JPS625675A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPS625675A
JPS625675A JP14539285A JP14539285A JPS625675A JP S625675 A JPS625675 A JP S625675A JP 14539285 A JP14539285 A JP 14539285A JP 14539285 A JP14539285 A JP 14539285A JP S625675 A JPS625675 A JP S625675A
Authority
JP
Japan
Prior art keywords
gas
cylindrical body
discharge
cylinder
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14539285A
Other languages
Japanese (ja)
Inventor
Shuzo Yoshizumi
吉住 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14539285A priority Critical patent/JPS625675A/en
Publication of JPS625675A publication Critical patent/JPS625675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a large output by feeding a laser medium gas into a discharge tube with an interval between the first cylinder and the second cylinder of substantially the same axis as the tube as gas feeding gap, thereby increasing gas flow rate to obtain a stable glow discharge even with large discharge power. CONSTITUTION:A structure that laser medium gas flows into a discharge tube 1 is formed, the first cylinder 11 of substantially the same axis as the tube 1 is formed at the portion for feeding the gas to the tube, and the second cylinder 15 of substantially the same axis as the first cylinder 11 is formed at an interval 14 form the first cylinder 11. A gap 14 between the cylinder 11 and the cylinder 15 is formed to feed the gas to the tube 1 as gas feeding gap. Further, a cylindrical discharging electrode 16 having an inner diameter D2 larger than the diameter D1 of the outer periphery of the cylinder 11 is disposed substantially coaxially with the cylinder 11. Thus, a discharging current is increased in the glow discharge stable state to increase the laser output.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は放電を用いたガスレーザ族(aの改良に関する
ものである。。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in the gas laser family (a) using electric discharge.

従来の技術 ガスレーザ装置は炭酸ガス、窒素ガス、ヘリウムガス等
の媒質ガスを放電管内に充満し、放電管に設けた陽極、
陰穫でグロー放電を行ない、レーザ媒質ガスを励起して
レーザ光を発振させるものが、一般的である。又、レー
ザ媒質ガスは放電により温度が上昇し、温度上界は゛レ
ーザ出力を低下さぜる。ぞこで、ブロアーなどを用いて
レーザ媒質ガスが故?h管内を高速で通過Cきるように
し、強f、II的にレーザ媒質ガスの温度l二胃を防止
することが行われている。レーザ媒質ガスの温度は、放
電に役人Jる電気エネルギーに比例して上昇し、放電管
内を通過するガス流量に比例して低下する。
Conventional gas laser devices fill a discharge tube with a medium gas such as carbon dioxide gas, nitrogen gas, helium gas, etc., and an anode installed in the discharge tube.
A common method is to generate a glow discharge in the dark to excite the laser medium gas and oscillate the laser beam. Further, the temperature of the laser medium gas increases due to discharge, and the upper temperature limit reduces the laser output. Is it possible to remove the laser medium gas using a blower or the like? The temperature of the laser medium gas is strongly prevented by allowing it to pass through the tube at high speed. The temperature of the laser medium gas increases in proportion to the electrical energy involved in the discharge, and decreases in proportion to the gas flow rate passing through the discharge tube.

レーザ出力(ま放電に投入するエネルギーに比例して増
大し、ガス温度に逆比例して減少Jる。このため、放電
エネルギーを増してゆくとレーザ出力は増大するが、レ
ーザガス温度が上昇覆ることに依り出力は飽和する。放
電管内を通過するガス流甲を増大すると、ガス温度上昇
を抑制でき、投入放電エネルギーを大きくでき、レーザ
出力の増大をはかれる。
Laser output (increases in proportion to the energy input into the discharge and decreases in inverse proportion to the gas temperature. Therefore, as the discharge energy increases, the laser output increases, but the laser gas temperature rises. The output becomes saturated as a result.By increasing the flow of gas passing through the discharge tube, the rise in gas temperature can be suppressed, the input discharge energy can be increased, and the laser output can be increased.

以−Lのような強制冷却するガスレーザ“装置はレーザ
光軸方向、ガス流方向、放電方向の取り方によって、い
くつかの方式に分けられる。このうち、レーザ光軸方向
に放電を行い、同じ方向にガス流を高速で流1ものを、
高速軸流型レーザと呼lυでいる。高速軸流レーザ°は
レーザの強度分イ(iが軸対称であること、効率が高い
ことなどから、精密切lWiなどの加工用に実用化され
ている。
Forced cooling gas laser devices such as L are divided into several types depending on the direction of the laser optical axis, gas flow direction, and discharge direction. A gas stream flowing at high speed in the direction of
It is called a high-speed axial flow laser. High-speed axial flow lasers have been put into practical use for processing such as precision cutting because the laser intensity (i) is axially symmetrical and the efficiency is high.

