JPS60161687A - Discharge starting method for high-output laser oscillator - Google Patents

Discharge starting method for high-output laser oscillator

Info

Publication number
JPS60161687A
JPS60161687A JP1812884A JP1812884A JPS60161687A JP S60161687 A JPS60161687 A JP S60161687A JP 1812884 A JP1812884 A JP 1812884A JP 1812884 A JP1812884 A JP 1812884A JP S60161687 A JPS60161687 A JP S60161687A
Authority
JP
Japan
Prior art keywords
discharge
anodes
anode
auxiliary
auxiliary electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1812884A
Other languages
Japanese (ja)
Other versions
JPH06105812B2 (en
Inventor
Naoki Urai
浦井 直樹
Kenji Daimon
大門 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Osaka Transformer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Osaka Transformer Co Ltd filed Critical Daihen Corp
Priority to JP59018128A priority Critical patent/JPH06105812B2/en
Publication of JPS60161687A publication Critical patent/JPS60161687A/en
Publication of JPH06105812B2 publication Critical patent/JPH06105812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0977Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser having auxiliary ionisation means
    • H01S3/09775Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser having auxiliary ionisation means by ionising radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To stabilize continuous-oscillation starting and intermittent-discharge pulse- oscillation of a laser, by generating auxiliary discharge between anodes and auxiliary electrodes before starting main discharge so that the auxiliary discharge causes the main discharge momentarily. CONSTITUTION:Auxiliary electrodes 9 are the same potential as cathodes 4 before the discharge starting, but a distance between the auxiliary electrodes 9 and anodes 3 is extremely short in comparison with one between the anodes 3 and the cathodes 4 so that the discharge between the auxiliary electrodes and the anodes is done positively for a very short time even at a low voltage. Between the auxiliary electrodes 9 and anodes 3, the discharge current is limited by resistors 10 with a high resistance to become the low-current discharge. Once the discharge has occurred, the potential of the auxiliary electrodes 9 is decreased by the resistors 10 and the main discharge which is induced by the low-current discharge between the auxiliary electrodes 9 and the anodes 3 is done between anodes 3 and cathodes 4. At this time, since an activating gas is caused to flow fast in the directions from the anodes 3 at the sides of the resonance mirrors 1 and 2 to the cathodes 4, gas ions which fill the important role for keeping the glow discharge have a fast moving speed and therefore can exert sufficient impact to the cathodes 4.

Description

【発明の詳細な説明】 技術分野 本発明は、高出力の気体レーザ発振器のレーザ放電開始
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for starting a laser discharge in a high-output gas laser oscillator.

従来技術 高出力の気体レーザ発振器のほとんどが、作動ガスを流
動させる方式であり、その作動ガスの流速一方向等によ
って、低速軸流形、高速軸流形、直交形等がある。この
内、高速軸流形発振器は、他の低速軸流形等にくらべて
、単位発振長あたりの出力が大きい、出力ビームモード
が良好、電気・光変換効率が旨いなどの特徴を有してい
る。また高速軸流形発振器は、発振器内のガス圧力が低
速軸流形発振器にくらべて高いが、ガス流速が大きいた
めガスの流れは乱流となり、均一なグロー放電を得るこ
とができ連続発振の場合には、安定したレーザ発振が得
られる。
Most conventional high-output gas laser oscillators are of a type in which the working gas is made to flow, and there are low-speed axial flow types, high-speed axial flow types, orthogonal types, etc. depending on the flow rate of the working gas in one direction. Among these, high-speed axial flow oscillators have characteristics such as higher output per unit oscillation length, better output beam mode, and better electrical-to-optical conversion efficiency than other low-speed axial flow oscillators. There is. In addition, in high-speed axial flow oscillators, the gas pressure inside the oscillator is higher than in low-speed axial flow oscillators, but because the gas flow velocity is high, the gas flow becomes turbulent, and a uniform glow discharge can be obtained, making it possible to achieve continuous oscillation. In this case, stable laser oscillation can be obtained.

しかし、高速軸流形発振器をパルス発振させた場合には
、レーザ管内のガス圧力が尚いために、。
However, when a high-speed axial flow oscillator is used for pulse oscillation, the gas pressure inside the laser tube is still low.

