JPS61160818A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS61160818A
JPS61160818A JP280385A JP280385A JPS61160818A JP S61160818 A JPS61160818 A JP S61160818A JP 280385 A JP280385 A JP 280385A JP 280385 A JP280385 A JP 280385A JP S61160818 A JPS61160818 A JP S61160818A
Authority
JP
Japan
Prior art keywords
magnetic
yoke
head
magnetic field
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP280385A
Other languages
Japanese (ja)
Inventor
Sadaichi Miyauchi
貞一 宮内
Toru Kira
吉良 徹
Koji Otsuka
光司 大塚
Ryoji Namikata
量二 南方
Mitsuhiko Yoshikawa
吉川 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP280385A priority Critical patent/JPS61160818A/en
Publication of JPS61160818A publication Critical patent/JPS61160818A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To decrease B-jump noise by forming at least one of yokes which face each other via a head gap part of a high permeability magnetic material having no magnetic wall. CONSTITUTION:The upper yoke 1 formed of a 'Permalloy(R)' sputtered film is set at 0.5-1.0mum film thickness and forms a magnetic path for conducting a magnetic field 3 generated by a recording medium 2 such as magnetic tape to an MR element 4. The element 4 is formed of a 'Permalloy(R)' film deposited by evaporation to 300-500Angstrom film thickness. The length thereof is set at about the length of the track width. A conductor 5 consisting of Al-Cu is disposed to face the lower part of the element 4 in order to apply a bias magnetic field to the element 4. The head gap 6 at the end face of the yoke 1 facing the magnetic recording medium 2 faces the lower yoke 7. The yoke 7 is manufactured of the high permeability magnetic material which does not form a magnetic wall. Said yoke is deposited on a substrate 8. The film of a 'Sendust(R)' alloy, etc. formed to several mum by a sputtering method, etc. is used for the yoke 7.

Description

【発明の詳細な説明】 く技術分野〉 本発明は強磁性薄膜の磁気抵抗効果を応用した磁気抵抗
効果素子(以下MR素子と称す)を用いて磁気記録媒体
に記録された信号の検出を行なう薄膜磁気ヘッドに関す
る。
[Detailed Description of the Invention] Technical Field> The present invention detects signals recorded on a magnetic recording medium using a magnetoresistive element (hereinafter referred to as an MR element) that applies the magnetoresistive effect of a ferromagnetic thin film. It relates to a thin film magnetic head.

〈従来技術〉 強磁性薄膜の磁気抵抗効果を利用した薄膜磁気ヘッドは
、一般に多用されている巻線型磁気ヘッドと比較して多
くの利点を有することが知られている。部ち薄膜磁気ヘ
ッドは磁気記録媒体に記録された磁化パターンから発生
する信号磁界を受け、これをMR素子の抵抗変化に基く
電圧変化として取り出すものであるため、磁気記録媒体
の移送速度に依存せずに信号を再生することができ、移
送速度が低い場合に巻線型の磁気ヘッドよりも高出力の
再生信号が得られるという利点を備えている。
<Prior Art> Thin-film magnetic heads that utilize the magnetoresistive effect of ferromagnetic thin films are known to have many advantages over commonly used wire-wound magnetic heads. A thin film magnetic head receives a signal magnetic field generated from a magnetization pattern recorded on a magnetic recording medium and extracts this as a voltage change based on a resistance change of an MR element, so it does not depend on the transfer speed of the magnetic recording medium. This type of magnetic head has the advantage of being able to reproduce a signal without any movement, and that it can obtain a higher output reproduction signal than a wire-wound magnetic head when the transport speed is low.