発明が解決しようとする問題点 高速軸流レーザの出力増大には前jホしたようにガス流
間を増してグロー放電注入電力を増大してやることが必
要である。このため従来より、放電電流を増して放電注
入電力を増していた。ところが、一般に放電形態にはグ
ロー放電と7−り放電があり、放電電流が増加するにつ
れてグロー放電は不安定になりアーク放電に移行する。
Problems to be Solved by the Invention In order to increase the output of a high-speed axial flow laser, it is necessary to increase the gas flow interval and increase the glow discharge injection power as described above. For this reason, conventionally, the discharge current has been increased to increase the discharge injection power. However, discharge forms generally include glow discharge and 7-way discharge, and as the discharge current increases, glow discharge becomes unstable and shifts to arc discharge.

アーク放電は放電が集中し、ガス温度を急激に増加させ
ることになり、レーザ出力は急減する。特に電穫面では
グロー放電が局部的に集中し、更に放電を不安定にし、
実質上レーザ出力の増大を妨げることになる。特に、ガ
ス流間を増してゆくと電極放電面でのガス流速分布が一
様でなくなるため、局部的な圧力の不均一が発生する。
Arc discharge concentrates, causing a rapid increase in gas temperature and a rapid decrease in laser output. Especially on the electric harvesting surface, glow discharge concentrates locally, making the discharge even more unstable.
This will substantially prevent an increase in laser output. In particular, as the gas flow distance is increased, the gas flow velocity distribution on the electrode discharge surface becomes uneven, resulting in local pressure non-uniformity.

ガス圧力の局所的減少は、放電を集中させ、集中した放
電によりガス温度の局所的上昇をまねく。その結果、更
にガス密度が局所的に減少し、t!i電h(集中するこ
とになる。従って、ガス流間を増大して、グロー放電注
入tIlli力を増大することは、グローIIi電の不
安定性に依って限界が与えられていた。このため、人出
カレー罎fを作る時は、放電管の数を増A5ずことで実
現していた。
A local decrease in gas pressure causes the discharge to concentrate and the concentrated discharge leads to a local increase in gas temperature. As a result, the gas density further decreases locally, and t! Therefore, increasing the gas flow distance to increase the glow discharge injection force has been limited by the instability of the glow IIi electric current. When making a popular curry bottle, this was achieved by increasing the number of discharge tubes.

本発明はガス流間を増大し、大きな放電注入電力におい
てら安定しICグ[コー放電を得て、大出力の(qられ
るガスレーザ装置を促供することを目的と]゛る。
The present invention aims to increase the gas flow rate, obtain stable IC laser discharge even at large discharge injection power, and promote a high output gas laser device.

問題点を解決するための手段 本発明のガスレーザ装置は、放電管内にレーザ媒質ガス
を流づよう構成Jると共に、前記レーザ媒質ガスを前記
放電管内に導入する部分に前記放電管とほぼ同軸の第1
の円筒体を設u1この第1の円in体と一定の隙間を隔
てて第1の円筒体とばばIC11軸の第2の円筒体を設
けて、第1の円筒体と第2の円筒体の間の隙間をガス導
入隙間として放電管内にシー11媒質ガスを尋人するよ
う構成し、かつ前記ガス導入隙間の上流側に前記第1の
円筒体の外因(¥よりも大ぎな内径を有する円筒放電電
極を第1の円筒体とほぼ同軸に配設したことを特徴どす
る。
Means for Solving the Problems The gas laser device of the present invention is configured to allow a laser medium gas to flow into a discharge tube, and has a part that introduces the laser medium gas into the discharge tube substantially coaxially with the discharge tube. 1st
Provide a cylindrical body u1 with a certain gap between the first cylindrical body and the second cylindrical body of the IC11 axis, and connect the first cylindrical body and the second cylindrical body. The gap between the cylinders is configured to be used as a gas introduction gap to introduce the medium gas into the discharge tube, and the external cause of the first cylindrical body (having an inner diameter larger than It is characterized in that the cylindrical discharge electrode is disposed approximately coaxially with the first cylindrical body.