放電開始電圧が菌くなり、放電の開始を瞬時に確実に行
うことが困難となり−したがって安定したパルスレーザ
の発振を得ることが困難となる。
The discharge starting voltage becomes distorted, making it difficult to instantaneously and reliably start the discharge, and thus making it difficult to obtain stable pulsed laser oscillation.

したがって、高速軸流形発振器において、パルス発振を
させる場合には、連続発振の場合よりも作動ガス圧力を
低くして放電開始電圧を一トげなけれはならない。しか
し−作動ガス圧力を下げると放電柱に投入される電力が
低く低下してレーザ発振器の最大出力が低下してしまう
欠点がある。そこで、この出力の低下をできるだけ防止
して断続放電によるパルス発振を瞬時に確実に繰り返さ
せるために、パルス発振の休止期間にも一陽極と陰極間
に微小電流(暗電流)による微小放電を持続させておく
ことも考えられているが、設定された微小電流によって
パルス発振の休止期間中にもレーザの発振が起り加工劇
上不都合がある。また、レーザの作動ガスが微小電流に
よる放電で常に加熱されており、このためにガスの温度
が上昇する。
Therefore, in the case of pulse oscillation in a high-speed axial flow type oscillator, it is necessary to lower the working gas pressure and raise the discharge starting voltage than in the case of continuous oscillation. However, there is a drawback that when the working gas pressure is lowered, the electric power input to the discharge column is lowered and the maximum output of the laser oscillator is lowered. Therefore, in order to prevent this decrease in output as much as possible and ensure that pulse oscillation due to intermittent discharge is repeated instantaneously, a minute discharge is caused by a minute current (dark current) between one anode and cathode to be maintained even during the rest period of pulse oscillation. Although it has been considered to leave the laser oscillating in the same state, the set minute current causes laser oscillation even during the pause period of pulse oscillation, which is inconvenient in terms of processing. Furthermore, the working gas of the laser is constantly heated by discharge caused by a minute current, which causes the temperature of the gas to rise.

このガス温度の上昇はレーザ発振の効率をわずかではあ
るが低下させる結果となり、パルス放電によるレーザ発
振効率の上昇をさまたげる欠点がある。さらに、陽極と
陰極間の印加電圧を上昇させることによって一放電を瞬
時に確実に行わせることも試みられているが、この方式
では、装置各部の絶縁耐力を強化しなけれはならないだ
けでなく入力% K V Aおよび電力損失が増加する
欠点が生じる。
This increase in gas temperature results in a slight decrease in laser oscillation efficiency, which has the drawback of hindering the increase in laser oscillation efficiency due to pulsed discharge. Furthermore, attempts have been made to ensure that one discharge occurs instantaneously by increasing the voltage applied between the anode and cathode, but this method not only requires strengthening the dielectric strength of each part of the device, but also increases the input voltage. The disadvantage is that the % KVA and power losses increase.

上記欠点を解決せんとして陰極近くに補助電極を設けて
この補助電極と陰極との間に補助放電を発生させ、この
補助放電によって発生した荷電粒子の拡散によって陽極
、陰極間の主放電を誘発させる方式のものも提案されて
いる。第1図はこの方式の装置の例を示す概略図である
。同図において、1及び2は、放電管8.8の両端に設
けられたレーザ共振鏡、3,3及び4,4は、それぞれ
放電管8・8の両端部に配設された陽極及び陰極である
。5乃至7は、それぞれ、陽極3と陰極4との間に直列
に接続されたレーザ発振器の電源、電源制御回路および
バラスト抵抗器である。9・9は陽極3.と陰極4の間
でかつ陰極4の近くに設けられた補助電極、10.10
は補助電極9と陽極3との間に接続された高抵抗の抵抗
器、11はレーザ発振のための作動ガスの流れる方向、
12は補助電極9と陰極4との間で発生する補助−グロ
ー放電、13は陽極3と陰極4との間で発生する生グロ
ー放電、14は放電管8よりレーザ共振鏡1によって外
部に取り出されるレーザ光、15は放電管8内にガス流
を供給及び循環するためのブロワ、16aは放電管内の
放電によって温度上昇したガス流の熱量を除去し、また
16bはブロワ15の圧縮熱によって温度上昇したガス
流の熱量を除去するための熱交換器である。
In order to solve the above drawback, an auxiliary electrode is provided near the cathode, an auxiliary discharge is generated between the auxiliary electrode and the cathode, and a main discharge between the anode and the cathode is induced by the diffusion of charged particles generated by this auxiliary discharge. A method has also been proposed. FIG. 1 is a schematic diagram showing an example of a device of this type. In the figure, 1 and 2 are laser resonant mirrors provided at both ends of the discharge tubes 8.8, and 3, 3 and 4, 4 are anodes and cathodes provided at both ends of the discharge tubes 8 and 8, respectively. It is. Reference numerals 5 to 7 denote a power supply, a power supply control circuit, and a ballast resistor for the laser oscillator, which are connected in series between the anode 3 and the cathode 4, respectively. 9.9 is the anode 3. an auxiliary electrode provided between and near the cathode 4, 10.10
is a high-resistance resistor connected between the auxiliary electrode 9 and the anode 3; 11 is the flow direction of the working gas for laser oscillation;
12 is an auxiliary glow discharge generated between the auxiliary electrode 9 and the cathode 4; 13 is a raw glow discharge generated between the anode 3 and the cathode 4; 14 is an electric glow discharge taken out from the discharge tube 8 by the laser resonator mirror 1; 15 is a blower for supplying and circulating the gas flow in the discharge tube 8; 16a is for removing the heat of the gas flow whose temperature has increased due to the discharge in the discharge tube; and 16b is for increasing the temperature by the compression heat of the blower 15. A heat exchanger for removing the heat content of the ascending gas stream.