実際の使用に際してはMR素子単体で薄膜磁気ヘッドを
構成するよりもMR素子部をヘッド先端から離し、磁気
記録媒体にて発生した磁束をMR素子部まで導く磁束導
入路(ヨーク)を配置した第2図の如き構造の通常ヨー
クタイプMRヘッド似下YMRヘッドと称す)と呼ばれ
る薄膜磁気ヘッドの方が信号の分解能の向上やMR素子
の耐久性の向上に有効であり、近年このタイプのヘッド
が固定ヘッド・ディジタルオーディオ用再生ヘッドとし
て注目されている(第8回日本応用磁気学会学術講演概
要集(1984)14PB−111’−ヨークタイプM
Rヘッドの再生特性」参照)。
In actual use, rather than constructing a thin-film magnetic head with a single MR element, the MR element part is separated from the head tip, and a magnetic flux introduction path (yoke) is arranged to guide the magnetic flux generated in the magnetic recording medium to the MR element part. A thin film magnetic head called a normal yoke type MR head (also referred to as a YMR head), which has a structure as shown in Figure 2, is more effective in improving signal resolution and durability of the MR element, and in recent years this type of head has become more popular. It is attracting attention as a fixed head digital audio playback head (8th Japan Society of Applied Magnetics Academic Conference Abstracts (1984) 14PB-111'-Yoke type
(Refer to "Reproduction characteristics of R head").

第2図は従来のYMRヘッドのトラック幅方向に垂直な
方向の断面図である。上側ヨーク9は通常0.5〜1.
0μm程度の膜厚のパーマロイ膜で作製されており磁気
記録媒体10で発生した磁界11をMR素子!2に導く
ための磁路となる。MR素子12はパーマロイ蒸着膜で
作製され、膜厚は300A乃至500A 、長さはトラ
ック幅の約50μmに設定されている。またMR素子1
2にバイアス磁界を印加するためにA4−Cuから成る
導体13が配設されている。ヘッドギャップ14は実際
に使用される記録波長が最小0.5μm程度であるので
0.2乃至0.3μm程度に設定される。下側ヨーク1
5は高透磁率磁性体から成り、本発明で問題となるもの
である。一般には多結晶NiZnフェライト基板や単結
晶又は多結晶MnZn7エライト基板が用いられる。ト
ラック幅は通常YMRヘッドが多トラツク構成となるた
め50μm程度に設定される。
FIG. 2 is a cross-sectional view of a conventional YMR head in a direction perpendicular to the track width direction. The upper yoke 9 is usually 0.5 to 1.
It is made of a permalloy film with a thickness of about 0 μm, and the magnetic field 11 generated by the magnetic recording medium 10 is transmitted to the MR element! It becomes a magnetic path to lead to 2. The MR element 12 is made of a permalloy vapor-deposited film, and the film thickness is set to 300 to 500 A, and the length is set to about 50 μm, which is the track width. Also, MR element 1
A conductor 13 made of A4-Cu is disposed to apply a bias magnetic field to 2. The head gap 14 is set to about 0.2 to 0.3 μm since the minimum recording wavelength actually used is about 0.5 μm. lower yoke 1
5 is made of a high magnetic permeability magnetic material and is a problem in the present invention. Generally, a polycrystalline NiZn ferrite substrate or a single crystal or polycrystalline MnZn7 elite substrate is used. The track width is usually set to about 50 μm since the YMR head has a multi-track configuration.