また本発明のガスレーザ装置は、上記のように円筒放電
電極を設けると共に、この円筒放N電極のガス流に平行
な円面を除く両端面を絶縁材で覆ったことを特徴とする
Further, the gas laser device of the present invention is characterized in that the cylindrical discharge electrode is provided as described above, and both end surfaces of the cylindrical discharge N electrode except for the circular surface parallel to the gas flow are covered with an insulating material.

作用 この構成により、放電管とほぼ同軸の第1、第2の円筒
体と、この両回筒体で形成される隙間を介してレーザ媒
質ガスを放電管に導入するため、レーザ媒質ガスは、第
1の円筒体と第2の円筒体で形成される隙間を通過する
時に流速が最大になっており、このガス流の高い隙間の
下流に放電電極を配置したため、電極における放電をガ
スの下流方向に集中できる。これにより、放電面積を小
さくでき、局所的ガス圧力の不均一によるye’llを
小さくできる。局部的に温度上界したガスを知時間に電
極面から取り除くことができる。しかも、隙間より電極
近傍に流れ込む時にはガス流路が拡大するため、断熱膨
張によりレーク“ガスが急冷され、局部的にガス温度の
一1二nを防止できる。従って、ガス流量を増大する捏
水発明の効果は増大Jることができ、放電注入電力を増
大することができるものである。
Effect: With this configuration, the laser medium gas is introduced into the discharge tube through the gap formed between the first and second cylindrical bodies, which are substantially coaxial with the discharge tube, and these two cylinder bodies. The flow velocity is at its maximum when passing through the gap formed by the first cylinder and the second cylinder, and since the discharge electrode is placed downstream of this gap where the gas flow is high, the discharge at the electrode is I can concentrate on the direction. As a result, the discharge area can be reduced, and ye'll due to non-uniformity of local gas pressure can be reduced. Gas whose temperature has locally risen can be removed from the electrode surface in a short period of time. Moreover, since the gas flow path expands when it flows into the vicinity of the electrode from the gap, the lake gas is rapidly cooled due to adiabatic expansion, and local gas temperature can be prevented from increasing. The effect of the invention can be increased and the discharge injection power can be increased.

また、円筒放電電極のガス流に平行する円面を除く両端
面を絶縁材で覆うことによりグロー放電が安定する。
In addition, glow discharge is stabilized by covering both end faces of the cylindrical discharge electrode with an insulating material except for the circular surface parallel to the gas flow.

実施例 以下、本発明を一実施例に従って説明する。 。Example Hereinafter, the present invention will be explained according to one embodiment. .

第1図は本発明による高速軸流ガスレーザ装置の全体構
成を示すものである。1は放電管で、両端には電極2が
あり、この電極2間にはグロー放雷を発生させる直流高
圧電源3が接続されている。
FIG. 1 shows the overall configuration of a high-speed axial flow gas laser device according to the present invention. A discharge tube 1 has electrodes 2 at both ends, and a DC high voltage power source 3 for generating glow lightning is connected between the electrodes 2.

放電管1内は炭酸ガス、N索ガス、ヘリウムガス等によ
る混合ガスがブロワ−4により流れている。
Inside the discharge tube 1, a mixed gas of carbon dioxide gas, N-cord gas, helium gas, etc. is flowing by a blower 4.

rIi電管1の各端には光学的共振器を構成する反射v
L5と出力鏡6が配置されている。ブロワ−4は接続管
7を通して放電管1にレーザ媒質ガスの流れを作り出し
ている。レーザ媒質ガスは放電管1で放電により加熱さ
れ、熱変換器8を通ってブロワ−4に入る。ブロワ−4
によってレーザガスは圧縮される。圧縮による発熱が大
ぎい場合には熱変換器9が設けられる。レーザガスは矢
印10はレーザ媒質ガスの循環方向を示している。
At each end of the rIi tube 1 there is a reflection v constituting an optical resonator.
L5 and output mirror 6 are arranged. The blower 4 creates a flow of laser medium gas into the discharge tube 1 through the connecting tube 7. The laser medium gas is heated by discharge in the discharge tube 1 and enters the blower 4 through the heat converter 8. Blower 4
The laser gas is compressed. If the heat generated by compression is large, a heat converter 9 is provided. As for the laser gas, an arrow 10 indicates the direction of circulation of the laser medium gas.

