置における前記管路の内径面にノズル
を設けるとともに、このノズルの中心孔に対して前記ピ
ン状電極を偏心させたことであることを特徴とする特許
請求の範囲第1項記載のガスレーザ。
[Claims] 1. A pin-shaped electrode forming an anode and a cylindrical electrode forming a cathode are provided in a sealed conduit through which high-pressure gas flows, substantially parallel to the gas flow direction, and a cylindrical electrode forming a cathode is provided on the anode side. In a gas laser that forms the gas flow from the electrode toward the cathode and generates laser light by discharging between these electrodes,
A gas laser comprising means for vibrating the pin-shaped electrode in a direction substantially perpendicular to the gas flow. 2. The means for vibrating the pin-shaped electrode includes providing a nozzle on the inner diameter surface of the conduit at a position where the pin-shaped electrode is disposed, and eccentrically centering the pin-shaped electrode with respect to the center hole of the nozzle. A gas laser according to claim 1, characterized in that:
JP130985A 1985-01-08 1985-01-08 Gas laser Pending JPS61160985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP130985A JPS61160985A (en) 1985-01-08 1985-01-08 Gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP130985A JPS61160985A (en) 1985-01-08 1985-01-08 Gas laser

Publications (1)

Publication Number Publication Date
JPS61160985A true JPS61160985A (en) 1986-07-21

Family

ID=11497891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP130985A Pending JPS61160985A (en) 1985-01-08 1985-01-08 Gas laser

Country Status (1)

Country Link
JP (1) JPS61160985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162263U (en) * 1988-04-14 1989-11-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162263U (en) * 1988-04-14 1989-11-10

Similar Documents

Publication Publication Date Title
JPS61160985A (en) Gas laser
JPH06164042A (en) Gas-laser oscillation apparatus
US4077018A (en) High power gas transport laser
JPS61281569A (en) Optical oscillator and laser
JP2640345B2 (en) Gas laser oscillation device
JPS6190485A (en) Pulse laser oscillator
JPWO2019092641A5 (en)
JPS60161687A (en) Discharge starting method for high-output laser oscillator
JP3664030B2 (en) Discharge excitation gas laser device
JP2004179599A (en) Discharge-pumped gas laser device
JP2685946B2 (en) Gas laser oscillation device
JPH0240983A (en) Gas laser oscillator
JP3259161B2 (en) Gas laser oscillation device
JPS63169781A (en) Gas laser device
JPS6185881A (en) Laser oscillator
JPS6348881A (en) Gas laser oscillator
JPH0240978A (en) Gas laser oscillator
JPS6420682A (en) Gas laser apparatus excited by high frequency discharge
JPH0225267B2 (en)
JP3427338B2 (en) Microwave-excited gas laser oscillator
JPH02281675A (en) Gas laser oscillation device
JPS61159780A (en) Silent discharge type gas laser device
JPH03173485A (en) Co2 gas laser oscillator
JP2001111141A (en) Laser oscillation apparatus
JPH01246881A (en) Gas laser oscillating device