上記の如<MR素子を具備した薄膜磁気ヘッドにおいて
は、強磁性体特有のノイズや信号波形の歪が再生波形の
S/N比に与える影響が大きな問題となっている。その
ノイズや波形の歪は第3図に示すような測定装置で記録
媒体からの磁界の応答と同様なヘッドの出力応答特性と
して判別することができる。第3図において、I6は数
10Hzの正弦波発振器、17は電流アンプ、18はコ
イル、19は測定するヘッド、20は磁界方向でトラッ
ク幅方向に垂直、21はMR素子に通電するセンス電流
源、22はセンス電流、23は高入力インピーダンス反
転アンプ、24はコイルに通電する電流モニター用抵抗
、25はシンクロスコープのX入力、26はシンクロス
コープのY入力、27はシンクロスコープの管面を表わ
す。第3図に示す測定装置に入力磁界閃とヘッド出力(
至)を測定するとシンクロスコープ管面27に第4図(
写真)のような磁界−出力特性曲線が得られる。ここで
センス電流は5mA 、アンプゲインは60dB。
In a thin film magnetic head equipped with an MR element as described above, a major problem is the influence of noise peculiar to ferromagnetic materials and distortion of signal waveforms on the S/N ratio of reproduced waveforms. The noise and waveform distortion can be determined using a measuring device as shown in FIG. 3 as output response characteristics of the head similar to the response of the magnetic field from the recording medium. In FIG. 3, I6 is a sine wave oscillator of several tens of Hz, 17 is a current amplifier, 18 is a coil, 19 is a measuring head, 20 is a magnetic field direction perpendicular to the track width direction, and 21 is a sense current source that energizes the MR element. , 22 is the sense current, 23 is a high input impedance inverting amplifier, 24 is a current monitoring resistor that conducts current to the coil, 25 is the X input of the synchroscope, 26 is the Y input of the synchroscope, and 27 is the tube surface of the synchroscope. . The input magnetic field flash and head output (
4) is measured on the synchroscope tube surface 27.
A magnetic field-output characteristic curve as shown in photo) can be obtained. Here, the sense current is 5mA and the amplifier gain is 60dB.

シンクロスコープXは1divlOOe SYはIdi
vO,5Vである。
Synchronoscope X is 1divlOOe SY is Idi
vO, 5V.

下側ヨーク15に多結晶NiZn7zライト基板を用い
ると、第4図に示す如く磁界に対して出力は概ね2乗特
性を呈するが曲線の途中で不連続な変化点が多数現われ
る。この変化点は通常バルクハウゼンジャンプ(以下B
−ジャンプと称す)と呼ばれ、YMRヘッドのノイズの
主要因となっている。このノイズの大小関係はある磁界
でのB−ジャンプの大きさのみでなく全体としてのB−
ジャンプの大きさと頻度からノイズの大小関係を判別す
る必要がある。また、第4図にも見られる如く部分的に
小さなヒステリシスの様なものも現われているが、以下
ではこれとB−ジャンプを総称してB−ジャンプノイズ
と称する。実際に記録媒体からの信号磁界を再生すると
きは第2図の導体13に通電してバイアス磁界を発生さ
せ、バイアス磁界によってヘッドを線型応答に近づける
が、第4図に対応する再生出力の変化点としてB−ジャ
ンプノイズが現われる。このB−ジャンプの原因の一つ
はMR素子内での磁化が磁区構造をとり、磁壁の不連続
的移動に起因すると考えられている。
When a polycrystalline NiZn7z light substrate is used for the lower yoke 15, as shown in FIG. 4, the output exhibits approximately square-law characteristics with respect to the magnetic field, but many discontinuous change points appear in the middle of the curve. This change point is usually the Barkhausen jump (hereinafter referred to as B
-jump) and is the main cause of noise in YMR heads. The relationship between the magnitude of this noise is determined not only by the size of the B-jump in a certain magnetic field but also by the overall B-
It is necessary to determine the magnitude of noise from the size and frequency of jumps. Furthermore, as can be seen in FIG. 4, something like small hysteresis also appears in some parts, but below, this and B-jump are collectively referred to as B-jump noise. When actually reproducing the signal magnetic field from the recording medium, the conductor 13 shown in Figure 2 is energized to generate a bias magnetic field, and the bias magnetic field causes the head to approach a linear response, but the reproduction output changes as shown in Figure 4. B-jump noise appears as points. One of the causes of this B-jump is thought to be that the magnetization within the MR element has a magnetic domain structure and is caused by discontinuous movement of domain walls.

B−ジャンプを見易くするために第3図の測定装置のX
入力25をAC結合として測定した結果を第5図(写真
)に示す。以下の説明では小さいB−ジャンプの大小関
係が問題となるので磁界−出力測定ではX入力25はA
C結合とする。
B - To make the jump easier to see, mark the X of the measuring device in Figure 3.
Figure 5 (photograph) shows the results of measurement with input 25 being AC coupled. In the following explanation, the relationship between the magnitude of the small B-jump is a problem, so in the magnetic field-output measurement, the X input 25 is
It is assumed to be C-bonded.