第2図は第1図のガスレーザ装置において、ブロワ−4
でレーザ媒質ガスが放電管1に送り込まれる近傍の断面
図を示し、レーザ媒質ガスは前記接続管7を通って流れ
込んでいる。接続管7から流れ込んだレーザ媒質ガスは
、放電@1に直接には流れず、M電管1とほぼ同軸に配
設された絶縁性の第1の円筒体11とレーザ媒質ガス導
入ブロック12どの間に形成されている空間13を通る
。第1の円筒体11はガラス筒やセラミックなどを用い
る。
Figure 2 shows the blower 4 in the gas laser device of Figure 1.
shows a cross-sectional view of the vicinity where the laser medium gas is fed into the discharge tube 1, and the laser medium gas flows through the connecting tube 7. The laser medium gas flowing from the connecting pipe 7 does not flow directly into the discharge @1, but rather between the first insulating cylindrical body 11 disposed approximately coaxially with the M electric tube 1 and the laser medium gas introduction block 12. It passes through the space 13 formed between them. The first cylindrical body 11 is made of a glass cylinder, ceramic, or the like.

第1の円筒体11の前記bりTi管1側の端部近傍に4
よ、第1の円筒体11の外周と所定の隙間14を設けて
第2の円筒体15が配置されている。レーザ媒質ガスは
この隙間14を通って高速で放電管1に流入する。
4 near the end of the first cylindrical body 11 on the side of the b-shaped Ti tube 1.
The second cylindrical body 15 is arranged with a predetermined gap 14 between the outer periphery of the first cylindrical body 11 and the second cylindrical body 15 . The laser medium gas flows into the discharge tube 1 at high speed through this gap 14.

更に、この隙間14の下流側の近1力には第1の円筒体
11の外周径D1よりも大きい内径D2の円筒電極16
が第1の円筒体11と同軸に設けられている。
Furthermore, a cylindrical electrode 16 with an inner diameter D2 larger than the outer diameter D1 of the first cylindrical body 11 is located near the downstream side of this gap 14.
is provided coaxially with the first cylindrical body 11.

このような構成により、レーザ媒質ガス流は第1と第2
の円筒体11.15間に形成される隙間14を通るため
、均一なガス流が得られる。しかも、放電管1に流入す
るレーザガスを全てこの隙間14を通過させることがで
き、電極表面でのガス流濤を高めることができる。これ
により、電極面における放電面積をガス流下流に限定で
き、ガス流の不均一によるグロー放電の不安定性を解決
できる。
With this configuration, the laser medium gas flow is divided into the first and second
Since the gas flows through the gap 14 formed between the cylindrical bodies 11 and 15, a uniform gas flow is obtained. Moreover, all the laser gas flowing into the discharge tube 1 can pass through this gap 14, and the gas flow on the electrode surface can be increased. Thereby, the discharge area on the electrode surface can be limited to the downstream side of the gas flow, and the instability of glow discharge due to non-uniformity of the gas flow can be solved.

また、隙間14からレーザ媒質ガスが拡大されて放電管
1に流入するため、ガスは所熱膨眼による急冷のために
tli電温度不均−上界も防止できる。
In addition, since the laser medium gas is expanded through the gap 14 and flows into the discharge tube 1, the gas is rapidly cooled due to predetermined thermal expansion, thereby preventing an uneven temperature upper limit.

第3図は他の実施例を示し、第2図と同様の作用を成す
ものには同一符号が付けられている。この第3図では、
円筒電極16のガス流に平行な円面(A)を除く両端面
が絶縁物17で覆われており、これによってグロー放電
が一層局部的限定され、グロー放電がより安定する。
FIG. 3 shows another embodiment, in which parts having the same functions as those in FIG. 2 are given the same reference numerals. In this figure 3,
Both end surfaces of the cylindrical electrode 16 except for the circular surface (A) parallel to the gas flow are covered with an insulator 17, thereby further localizing the glow discharge and making the glow discharge more stable.