このような従来の冒速軸流形発振器でパルス発振をさせ
るには、電源制御回路6によって高電圧の電源回路を断
続的に開閉制御する。いま電源制御回路6によって電源
5の出力を各電極間に印加すると、補助電極9と陰極4
との間は極く近いので、これらの間で補助グロー放電1
2が開始する。
In order to cause pulse oscillation in such a conventional high-speed axial flow oscillator, the power supply control circuit 6 intermittently controls opening and closing of a high voltage power supply circuit. Now, when the power supply control circuit 6 applies the output of the power supply 5 between each electrode, the auxiliary electrode 9 and the cathode 4
Since the distance between them is very close, the auxiliary glow discharge 1
2 starts.

この補助グロー放電12による電流は抵抗器10によっ
て制限されるために極く小さなものであるが、これによ
って発生した荷電粒子は陽極側に拡散してゆき、この小
電流グロー放電によって陽極3と陰極4との間に主グロ
ー放電13が誘発されると考えられている。このような
構造は、従来から放電管のトリが方式としてよく知られ
ているところであるが、一般の放電管のように静止ガス
中における場合と本発明の対象とする音速に近い速度で
流動するガス中における場合とではその趣きを全く異に
し、以上に詳述するように第1図の方法によるものは高
速ガス流中においては多くの欠点を有するものである。
The current caused by this auxiliary glow discharge 12 is extremely small because it is limited by the resistor 10, but the charged particles generated thereby diffuse toward the anode side, and this small current glow discharge causes the anode 3 and cathode to It is believed that the main glow discharge 13 is induced between 4 and 4. Such a structure is well known as a conventional discharge tube system, but it is different from the case where it is in a stationary gas like a general discharge tube, and the case where it flows at a speed close to the speed of sound, which is the object of the present invention. The situation is completely different from that in a gas, and as detailed above, the method shown in FIG. 1 has many drawbacks in a high-speed gas flow.

その第1は補助電極を陰極側に設は−この補助電極と陰
極との間に発生した補助グロー放電による荷−重粒子の
陽極側への拡散を利用しているために、ガス流の方向を
同図に示すように一陰極から陽極へ向う方向としている
。このために−補助グロー放電によって発生した荷電粒
子は、すべて陽極側へ押し流される方向の力を受ける。
The first is that the auxiliary electrode is placed on the cathode side, which utilizes the diffusion of loaded particles toward the anode due to the auxiliary glow discharge generated between the auxiliary electrode and the cathode, which increases the direction of the gas flow. As shown in the figure, the direction is from one cathode to the anode. For this reason, all of the charged particles generated by the auxiliary glow discharge are subjected to a force in the direction of being swept away toward the anode.