〈発明の目的〉 本発明は上述の問題点を解消するためにMRヘッドの下
側ヨークを磁壁が形成されない材料で作製することによ
って、入力磁界に対する磁壁の不連続運動に起因して発
生するB−ジャンプノイズを、小さくし、良好なS/N
比を有するMRヘッドを備えた薄膜磁気ヘッドを提供す
ることを目的とする。
<Object of the Invention> In order to solve the above-mentioned problems, the present invention makes the lower yoke of the MR head from a material in which domain walls are not formed, thereby reducing B - Reduce jump noise and improve S/N
It is an object of the present invention to provide a thin film magnetic head equipped with an MR head having an MR head ratio.

〈実施例〉 第1図は本発明の1実施例を示すYMRヘッドのトラッ
ク方向と垂直な方向の断面構造を示す構成図である。パ
ーマロイスパッタ膜で作製された上側ヨークlは膜厚約
0.5μm乃至1.0μmに設定され、磁気記録媒体(
磁気テープ等)2で発生した磁界3をMR素子4に導く
ための磁路となる。MR素子4はパーマロイ蒸着膜で作
製され、膜厚は300A乃至500A、長さはトラック
幅の長さ程度(50μm程度)に設定されている。また
MR素子4にバイアス磁界を印加するためにAI!、−
Cuから成る導体5がMR素子4の下方に対向して配置
されている。上側ヨークlの磁気記録媒体2に対向する
端面でのへラドギャップ6は0.2乃至0.3μm程度
に設定され、下側ヨーク7とへラドギャップ6を介して
対面している。下側ヨーク7は本発明の特徴を表わすも
のであり、磁壁を形成しない高透磁率磁性体で作製され
基板8上に堆積されている。下側ヨーク7の材質として
は本実施例では3〜6重量%のA2,8〜12重量%の
Si  、残部Feから成るセンダスト合金を電子ビー
ムまたはスパッタリングで成膜したものを使用し、膜厚
は数μmとしている。尚、磁壁を形成しない即ち磁区構
造をもたな、い高透磁率の磁性体であれば、上記センダ
スト合金以外の材料であっても適用することができる。
<Embodiment> FIG. 1 is a configuration diagram showing a cross-sectional structure of a YMR head in a direction perpendicular to the track direction, showing one embodiment of the present invention. The upper yoke l made of permalloy sputtered film is set to a film thickness of approximately 0.5 μm to 1.0 μm, and is suitable for magnetic recording media (
This serves as a magnetic path for guiding the magnetic field 3 generated in the magnetic tape (magnetic tape, etc.) 2 to the MR element 4. The MR element 4 is made of a permalloy vapor-deposited film, and the film thickness is set to 300 Å to 500 Å, and the length is set to be approximately the length of the track width (approximately 50 μm). Also, in order to apply a bias magnetic field to the MR element 4, AI! ,−
A conductor 5 made of Cu is arranged below and facing the MR element 4. The helad gap 6 at the end face of the upper yoke l facing the magnetic recording medium 2 is set to about 0.2 to 0.3 μm, and faces the lower yoke 7 with the helad gap 6 interposed therebetween. The lower yoke 7 represents a feature of the present invention, and is made of a high permeability magnetic material that does not form domain walls and is deposited on the substrate 8. In this embodiment, the material of the lower yoke 7 is a Sendust alloy consisting of 3 to 6% by weight of A2, 8 to 12% by weight of Si, and the balance of Fe, which is formed into a film by electron beam or sputtering. is several μm. Note that materials other than the Sendust alloy described above can be used as long as they are magnetic materials with high magnetic permeability that do not form domain walls, that is, do not have a magnetic domain structure.