発明の詳細 な説明のように本発明のガスレーデ装置は、放電管中心
軸とほぼ同軸の第1の円筒体と、この第1の円筒体の外
周と所定の隙間を設けて第1の円筒体とほぼ同軸の第2
の円筒体との隙間をレーザ媒質ガスが流れるため、放電
管に流れ込むレーザ媒質ガスの全てをこの隙間を流ける
ため、電極面を高速度でガスを流すことができ、円筒電
極面での放電面積をガス下流に限定して、減少できる。
As described in the detailed description of the invention, the gaslade device of the present invention includes a first cylindrical body substantially coaxial with the central axis of the discharge tube, and a first cylindrical body with a predetermined gap provided between the outer periphery of the first cylindrical body and the first cylindrical body. The second almost coaxial with
Since the laser medium gas flows through the gap between the cylindrical body and the cylindrical body, all of the laser medium gas flowing into the discharge tube flows through this gap, so the gas can flow at high speed over the electrode surface, and the discharge at the cylindrical electrode surface. The area can be reduced by limiting the area downstream of the gas.

これにより、電極における局所的ガス圧力の不均一によ
る影響を小さくできる。又、局部的に温度上昇したガス
を短auiに電極面から取り除くことが出来、アーク移
行に温度玉貸から成長することを防止できる。これによ
りグローt!l電安定状態において放電注入電流を増加
させ、レーザ出力を増大することが可1克となる。
Thereby, the influence of local gas pressure non-uniformity at the electrode can be reduced. In addition, gas whose temperature has locally increased can be removed from the electrode surface in a short period of time, and it can be prevented from growing due to temperature drop due to arc transfer. This will give you glow t! It is possible to increase the laser output by increasing the discharge injection current in a stable state.

このように構成すると、−放電当りの飽和電力が従来1
〜3kwであったものを、本発明では10へ一2Okv
に増大でき、レーザ出力を100〜300Wのしのでi
 kw〜2kwが得られる。
With this configuration, the saturation power per discharge is 1
~3kw was reduced to 10 to 20kv in the present invention.
It is possible to increase the laser output to 100-300W.
kW to 2 kW can be obtained.

また、筒状電極のガス流に平行する円面を除く両端面を
絶縁材で覆うなどして小さくする程、よリグロー放電が
安定する。
Furthermore, the smaller the cylindrical electrode is, for example by covering both end surfaces of the cylindrical electrode except for the circular surface parallel to the gas flow with an insulating material, the more stable the reglow discharge will be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガスレーザ装置の実施例の仝体構成図
、第2図と第3図はそれぞれ第1、第2の発明における
ノ第1図の装部拡大断面図である。 1・・・tIl電管、4・・・ブ[Jワー、5・・・反
射鏡、6・・・出力鏡、7・・・接続管、10・・・レ
ーザ媒質ガスの循環方向、11・・・第1の円筒体、1
2・・・レーザ媒質ガス導入ブf]ツク、14・・・隙
間、15・・・第2の円筒体、16・・・円筒電極、1
1・・・絶縁物 代理人   森  本  義  弘 第1図 ゝ4 @2図 ′l
FIG. 1 is a structural diagram of an embodiment of the gas laser device of the present invention, and FIGS. 2 and 3 are enlarged sectional views of the parts shown in FIG. 1 in the first and second inventions, respectively. DESCRIPTION OF SYMBOLS 1...tIl electric tube, 4...B [J war, 5...Reflector, 6...Output mirror, 7...Connecting tube, 10...Circulation direction of laser medium gas, 11 ...first cylindrical body, 1
2...Laser medium gas introduction block f]tsuk, 14...Gap, 15...Second cylindrical body, 16...Cylindrical electrode, 1
1... Insulator agent Yoshihiro Morimoto Figure 1ゝ4 @Figure 2'l

Claims (1)