しかるに、ガスレーザ発振器の発振開始前においては、
初期グロー放電によって発生する荷電粒子は電界によっ
て陰極から引き出された負電荷を有する電子とこの電子
の衝突によって自己の電子を放出して正に帯電したガス
イオン(陽イオン)とである。そしてこれらは同図中に
矢印で示したように、それぞれ電子は陽極へ、ガスイオ
ンは陰極へ移動することによって電流径路が確立するこ
とになる。このような経過は一般の放電管のように静止
ガス中における放電開始時において見られるものである
が、高速で流動するガス中においては各粒子の運動に大
きな差が生じる。即ち、質量が極端に小さくかつ体積も
小さい電子は電界によって加速されてガス流に対して数
桁速い速度となるためにほとんどガス流の影響を受けず
静止ガス中における場合とほぼ同様の運動を行うのに対
して、電子に比べて大形でしかも大なる質量のガスイオ
ンは電界によって加速されてもその速度はあまり速くな
らずガス流と同じオーダーの速度に留まる。このために
ガスイオンはガス流によって押しもどされる方向の力の
影響を大きく受けてその移動速度が極端に低−トする。
However, before the gas laser oscillator starts oscillating,
Charged particles generated by the initial glow discharge are negatively charged electrons drawn from the cathode by an electric field and gas ions (cations) that emit their own electrons and become positively charged by collision of these electrons. As shown by the arrows in the figure, electrons move to the anode and gas ions move to the cathode, thereby establishing a current path. Such a process is seen at the start of discharge in a stationary gas as in a general discharge tube, but in a gas flowing at high speed, a large difference occurs in the motion of each particle. In other words, electrons with extremely small mass and volume are accelerated by the electric field and have a speed several orders of magnitude faster than the gas flow, so they are almost unaffected by the gas flow and move in almost the same way as in a stationary gas. On the other hand, gas ions, which are larger than electrons and have a large mass, do not increase in speed very much even if they are accelerated by an electric field, and remain at a speed on the same order as the gas flow. For this reason, the gas ions are greatly influenced by the force in the direction of being pushed back by the gas flow, and their moving speed becomes extremely low.

このために、ガスイオンの電極間に留まる時間が長くな
り放電管内に大きな電荷のアンバランスが生じることに
なって放電の維持発展を妨げるようになる。
For this reason, the time the gas ions remain between the electrodes becomes longer, causing a large charge imbalance within the discharge tube, which hinders the maintenance and development of the discharge.

第2に、レーザ発振器においては抵抗器により電流を制
限してグロー放電を起させるものであるのに対して、グ
ロー放電の維持のための陰極からの電子放出は、アーク
放電のように熱電子放出や電界放出ではなく陰極に流入
する陽イオンの衝撃によって行なわれるものであるから
、この陽イオンの移動速度が上述のようにガス流のため
に減殺されると必要な電子放出量が確保できなくなり、
グロー放電の維持そのものも困難となり、主放電の誘発
が難しくなる傾向となる。
Second, in a laser oscillator, the current is limited by a resistor to cause a glow discharge, whereas the electron emission from the cathode to maintain the glow discharge is thermionic, similar to an arc discharge. Since this is done not by emission or field emission but by the impact of cations flowing into the cathode, if the movement speed of these cations is reduced by the gas flow as described above, the necessary amount of electron emission cannot be secured. gone,
It becomes difficult to maintain the glow discharge itself, and it tends to become difficult to induce the main discharge.

第3に一第1図の従来装置における機構上の欠点として
補助電極9を陰極4に接近させて設けて補助電極9と陰
極4との間に補助放電を発生させるようにしたために、
補助放電の開始を容易にするために陰極4を針状電極と
して放電開始時における電界強度を旨くすることが必要
となる。このために、主放電時におけるガスイオンの衝
撃がこの針状電極の尖端に集中することになって陰極が
損傷を受けやすくなって電流容量を大きくすることがで
きず結局、発振器の出力を向上させることができないこ
とになる。このように、陰極側に近く補助電極を設ける
従来の方式はその原理上多くの欠点を有するものであり
、詞出力レーザをパルス状に発振させることはほとんど
不可能であった。
Thirdly, one of the mechanical drawbacks of the conventional device shown in FIG.
In order to facilitate the start of the auxiliary discharge, it is necessary to use the cathode 4 as a needle-like electrode to improve the electric field strength at the time of starting the discharge. For this reason, the impact of gas ions during the main discharge concentrates on the tip of this needle-like electrode, making the cathode susceptible to damage and making it impossible to increase the current capacity, which ultimately improves the output of the oscillator. This means that you will not be able to do so. As described above, the conventional method of providing an auxiliary electrode close to the cathode side has many drawbacks in principle, and it has been almost impossible to cause the output laser to oscillate in a pulsed manner.