上記構成から・成るYMRヘッドの磁界−出力特性を第
6図(写真)に示す。第5図と第6図を比較すれば明ら
かな如く、本実施例のYMRヘッドの方がB−ジャンプ
ノイズが小さいことが認められる。
The magnetic field-output characteristics of the YMR head constructed as described above are shown in FIG. 6 (photo). As is clear from a comparison between FIG. 5 and FIG. 6, it is recognized that the YMR head of this embodiment has smaller B-jump noise.

YMRヘッドのB−ジャンプノイズの発生湯所としては
上述したMR素子内の磁壁の運動以外に次の2つが考え
られる。
In addition to the above-mentioned movement of the domain walls within the MR element, the following two causes of B-jump noise in the YMR head can be considered.

+l)  YMRヘッドの上側ヨークの磁区構造に付随
する磁化の外部磁界に対する非線型変化によってMR素
子内の入力磁界も非線型応答することに伴なうB−ジャ
ンプノイズ (2)  YMRヘッドの下側ヨークの磁区構造に付随
する磁化の外部磁界に対する非線型変化がギャップ周辺
の上側ヨークと下側ヨークの最短距離部分を介してMR
素子に磁束の非線型変化として入力され、出力にB−ジ
ャンプノイズとなって現われる。
+l) B-jump noise due to the input magnetic field within the MR element also responding nonlinearly due to the nonlinear change in magnetization associated with the magnetic domain structure of the upper yoke of the YMR head to the external magnetic field (2) Lower side of the YMR head The nonlinear change in magnetization associated with the magnetic domain structure of the yoke with respect to the external magnetic field causes MR to occur through the shortest distance between the upper and lower yokes around the gap.
This is input to the element as a nonlinear change in magnetic flux, and appears as B-jump noise at the output.

(1)と(2)の原因を分離するためにキュリ一温度(
TC)140℃を有する下側ヨークとして多結晶N1=
Znフエライトを用いたYMRヘッドを昇温しながら、
磁界−出力特性を測定した結果を第7図(写真)に示す
。第7図(4)はTc=23℃、同CB)はTc=63
°C1同(C)はTc=+15°C1同の)はTc=1
26″C,%同の)はTc=I59°Cの場合のシンク
ロスコープ管面に表われる特性曲線であり、X(横方向
)はIdiv(1目盛)120eSY(縦方向)は1d
ivO65vである。
In order to separate the causes of (1) and (2), Curie temperature (
TC) polycrystalline N1= as the lower yoke with 140 °C
While increasing the temperature of the YMR head using Zn ferrite,
The results of measuring the magnetic field-output characteristics are shown in Figure 7 (photo). In Figure 7 (4), Tc = 23℃, and in the same CB), Tc = 63
°C1 (C) is Tc = +15 °C1 (C) is Tc = 1
26″C, % same) is the characteristic curve that appears on the synchroscope tube surface when Tc = I59°C, X (horizontal direction) is Idiv (1 scale), 120eSY (vertical direction) is 1d
It is ivO65v.

第7図よりTc以上ではB−ジャンプノイズは無視でき
るほど小さくなる。Tc以上では下側ヨークは単なる非
磁性基板(常磁性体)となるのでその際の特性は上側ヨ
ークの特性を反映した磁界−出力特性となり、上側ヨー
クはB−ジャンプノイズの発生湯所とならない。従って
上記(2)の原因に支配されることとなる。
From FIG. 7, above Tc, the B-jump noise becomes negligibly small. Above Tc, the lower yoke becomes a mere non-magnetic substrate (paramagnetic material), so the characteristics at that time will be magnetic field-output characteristics that reflect the characteristics of the upper yoke, and the upper yoke will not become a source of B-jump noise. . Therefore, it will be dominated by the cause (2) above.