【特許請求の範囲】 1、放電管内にレーザ媒質ガスを流すよう構成すると共
に、前記レーザ媒質ガスを前記放電管内に導入する部分
に前記放電管とほぼ同軸の第1の円筒体を設け、この第
1の円筒体と一定の隙間を隔てて第1の円筒体とほぼ同
軸の第2の円筒体を設けて、第1の円筒体と第2の円筒
体の間の隙間をガス導入隙間として放電管内にレーザ媒
質ガスを導入するよう構成し、かつ前記ガス導入隙間の
下流側に前記第1の円筒体の外周径よりも大きな内径を
有する円筒放電電極を第1の円筒体とほぼ同軸に配設し
たガスレーザ装置。 2、放電管内にレーザ媒質ガスを流すよう構成すると共
に、前記レーザ媒質ガスを前記放電管内に導入する部分
に前記放電管とほぼ同軸の第1の円筒体を設け、この第
1の円筒体と一定の隙間を隔てて第1の円筒体とほぼ同
軸の第2の円筒体を設けて、第1の円筒体と第2の円筒
体の間の隙間をガス導入隙間として放電管内にレーザ媒
質ガスを導入するよう構成し、かつ前記ガス導入隙間の
下流側に前記第1の円筒体の外周径よりも大きな内径を
有する円筒放電電極を第1の円筒体とほぼ同軸に配設し
、円筒放電電極のガス流に平行な円面を除く両端面を絶
縁物で覆ったガスレーザ装置。
[Scope of Claims] 1. A first cylindrical body is configured to flow a laser medium gas into the discharge tube, and a first cylindrical body substantially coaxial with the discharge tube is provided at a portion where the laser medium gas is introduced into the discharge tube. A second cylindrical body substantially coaxial with the first cylindrical body is provided at a certain gap from the first cylindrical body, and the gap between the first cylindrical body and the second cylindrical body is used as a gas introduction gap. A cylindrical discharge electrode configured to introduce a laser medium gas into the discharge tube and having an inner diameter larger than an outer circumferential diameter of the first cylindrical body on the downstream side of the gas introduction gap is substantially coaxial with the first cylindrical body. Gas laser equipment installed. 2. The structure is such that a laser medium gas flows into the discharge tube, and a first cylindrical body substantially coaxial with the discharge tube is provided at a portion where the laser medium gas is introduced into the discharge tube, and the first cylindrical body and A second cylindrical body substantially coaxial with the first cylindrical body is provided with a certain gap therebetween, and the gap between the first cylindrical body and the second cylindrical body is used as a gas introduction gap to introduce laser medium gas into the discharge tube. A cylindrical discharge electrode having an inner diameter larger than the outer circumferential diameter of the first cylindrical body is disposed on the downstream side of the gas introduction gap substantially coaxially with the first cylindrical body, and the cylindrical discharge A gas laser device in which both ends of the electrode, except for the circular surface parallel to the gas flow, are covered with an insulating material.
JP14539285A 1985-07-02 1985-07-02 Gas laser device Pending JPS625675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14539285A JPS625675A (en) 1985-07-02 1985-07-02 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14539285A JPS625675A (en) 1985-07-02 1985-07-02 Gas laser device

Publications (1)

Publication Number Publication Date
JPS625675A true JPS625675A (en) 1987-01-12

Family

ID=15384194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14539285A Pending JPS625675A (en) 1985-07-02 1985-07-02 Gas laser device

Country Status (1)

Country Link
JP (1) JPS625675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155193A (en) * 2010-01-28 2011-08-11 Mitsubishi Electric Corp Co2 gas laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155193A (en) * 2010-01-28 2011-08-11 Mitsubishi Electric Corp Co2 gas laser device

Similar Documents

Publication Publication Date Title
US4375690A (en) Multi-phase silent discharge gas laser apparatus
JPH0763033B2 (en) High power plasma jet generator
US4470144A (en) Coaxial-type carbon dioxide gas laser oscillator
US4677637A (en) TE laser amplifier
JPH06164042A (en) Gas-laser oscillation apparatus
US3860887A (en) Electrically excited high power flowing gas devices such as lasers and the like
US4706257A (en) Gas laser generator and method of operating same
US3952266A (en) Gaseous flux laser generator with pre-ionization gas injection nozzle
JPS625675A (en) Gas laser device
EP0317632B1 (en) Gas laser device
JPS61252677A (en) Gas laser device
JPS60161687A (en) Discharge starting method for high-output laser oscillator
US4993037A (en) High speed axial flow gas laser generator
JPH02208984A (en) Axial flow type gas laser provided with auxiliary electrode
JPS6420682A (en) Gas laser apparatus excited by high frequency discharge
JPS61112389A (en) High speed axial flow type gas laser device
JPS6348881A (en) Gas laser oscillator
JPS6235589A (en) Laser oscillator
Bochum Annular CO 2 waveguide lasers
Gastaud et al. Design and performances of a 10-kW fast-axial-flow CO2 laser
JPS6114782A (en) Gas laser generator
JPS63181387A (en) Pulse gas laser
JPH09214032A (en) Laser oscillator
JPS6232671A (en) Axial flow type gas laser apparatus
JPS60206080A (en) Gas laser device