本発明は−ガス圧力の高い高出力の気体レーザ発振器の
放電を開始させる方法において、ガス圧を一トげたり、
陽極と陰極間の印加電圧を上昇させたりすることなく、
陽極と陰極間の断続繰り返しグロー放電を瞬時に確実に
行わせることによって、パルス発振を安定に行わせるこ
とにある。
The present invention provides a method for starting a discharge in a high-power gas laser oscillator with a high gas pressure, including increasing the gas pressure by one step,
without increasing the applied voltage between the anode and cathode.
The object of the present invention is to stably perform pulse oscillation by instantaneously and reliably causing intermittent repeating glow discharge between an anode and a cathode.

発明の要旨 本発明は一陽極と陰極との間で主放電を生じさせて高出
力のレーザ放電を行うレーザ発振器の放電開始方法にお
いて、作動ガスを陽極側から陰極側に向う方向に流すと
ともに陽極の近傍に補助電極を設けて、主放電の開始前
に、陽極と補助電極間に補助放電を発生させ、この補助
放電によって主放電を瞬時に確実に行なわせることによ
り、レーザの連続発振の開始はもちろん、断続放電のパ
ルス発振をも安定に行わせる関出カレーザ放電開始方法
を提案したものである。
SUMMARY OF THE INVENTION The present invention provides a discharge starting method for a laser oscillator that generates a main discharge between an anode and a cathode to produce a high-output laser discharge. An auxiliary electrode is provided near the anode to generate an auxiliary discharge between the anode and the auxiliary electrode before the main discharge starts, and this auxiliary discharge ensures that the main discharge occurs instantaneously, thereby starting the continuous oscillation of the laser. This paper proposes a method for starting a Sekide karlaser discharge that stably performs intermittent discharge pulse oscillation.

実施例 以下、図面を参照して本発明の実施例について説明する
。第3図は、本発明の高出力レーザ発振器の放電開始方
法を実施する装置の例を示す概略構成図であり、同図に
おいて、第1図の従来装置と同機能を有するものに同符
号を付して示す。また第3図は第2図の一装置の“イ”
−“イ”断面矢視図である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a schematic configuration diagram showing an example of an apparatus for carrying out the discharge starting method for a high-power laser oscillator according to the present invention. In the figure, parts having the same functions as the conventional apparatus shown in FIG. 1 are designated by the same reference numerals. shown below. Also, Figure 3 shows "I" of one of the devices in Figure 2.
- “A” is a cross-sectional view taken along arrows.

第2図において、補助電極9は棒状電極で共振鏡1.2
側に設けられた陽極3の近くに設けられており、放電開
始前は陰極4と同電位であるが一陽極3と陰極4との距
離にくらべて、補助電極9と陽極3との距離が、極めて
小さいので、補助電極9と陽極3との間の放電は、陽極
3と陰極4との間の放電に(らべて、低い電圧でも極め
て短時間の間に確実に行われる。この補助電極9と陽極
との間では、高抵抗の抵抗器10に゛よって放電電流が
制限されて微小放電となるとともに、−担、放電すると
抵抗器10による電圧降下のために補助電極9の電位が
低下し、補助電極9と陽極3との微小放電に誘発されて
、陽極3と陰極4との間で主放電が行なわれる。このと
きグロー放電の維持に重要な役割を果すガスイオンは作
動ガスを同図に示すように高速で共振鏡1.2側の陽極
3から陰極4に向う方向に流しているので移動速度が大
となり十分な衝撃を陰極4に与えることができる、また
陰極4はこの十分に加速された後に流入するガスイオン
の衝撃によって電子放出を行うことができるので従来方
式のように放電開始時に電界強度を高くするために針状
とする必要がなく第2図に示すようにリング状とするこ
とができ、十分な電流容量が得られる。このようにして
主放電は補助電極9と陽極3との間の微小放電に続いて
瞬時に確実に行われるために、連続発振り場合は放電開
始が確実に行われる。さらに、断続放電すなわち短い周
期で放電開始を繰返すパルスレーザの場合には、パルス
ごとに、瞬時に確実に放電が行われるために一安定した
パルスレーザの出力が得られる。
In FIG. 2, the auxiliary electrode 9 is a rod-shaped electrode and the resonant mirror 1.2
It is provided near the anode 3 provided on the side, and has the same potential as the cathode 4 before starting discharge, but the distance between the auxiliary electrode 9 and the anode 3 is smaller than the distance between the anode 3 and the cathode 4. , is extremely small, so the discharge between the auxiliary electrode 9 and the anode 3 occurs reliably in a very short time even at a low voltage (compared to the discharge between the anode 3 and the cathode 4). Between the electrode 9 and the anode, a high-resistance resistor 10 limits the discharge current, resulting in a minute discharge. The main discharge occurs between the anode 3 and the cathode 4 due to the micro discharge between the auxiliary electrode 9 and the anode 3. At this time, the gas ions that play an important role in maintaining the glow discharge are the working gas. As shown in the figure, since it flows at high speed in the direction from the anode 3 on the side of the resonant mirror 1.2 to the cathode 4, the moving speed is high and a sufficient impact can be applied to the cathode 4. Electrons can be emitted by the impact of the inflowing gas ions after they have been sufficiently accelerated, so there is no need to create a needle-like shape to increase the electric field strength at the start of discharge, as in the conventional method, as shown in Figure 2. In this way, the main discharge is instantaneously followed by the minute discharge between the auxiliary electrode 9 and the anode 3, so that continuous discharge is possible. In the case of intermittent discharge, that is, a pulsed laser that repeats the discharge start in short cycles, it is necessary to use a stable pulsed laser to ensure instantaneous discharge for each pulse. I get the output.