ここで、従来のN i Z nフェライト多結晶基板を
下側ヨークとして用いたYMRヘッドの方が上記実施例
のYMRヘッドよりB−ジャンプノイズが大きくなる原
因について言及する。NiZnフェライト多結晶基板の
平均結晶粒径は8μm程度であり、一方YMRヘッドの
トラック幅方向の上側ヨークの幅及びMR素子の長さは
狭トラツクヘッドのため50μm程度である。従って、
上側ヨークの下には6個程度のグレイン(結晶粒)があ
り、1個のグレインは当然単結晶であるが単磁区又は多
磁区状態になっている。ここで磁界が印加されると多磁
区状態になっているグレインでは磁壁移動が起り、磁化
の不連続的な動きが発生しそれに伴なう磁界(反磁界)
が下側ヨークから上側ヨークの微小な間隔0.3μm(
ヘッドギャップ)を通してMR素子まで伝達され出力に
B−ジャンプが発生すると考えられる。このような状況
は下側ヨークが単結晶または多結晶のMnZn7エライ
ト、パーマロイなどの磁壁を形成する材料を使用した場
合でも同様である。
Here, we will discuss the reason why the B-jump noise is larger in the YMR head using the conventional NiZn ferrite polycrystalline substrate as the lower yoke than in the YMR head of the above embodiment. The average grain size of the NiZn ferrite polycrystalline substrate is about 8 μm, while the width of the upper yoke in the track width direction of the YMR head and the length of the MR element are about 50 μm because it is a narrow track head. Therefore,
There are about six grains (crystal grains) under the upper yoke, and each grain is naturally a single crystal, but it is in a single magnetic domain or multi-domain state. When a magnetic field is applied here, domain wall movement occurs in grains that are in a multi-domain state, causing discontinuous movement of magnetization and the accompanying magnetic field (diamagnetic field).
The minute distance between the lower yoke and the upper yoke is 0.3 μm (
It is thought that the signal is transmitted to the MR element through the head gap) and a B-jump occurs in the output. This situation is the same even when the lower yoke is made of a material forming a domain wall, such as single crystal or polycrystalline MnZn7 elite or permalloy.

前述した多結晶NiZn7エライト基板を使用したYM
Rヘッドと構造は同じであり、材料も下側ヨークを除い
て同じであり、下側ヨークに単結晶MnZn7 エライ
ト基板を用いた場合の磁界−出力特性を第8図(写真)
に、下側ヨークに膜厚0.6μmのパーマロイ膜を使用
した場合の磁界−出力特性を第9図に示す。下側ヨーク
の磁壁の影響と思われるB−ジャンプノイズが第8図、
第9図ともに下側ヨークをセンダスト膜とした場合の第
6図よりも大きい。また本実施例では第1図の様に下側
の磁性体に磁壁を有しない磁性体を使った構造となって
いるが、第10図の様にMR素子31と磁気的に結合す
るヨーク28を下側に設けた場合は上側ヨーク34に磁
壁を持たない高透磁率磁性体34を設けることによって
B−ジャンプノイズの低減化を図ることができる。尚、
第1θ図で29は磁気記録媒体、30は入力磁界、31
はMR素子、32はバイアス用導体、33はギャップ部
、34は磁壁を有しない高透磁率磁性体から成る上側ヨ
ーク、35は高透磁率磁性体用下側基板である。
YM using the aforementioned polycrystalline NiZn7 elite substrate
The structure is the same as the R head, and the materials are the same except for the lower yoke. Figure 8 (photo) shows the magnetic field-output characteristics when a single crystal MnZn7 elite substrate is used for the lower yoke.
FIG. 9 shows the magnetic field-output characteristics when a permalloy film with a film thickness of 0.6 μm is used for the lower yoke. B-jump noise, which is thought to be caused by the domain wall of the lower yoke, is shown in Figure 8.
Both figures in Fig. 9 are larger than those in Fig. 6 when the lower yoke is made of Sendust film. Further, in this embodiment, as shown in FIG. 1, the lower magnetic material has a structure using a magnetic material having no domain wall, but as shown in FIG. In the case where the B-jump noise is provided on the lower side, the B-jump noise can be reduced by providing the upper yoke 34 with a high permeability magnetic material 34 that does not have a domain wall. still,
In Fig. 1θ, 29 is a magnetic recording medium, 30 is an input magnetic field, and 31
32 is an MR element, 32 is a bias conductor, 33 is a gap portion, 34 is an upper yoke made of a high permeability magnetic material having no domain wall, and 35 is a lower substrate for the high permeability magnetic material.

次に、B−ジャンプノイズの低減化とディジタル磁気記
録媒体の再生波形の高品質化について8/回変換方式の
64KBPIのアイパターン再生波形と3KHzの再生
波形を示すことにより説明する。
Next, reduction of B-jump noise and improvement of the quality of the reproduced waveform of a digital magnetic recording medium will be explained by showing a 64 KBPI eye pattern reproduced waveform and a 3 KHz reproduced waveform of the 8/times conversion method.

第1+図(写真)及び第12図(写真)は本実施例のY
MRヘッドによる3KHzの再生波形及びアイパターン
再生波形である。また第13図及び第14図は従来の多
結晶NiZn7エライト基板をヨークに使用したYMR
ヘッドによる3KHzの再生波形及びアイパターン再生
波形である。従来のYMRヘッドでは第1311に見ら
れるB−ジャンプに対応して第14図の如くアイパター
ンが劣化している。一方、本実施例のYMRヘッドでは
第1I図に示す如くB−ジャンプはなく従って第12図
に示す如くアイパターンも良好となる。
Figure 1+ (photo) and Figure 12 (photo) are Y of this example.
These are a 3 KHz reproduced waveform and an eye pattern reproduced waveform by the MR head. Figures 13 and 14 show YMR using a conventional polycrystalline NiZn7 elite substrate for the yoke.
These are a 3KHz reproduction waveform and an eye pattern reproduction waveform by the head. In the conventional YMR head, the eye pattern is degraded as shown in FIG. 14 in response to the B-jump seen at No. 1311. On the other hand, in the YMR head of this embodiment, there is no B-jump as shown in FIG. 1I, and therefore the eye pattern is good as shown in FIG. 12.

〈発明の効果〉 以上詳説した如く本発明によればB−ジャンプノイズの
小さい狭トラック狭ギャップYMRヘッドを得ることが
できる。
<Effects of the Invention> As described in detail above, according to the present invention, a narrow track, narrow gap YMR head with low B-jump noise can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のl実施例を示すYMRヘッドの断面図
である。第2図は従来のYMRヘッドの断面図である。 第3図はヘッドの磁界−出力特性測定装置のブロック図
である。第4図、第5図及び第6図はそれぞれ磁界−出
力特性をオシロスコープ管面波形の写真で示す説明図で
ある。第7図はキュリ一温度(Tc)と磁界−出力特性
の関係をオシロスコープ管面波形の写真で示す説明図で
ある。第8図及び第9図はそれぞれ下側ヨークに単結晶
MnZnフェライト基板を用いた場合とパーマロイ膜を
用いた場合の磁界−出力特性をオシロスフープ管面波形
の写真で示す説明図である。第1θ図は本発明の他の実
施例を示すYMRヘッドの断面図である。第11図及び
第12図は本発明の実施例による3KHzの再生波形及
びアイパターン再生波形をオシロスコープ管面波形の写
真で示す説明図である。第13図及び第14図は従来の
多結晶NiZn7エライト基板をヨークに使用したYM
Rヘッドによる3KHzの再生波形及びアイパターン再
生波形をオシロスコープ管面波形の写真で示す説明図で
ある。 1・・・上側ヨーク  2・・・磁気記録媒体  3・
・・磁界  4・・・MR素子  5・・・導体  6
・・・ヘッドギャップ  7・・・下側ヨーク  8・
・・基板代理人 弁理士 福 士 愛 g(他2名)第
3図 薯 7 )詔 JE to図
FIG. 1 is a sectional view of a YMR head showing an embodiment of the present invention. FIG. 2 is a sectional view of a conventional YMR head. FIG. 3 is a block diagram of a head magnetic field-output characteristic measuring device. FIG. 4, FIG. 5, and FIG. 6 are explanatory diagrams each showing the magnetic field-output characteristics using photographs of waveforms on the tube surface of an oscilloscope. FIG. 7 is an explanatory diagram showing the relationship between Curie temperature (Tc) and magnetic field-output characteristics using a photograph of an oscilloscope tube surface waveform. FIGS. 8 and 9 are explanatory diagrams showing the magnetic field-output characteristics when a single-crystal MnZn ferrite substrate is used for the lower yoke and when a permalloy film is used, respectively, using photographs of oscilloscope hoop tube surface waveforms. FIG. 1θ is a sectional view of a YMR head showing another embodiment of the present invention. FIGS. 11 and 12 are explanatory diagrams showing a 3 KHz reproduced waveform and an eye pattern reproduced waveform according to an embodiment of the present invention as photographs of oscilloscope tube surface waveforms. Figures 13 and 14 show YM using a conventional polycrystalline NiZn7 elite substrate for the yoke.
FIG. 2 is an explanatory diagram showing a 3 KHz reproduced waveform and an eye pattern reproduced waveform by the R head as a photograph of an oscilloscope tube surface waveform. 1... Upper yoke 2... Magnetic recording medium 3.
...Magnetic field 4...MR element 5...Conductor 6
...Head gap 7...Lower yoke 8.
・・Substrate agent Patent attorney Ai Fukushi (2 others) Figure 3 7) Edict JE to figure

Claims (1)

【特許請求の範囲】[Claims] 1、ヘッドギャップ部の上又は下に形成された磁気記録
媒体に接するヨークを磁路として磁気的に結合された磁
気抵抗効果素子を内設して成る薄膜磁気ヘッドにおいて
、前記ヘッドギャップ部を介して対向する少なくとも一
方のヨークが磁壁を有しない高透磁率磁性体で形成され
ていることを特徴とする薄膜磁気ヘッド。
1. In a thin film magnetic head that includes a magnetoresistive element that is magnetically coupled using a yoke that is formed above or below a head gap and is in contact with a magnetic recording medium as a magnetic path, 1. A thin film magnetic head characterized in that at least one of the yokes facing each other is formed of a high permeability magnetic material having no domain wall.
JP280385A 1985-01-09 1985-01-09 Thin film magnetic head Pending JPS61160818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP280385A JPS61160818A (en) 1985-01-09 1985-01-09 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP280385A JPS61160818A (en) 1985-01-09 1985-01-09 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS61160818A true JPS61160818A (en) 1986-07-21

Family

ID=11539534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP280385A Pending JPS61160818A (en) 1985-01-09 1985-01-09 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS61160818A (en)

Similar Documents

Publication Publication Date Title
JPH0473201B2 (en)
US4286299A (en) Magnetic head assembly for recording or reproducing vertically magnetized records
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JPS6227449B2 (en)
JPS61160818A (en) Thin film magnetic head
JP2814741B2 (en) Perpendicular magnetization type magnetoresistance element and magnetoresistance effect type magnetic head using the same
JPS6224848B2 (en)
JPH08203032A (en) Magneto-resistance effect reproducing head
JPH048852B2 (en)
JP2583851B2 (en) Magnetoresistive magnetic head
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JPH0256713A (en) Magneto-resistance effect type reproducing head
JPH0237603B2 (en)
JPS6057520A (en) Magnetic head
JPS62141620A (en) Thin film magnetic head
JPS6138092Y2 (en)
JPS62140219A (en) Thin film magnetic head
JPH06187615A (en) Magneto-resistance effect reproduction head
JPH0760498B2 (en) Magnetoresistive head
JPH10198929A (en) Magnetoresistive reproducing head
JPS61248213A (en) Thin film magnetic head
JPH0897487A (en) Magnetoresistance effect device and its reproducing method
JPS62146420A (en) Thin film magnetic head
JP2003208706A (en) Magnetic head