第4図ないし第6図は一本発明の高出力レーザ放電開始
方法を実施する他の装置の要部を示す図である。第4図
は、第3図のように陽極3と補助電極9とを対向させる
かわりに、両者を略直角に配置した場合を示す。第5図
は、陽極3と同じガス流路内で陽極3り尖端付近に一補
助電極9の尖端がくるように補助電極9を配置した場合
を示す。
FIGS. 4 to 6 are diagrams showing the main parts of another apparatus for carrying out the high-power laser discharge starting method of the present invention. FIG. 4 shows a case where the anode 3 and the auxiliary electrode 9 are arranged substantially at right angles instead of facing each other as shown in FIG. FIG. 5 shows a case where the auxiliary electrode 9 is arranged in the same gas flow path as the anode 3 so that the tip of the auxiliary electrode 9 is near the tip of the anode 3.

さらに、第6図は、陽極3と陰極4(!l:の間で陽極
付近でかつ主放電路内に補助電極9を設けた場合を示す
。このように、補助電極9は一陽極3の近傍であれはい
ずれの位置に設けられていても一王放電が瞬時に確実に
行われる。
Furthermore, FIG. 6 shows a case where an auxiliary electrode 9 is provided between the anode 3 and the cathode 4 (!l) near the anode and within the main discharge path. No matter where it is placed in the vicinity, the Ichigo discharge is instantaneously and reliably performed.

本発明の効果 以上のように、本発明の高出力レーザ放電開始方法によ
れば、ガス圧力を従来よりも制<シても従来と同様の陽
極・陰極間の印加電圧のままで、補助電極と陽極間の微
小放電に引続いて一陽極と陰極間の主放電が瞬時に確実
に行われる。したがって、連続発振の、場合には、レー
ザ発振が円滑に行われ、さらに電源回路の、出力電圧を
低下させることにより、入力KVAの低下、絶縁耐力の
軽減等の設備の低廉化を図ることができる。また断続放
電のパルス発振の場合には、パルスごとに瞬時に確実に
放電が行われるために安定したパルスレーザ出力が得ら
れ、特に高速軸流形発振器のようなガス圧が旨く高出力
の範囲においてもパルス発振が可能になる。さらに、本
発明の放電開始方法によれば、パルス発振の休止期間中
に陽極と陰極間に微小放電を持続させる方式の発振器の
ようにパルス休止期間中も微小放電による熱量の供給が
あるために完全な冷却効果が得られ7ないという欠点が
なく一各種の広範囲の加工をすることができる。また、
陽極と陰極間の主グロー放電が瞬時に確実に行われるた
めに、グロー放電に移るまでの過渡的なストリーマ放電
の期間が極めて短くなりストリーマ放電によるノイズが
減少し、特に、断続放電のパルス発振の場合のノイズの
減少効果が大きい。
Effects of the present invention As described above, according to the high-power laser discharge starting method of the present invention, even if the gas pressure is controlled more than before, the voltage applied between the anode and the cathode remains the same as before, and the auxiliary electrode Following the micro discharge between the anode and the anode, the main discharge between the one anode and the cathode is instantaneously and reliably performed. Therefore, continuous wave oscillation, in some cases laser oscillation, is performed smoothly, and by lowering the output voltage of the power supply circuit, it is possible to lower the input KVA, reduce the dielectric strength, and reduce the cost of equipment. can. In addition, in the case of intermittent discharge pulse oscillation, stable pulsed laser output can be obtained because the discharge is instantaneously and reliably performed for each pulse, especially in the high output range where the gas pressure is effective such as in a high-speed axial flow oscillator. Pulse oscillation is also possible. Furthermore, according to the discharge starting method of the present invention, heat is supplied by the minute discharge even during the pulse oscillation period, unlike an oscillator that maintains a minute discharge between the anode and the cathode during the pulse oscillation pause period. A complete cooling effect can be obtained, and there is no disadvantage of inconvenience, and a wide range of processing can be performed. Also,
Because the main glow discharge between the anode and the cathode occurs instantaneously and reliably, the period of transient streamer discharge before transitioning to glow discharge is extremely short, and noise due to streamer discharge is reduced, especially the pulse oscillation of intermittent discharge. The noise reduction effect is large in the case of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のレーザ発振器の放電開始方法を実施す
る装置の構成図、第2図は、本発明のレーザ発振器の放
電開始方法を実施する装置の構成図、第3図は、第2図
の“イ”−イ” 断面矢視図、第4図ないし第6図は、
本発明のレーザ発振器の放電開始方法を実施する他の装
置の要部を示す図である。 3・・・陽極、4・・・陰極、5・・・レーザ発振器の
電源6・・・電源制御回路、8・・・放電管、9・・・
補助電極、11・・・ガス流、12・・・補助放電、1
3・・・主放電代理人 弁理士 中 井 宏 図面の浄CJ(内りに変更なし) 第2図 第S図 第4図 第5図 第6図 手Uごネ市正書 (自 発) 昭和59年3月68 1、事1!4の表示 昭和59年特許願第181’28号 2、発明の名称 高出力レーザ発振器の放電開始方法 3、補正覆る者 事件との関係 特許出願人 大阪市淀用区田用2丁目1番11号 (026) 大阪変圧器株式会社 4、代理人 住 所 〒532 大阪市淀用区田用2丁目1番11号
[連絡先 電話 (0(i) 301−1212]5、
?ili正命令の日イ」 自 発
FIG. 1 is a block diagram of an apparatus for carrying out a conventional discharge starting method for a laser oscillator, FIG. 2 is a block diagram of an apparatus for carrying out a discharge starting method for a laser oscillator according to the present invention, and FIG. The "A"--A cross-sectional views from Figure 4 to Figure 6 are as follows:
It is a figure which shows the principal part of another apparatus which carries out the discharge starting method of the laser oscillator of this invention. 3... Anode, 4... Cathode, 5... Laser oscillator power supply 6... Power supply control circuit, 8... Discharge tube, 9...
Auxiliary electrode, 11... Gas flow, 12... Auxiliary discharge, 1
3...Main discharge agent Patent attorney Hiroshi Nakai Drawing CJ (no internal changes) Fig. 2 Fig. S Fig. 4 Fig. 5 Fig. 6 Te U Gone city official manuscript (self-produced) March 68, 1981 1. Indication of matter 1!4 1981 Patent Application No. 181'28 2. Name of the invention Method for starting discharge of high-power laser oscillator 3. Relationship with amendment overturner case Patent applicant Osaka Osaka Transformer Co., Ltd. 4, 2-1-11 Tayo, Yodoyo-ku, Osaka (026) Address: 2-1-11 Tayo, Yodoyo-ku, Osaka 532 [Contact information: Telephone (0(i)) 301-1212]5,
? ``Day of direct command'' spontaneously

Claims (1)

【特許請求の範囲】[Claims] 1、陽極と陰極との間で主放電を生じさせて高に向う方
向に流し、陽極の近傍に補助電極を設けて前記主放電の
開始前に前記陽極と補助電極との間に補助放電を発生さ
せ、前記補助放電によって主放電を開始させる高出力レ
ーザ発振器の放電開始方法。、
1. A main discharge is generated between an anode and a cathode and flows upward, an auxiliary electrode is provided near the anode, and an auxiliary discharge is caused between the anode and the auxiliary electrode before the main discharge starts. A method for starting a discharge in a high-power laser oscillator, in which a main discharge is started by the auxiliary discharge. ,
JP59018128A 1984-02-01 1984-02-01 High-speed axial laser oscillator Expired - Fee Related JPH06105812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018128A JPH06105812B2 (en) 1984-02-01 1984-02-01 High-speed axial laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018128A JPH06105812B2 (en) 1984-02-01 1984-02-01 High-speed axial laser oscillator

Publications (2)

Publication Number Publication Date
JPS60161687A true JPS60161687A (en) 1985-08-23
JPH06105812B2 JPH06105812B2 (en) 1994-12-21

Family

ID=11962965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018128A Expired - Fee Related JPH06105812B2 (en) 1984-02-01 1984-02-01 High-speed axial laser oscillator

Country Status (1)

Country Link
JP (1) JPH06105812B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012948A (en) * 1996-06-18 1998-01-16 Kawasaki Heavy Ind Ltd Axial flow gas laser device and operation thereof
WO2001093380A1 (en) * 2000-05-30 2001-12-06 Matsushita Electric Industrial Co., Ltd. Laser oscillating device
DE102016118303A1 (en) 2015-10-05 2017-04-06 Fanuc Corporation GLASS LASER CELLATOR WITH AUXILIARY ELECTRODES
WO2023188645A1 (en) * 2022-03-28 2023-10-05 精電舎電子工業株式会社 Pulsed gas laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW337049B (en) 1996-02-02 1998-07-21 Shibuya Kogyo Co Ltd Laser oscillator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576262U (en) * 1980-06-11 1982-01-13
JPS58178577A (en) * 1982-04-14 1983-10-19 Amada Co Ltd Laser oscillator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576262U (en) * 1980-06-11 1982-01-13
JPS58178577A (en) * 1982-04-14 1983-10-19 Amada Co Ltd Laser oscillator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012948A (en) * 1996-06-18 1998-01-16 Kawasaki Heavy Ind Ltd Axial flow gas laser device and operation thereof
WO2001093380A1 (en) * 2000-05-30 2001-12-06 Matsushita Electric Industrial Co., Ltd. Laser oscillating device
DE102016118303A1 (en) 2015-10-05 2017-04-06 Fanuc Corporation GLASS LASER CELLATOR WITH AUXILIARY ELECTRODES
JP2017073420A (en) * 2015-10-05 2017-04-13 ファナック株式会社 Gas laser generator with auxiliary electrode
US9819139B2 (en) 2015-10-05 2017-11-14 Fanuc Corporation Gas laser oscillator having auxiliary electrodes
DE102016118303B4 (en) 2015-10-05 2020-06-18 Fanuc Corporation GLASS LASER OSCILLATOR WITH AUXILIARY ELECTRODES
WO2023188645A1 (en) * 2022-03-28 2023-10-05 精電舎電子工業株式会社 Pulsed gas laser device

Also Published As

Publication number Publication date
JPH06105812B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
JPH0212035B2 (en)
JPS60161687A (en) Discharge starting method for high-output laser oscillator
JP3276994B2 (en) Power supply for gyrotron
JPS639177A (en) Gas laser oscillator
JPS6339113B2 (en)
JPS6350857Y2 (en)
JP3771690B2 (en) Pulse laser discharge circuit
JP3432854B2 (en) Pulse gas laser oscillator
JPS63229772A (en) Highly repetitive pulse laser oscillator
JPH09214030A (en) Gas laser oscillator
JPS6052070A (en) Coaxial type laser oscillator
JPH0832158A (en) Pulsed laser oscillator
JPS631086A (en) Gas laser oscillator
JPH01214184A (en) Pulse laser oscillation device
JPH0896997A (en) Undulator, and free electron laser device
JPS63229771A (en) Highly repetitive pulse laser oscillator
JPH0737514A (en) Electron beam accelerator
JPH06275897A (en) Discharge excited gas laser device
JPS63228776A (en) Gas laser device
JPH06283780A (en) Gas layer oscillator
JPH05327091A (en) Pulse laser apparatus
JPS625675A (en) Gas laser device
JPS62152189A (en) Gas laser oscillator
JPH01214180A (en) Pulse laser oscillating device
JPS62190785A (en) Discharge excitation short-pulse laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees