JPS62140219A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS62140219A
JPS62140219A JP60281712A JP28171285A JPS62140219A JP S62140219 A JPS62140219 A JP S62140219A JP 60281712 A JP60281712 A JP 60281712A JP 28171285 A JP28171285 A JP 28171285A JP S62140219 A JPS62140219 A JP S62140219A
Authority
JP
Japan
Prior art keywords
magnetic field
head
magnetic
yoke
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60281712A
Other languages
Japanese (ja)
Inventor
Kengo Shiiba
椎葉 健吾
Mitsuhiko Yoshikawa
吉川 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60281712A priority Critical patent/JPS62140219A/en
Publication of JPS62140219A publication Critical patent/JPS62140219A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films

Abstract

PURPOSE:To lighten the burden imposed on circuits in the vicinity of a head by setting the gap length of a magnetic joint part between a yoke and a magneto-resistance effect element so that the linearity of a magnetic filed- resistance change rate characteristic under an input magnetic of zero can be excellent. CONSTITUTION:The titled head is formed in such a way that yokes 2 and 3 contacting a magnetic recording medium 5 are formed above or below a head gap part 6, and the magneto-resistance effect element 1 magnetically jointed to the yokes 2 and 3 is inwardly installed. The gap length in the magnetically jointed part between the yokes 2 and 3 and the magneto-resistance effect element 1 is set so that under an input magnetic field of zero the linearity of the magnetic field-resistance change rate characteristic can be excellent due to a self-bias magnetic field caused by magnetic poles on the end parts of the yokes 2 and 3 magnetized by the prescribed sense current flowed into the magneto-resistance effect element 1.

Description

【発明の詳細な説明】 く技術分野〉 本発明は強磁性薄膜の磁気抵抗効果を応用した磁気抵抗
効果素子(以下MR素子と称す)を用いて磁気記録媒体
に記録された信号の検出を行なう薄膜磁気ヘッドに関す
る。
[Detailed Description of the Invention] Technical Field> The present invention detects signals recorded on a magnetic recording medium using a magnetoresistive element (hereinafter referred to as an MR element) that applies the magnetoresistive effect of a ferromagnetic thin film. It relates to a thin film magnetic head.

〈従来技術〉 強磁性薄膜の磁気抵抗効果を利用した薄膜磁気ヘッド(
以下MRヘッドと称す)は、一般に多用されている巻線
型磁気ヘッドと比較して多くの利点を有することが知ら
れている。即ち薄膜磁気ヘッドは磁気記録媒体に記録さ
れた磁化パターンから発生する信号磁界を受け、これを
MR素子の抵抗変化に基づく電圧変化として取り出すも
のであるため、磁気記録媒体の移送速度に依存せずに信
号を再生することができ、移送速度が低い場合に巻線型
の磁気ヘッドよりも高出力の再生信号が得られるという
利点を備えている。実際の使用に際してはMR素子単体
で薄膜磁気ヘッドを構成するよりもMR素子部をヘッド
先端から離し、磁気記録媒体にて発生した磁束をMR素
子部まで導く磁束導入路(ヨーク)を配置した第2図の
如き構造の通常ヨークタイプMRヘッド(以下YMRヘ
ッドと称す)と呼ばれる薄膜磁気ヘッドの方が信号の分
解能の向上やMR素子の耐久性の向」二に有効であり、
近年このタイプのヘッドが固定ヘッド・ディジタルオー
ディオ用再生ヘッドとして注目されている(第8回日本
応用磁気学会学術講演概要集(1984)14PB−]
 1  rヨークタイプMRヘッドの再生特性」参照)
<Prior art> Thin-film magnetic head (
It is known that MR heads (hereinafter referred to as MR heads) have many advantages over commonly used wire-wound magnetic heads. In other words, a thin film magnetic head receives a signal magnetic field generated from a magnetization pattern recorded on a magnetic recording medium and extracts this as a voltage change based on a change in resistance of an MR element, so it does not depend on the transfer speed of the magnetic recording medium. It has the advantage of being able to reproduce signals with a higher output than a wire-wound magnetic head when the transfer speed is low. In actual use, rather than constructing a thin-film magnetic head with a single MR element, the MR element part is separated from the head tip, and a magnetic flux introduction path (yoke) is arranged to guide the magnetic flux generated in the magnetic recording medium to the MR element part. A thin film magnetic head, usually called a yoke type MR head (hereinafter referred to as YMR head), with the structure shown in Figure 2 is more effective in improving signal resolution and durability of the MR element.
In recent years, this type of head has attracted attention as a fixed head digital audio playback head (Summary of the 8th Academic Conference of the Japan Society of Applied Magnetics (1984) 14PB-)
(Refer to “Reproduction characteristics of 1 r yoke type MR head”)
.

第2図は従来のYMRヘッドのトラック幅方向に垂直な
方向の断面図である。上側ヨーり2及び3は通常0.5
〜1.0μm程度の膜厚のパーマロイ膜で作製されてお
り、磁気記録媒体5て発生した磁界をMR素子1に導く
ための磁路となる。MR素子1はパーマロイ蒸着膜で作
製され、膜厚は300人乃至500人、長さはトラック
幅の約50μmに設定されている。またMR素子Iにバ
イアス磁界を印加するためにΔ1−Guから成る導体7
が配設されている。ヘッドギャップ6は実際に使用され
る記録波長が最小0.5μm程度であるので、0.2乃
至03μm程度に設定される。
FIG. 2 is a cross-sectional view of a conventional YMR head in a direction perpendicular to the track width direction. Upper yaw 2 and 3 are usually 0.5
It is made of a permalloy film with a thickness of about 1.0 μm, and serves as a magnetic path for guiding the magnetic field generated by the magnetic recording medium 5 to the MR element 1. The MR element 1 is made of a permalloy vapor-deposited film, the film thickness is set to 300 to 500, and the length is set to about 50 μm, which is the track width. Also, in order to apply a bias magnetic field to the MR element I, a conductor 7 made of Δ1-Gu
is installed. The head gap 6 is set to about 0.2 to 0.3 μm since the minimum recording wavelength actually used is about 0.5 μm.

下側ヨーり4は高透磁率磁性体から成り、一般には多結
晶NiZnフェライト基板や単結晶又は多結晶M n 
Z nフェライト基板が用いられる。トラック幅は通常
YMRヘッドが多トラツク構成となるため50μm程度
に設定される。
The lower yaw 4 is made of a high permeability magnetic material, generally a polycrystalline NiZn ferrite substrate, a single crystal or polycrystalline Mn
A Zn ferrite substrate is used. The track width is usually set to about 50 μm since the YMR head has a multi-track configuration.

上記の如<MR索子lを具備した薄膜磁気ヘッドにおい
ては、MR素子lの磁化容易軸は、長手方向に選ばれて
おり、導体7にバイアス磁界発生用のバイアス電流In
(以下バイアス電流IBと称す)を通じてMR索子1に
所要のバイアス磁界を与え、MR素子Iの長手方向にセ
ンス電流Isを流すことによって、ヘッドギャップ6に
対接ないしは対向する磁気記録媒体より発生する信号磁
界をMR素子1に与えることによって出力信号が得られ
る。
In the thin film magnetic head equipped with the MR element 1 as described above, the axis of easy magnetization of the MR element 1 is selected in the longitudinal direction, and the bias current In for generating a bias magnetic field is applied to the conductor 7.
By applying a required bias magnetic field to the MR element 1 through a bias current IB (hereinafter referred to as bias current IB), and flowing a sense current Is in the longitudinal direction of the MR element I, a sense current Is is generated from the magnetic recording medium facing or facing the head gap 6. An output signal is obtained by applying a signal magnetic field to the MR element 1.

このような構成より成る薄膜磁気ヘッドにおけるMR素
子1の磁界H−抵抗変化率△ρ/ρ特性は、第3図に示
すにうになり、その特性に直線性に優れた部分が存在す
るので所要のバイアス磁界HBを与えることによって信
号磁界10に対して歪のほとんどない対称性に優れた出
力信号11を得ることができる。
The magnetic field H-resistance change rate Δρ/ρ characteristic of the MR element 1 in the thin-film magnetic head with such a configuration is as shown in FIG. By applying a bias magnetic field HB of 1, it is possible to obtain an output signal 11 with excellent symmetry and almost no distortion with respect to the signal magnetic field 10.

しかしながら、このような薄膜磁気ヘッドにおいては、
MR素子1に所要のバイアス磁界Hnを与えるために、
バイアス電流IBを通じる導体7が磁気回路とは別に必
要になり、製造工程が複雑になるという欠点を持つ。
However, in such a thin film magnetic head,
In order to provide the required bias magnetic field Hn to the MR element 1,
The conductor 7 through which the bias current IB passes is required separately from the magnetic circuit, which has the disadvantage of complicating the manufacturing process.

〈発明の目的〉 そこで、本発明の目的は、MR素子に直線性を得るため
にバイアス磁界を印加するにあたり、バイアス電流IB
を通じることなしに、したがって、バイアス電流■Bの
ための導体を必要とせずに、センス電流Isによって、
所要のバイアス磁界が得られるヨークタイプMRヘッド
を提供することにある。
<Object of the Invention> Therefore, an object of the present invention is to reduce the bias current IB when applying a bias magnetic field to obtain linearity to the MR element.
By means of the sense current Is, without passing through and therefore without the need for a conductor for the bias current B,
An object of the present invention is to provide a yoke type MR head that can obtain a required bias magnetic field.

〈発明の構成〉 上記目的を達成するため、本発明の薄膜磁気ヘッドは、
磁気記録媒体に接するヨークをヘッドギャップ部の上又
は下に形成し、このヨークと磁気的に結合される磁気抵
抗効果素子を内設して成る薄膜磁気ヘッドにして、前記
磁気抵抗効果素子に流される所定のセンス電流により磁
化された前記ヨークの端部の磁極により生じる自己ノ(
イアス磁界H’B により、入力磁界が零のもとで、磁
界−抵抗変化率特性の直線性が良好にムるように、前記
ヨークと前記磁気抵抗効果素子の磁気的結合部における
ギャップ長さを設定したことを特徴としてし)る。
<Configuration of the Invention> In order to achieve the above object, the thin film magnetic head of the present invention has the following features:
A thin-film magnetic head is formed in which a yoke in contact with a magnetic recording medium is formed above or below a head gap portion, and a magnetoresistive element that is magnetically coupled to the yoke is disposed inside the head, and the flow is directed to the magnetoresistive element. The self-node (
The gap length at the magnetic coupling portion between the yoke and the magnetoresistive element is set so that the linearity of the magnetic field-resistance change rate characteristic is maintained by the Ias magnetic field H'B when the input magnetic field is zero. ).

〈作 用〉 上記構成とすることにより、センス電流Isによるヨー
クの磁化によって生じる自己ノくイアス磁界H’B  
は所望の強さとなり、したがって、ノくイアスミ流を通
じるための導体を用し)ずに、入力磁界が零のところで
薄膜磁気へ・ソドの磁界−抵抗変化率特性の直線性は良
好になる。
<Function> With the above configuration, the self-neutral magnetic field H'B generated by the magnetization of the yoke by the sense current Is is reduced.
has the desired strength, and therefore, the linearity of the magnetic field-resistance change rate characteristics of the thin film magnetism becomes good when the input magnetic field is zero, without using a conductor to pass the Asumi flow. .

〈実施例〉 第1図は本発明の一実施例のヨークタイプMRヘッドの
トラック幅方向に垂直な方向の断面図である。このよう
な構造を持つヨークタイプMRへ・ソドにおいて、MR
素子1に一定のセンス電流Isを通じると、第4図に示
すように、MRR子1のまわりに磁界12が発生する。
<Embodiment> FIG. 1 is a sectional view of a yoke type MR head according to an embodiment of the present invention in a direction perpendicular to the track width direction. For yoke type MR with such structure, MR
When a constant sense current Is is passed through the element 1, a magnetic field 12 is generated around the MRR element 1, as shown in FIG.

この磁界I2によって第1のヨーク2と第2のヨーク3
は、磁界方向に磁化しその端部14及び15に磁極を生
じる。
This magnetic field I2 causes the first yoke 2 and the second yoke 3 to
are magnetized in the direction of the magnetic field and produce magnetic poles at their ends 14 and 15.

一方、第5図に示されるように、MR索子Iは、第1の
ヨーク2及び第2のヨーク3の磁化にともなって生じた
面記磁極により発生ずる磁界すなわち自己バイアス磁界
I(’B によって磁化困難軸方向に磁界を受ける。前
記センス電流Tsの大きさは、本薄膜磁気ヘッドの特性
及び製造上の条件や薄膜磁気ヘッドを駆動させるシステ
ム上の条件などからある一定の値に決められる。したが
って、ある決められた一定のセンス電流Isに対して得
られる上記自己バイアス磁界11’n を所要のバイア
ス磁界1(Bと同等のものとするには、第1のヨーり2
とMR素子Iとの重なり部分のギャップ(以下Ov旧と
称す)8及びMRR子1と第2のヨーク3との重なり部
分のギャップ(以下。vh2と称す)9の大きさを最適
化しなければならない。それは、ovhl(8)及びo
vh2(9)の値が大きすぎると、センス電流Isによ
る第1のヨーク2及び第2のヨーり3の磁化が小さくな
り、端部14゜15に発生する磁極が減少し、また磁極
とMR素素子色距離も遠ざかることになり自己バイアス
磁界H’B  は減少して所要のバイアス磁界HBと同
等の磁界を得るにいたらなくなり、反対にovh 1 
(8)及びovh2(9)の値が小さずぎると、同様な
メカニズムにより逆に自己バイアス磁界I−f’a が
増加して所望のバイアス磁界HBと同等の磁界を超えて
しまうからである。
On the other hand, as shown in FIG. 5, the MR probe I is exposed to the magnetic field I('B The magnitude of the sense current Ts is determined to be a certain value based on the characteristics and manufacturing conditions of the present thin film magnetic head, the system conditions for driving the thin film magnetic head, etc. Therefore, in order to make the self-bias magnetic field 11'n obtained for a certain fixed sense current Is equivalent to the required bias magnetic field 1 (B), the first yaw 2
The size of the gap (hereinafter referred to as Ovold) 8 at the overlapped portion between the It won't happen. It is ovhl(8) and o
If the value of vh2(9) is too large, the magnetization of the first yoke 2 and the second yaw 3 due to the sense current Is will become smaller, the number of magnetic poles generated at the ends 14 and 15 will decrease, and the magnetic pole and MR As the element color distance also increases, the self-bias magnetic field H'B decreases and it is no longer possible to obtain a magnetic field equivalent to the required bias magnetic field HB, and on the contrary, ovh 1
This is because if the values of (8) and ovh2 (9) are too small, the self-bias magnetic field I-f'a increases by a similar mechanism and exceeds a magnetic field equivalent to the desired bias magnetic field HB.

しかしながら、以上述べたように特にバイアス電流In
を通じる導体を具備していなくても、設定されたセンス
電流Isに対してovhl(8)及びovh2(9)を
最適化することによって、所望の自己バイアス磁界1−
1’aを得ることができる。
However, as mentioned above, especially the bias current In
By optimizing ovhl(8) and ovh2(9) for a set sense current Is, the desired self-bias magnetic field 1-
1'a can be obtained.

以下に、本発明に基づき試作されたヨークタイプのMR
ヘッド(第1図参照)及び従来のヨークタイプのMRヘ
ッド(第2図参照)を対比しながら説明する。両方のヨ
ークタイプのMRヘッドの構造パラメータを第6図に示
す。第6図において、tyは第1のヨーり2及び第2の
ヨーク3の厚さ、ly Iは第1のヨーり2とMR素素
子色の重なり部分の幅、R,y 2はMR素子Iと第2
のヨーク3との重なり部分の幅を表わす。また、センス
電流Isは5 mAに設定されている。第7図は本発明
に基づき試作されたヨークタイプMRヘッドの磁界H−
抵抗変化率△ρ/ρ特性を、第8図は従来のヨークタイ
プMRヘッドの磁界H−抵抗変化率△ρ/ρ特性を示す
図である。
The following is a yoke type MR prototype based on the present invention.
This will be explained by comparing the head (see FIG. 1) and a conventional yoke type MR head (see FIG. 2). The structural parameters of both yoke type MR heads are shown in FIG. In FIG. 6, ty is the thickness of the first yaw 2 and the second yoke 3, ly I is the width of the overlapping portion of the first yaw 2 and the MR element color, and R, y2 is the MR element. I and 2nd
represents the width of the overlapping portion with the yoke 3. Furthermore, the sense current Is is set to 5 mA. Figure 7 shows the magnetic field H- of a yoke type MR head prototyped based on the present invention.
FIG. 8 is a diagram showing the magnetic field H-resistance change rate Δρ/ρ characteristic of a conventional yoke type MR head.

第7図及び第8図に示される磁界H−抵抗変化率△ρ/
ρ特性を調べる測定装置について第9図を用いて以下に
述べる。第9図において、16は数10I(zの正弦波
発振器、I7は電流アンプ、18はコイル、19は測定
するヘッド、20はトラック軸方向に垂直な磁界方向、
2IはMR素子に通電するセンス電流源、22はセンス
電流、23は高入力インピーダンス反転アンプ、24は
コイルに通電する電流モニター用抵抗、25はシンクロ
スコープのX入力、26はシンクロスコープの7人力、
27はシンクロスコープの管面を表わす。
Magnetic field H - resistance change rate △ρ/ shown in Figures 7 and 8
A measuring device for examining the ρ characteristic will be described below using FIG. 9. In FIG. 9, 16 is a sine wave oscillator of several 10 I (z), I7 is a current amplifier, 18 is a coil, 19 is a measuring head, 20 is a magnetic field direction perpendicular to the track axis direction,
2I is a sense current source that energizes the MR element, 22 is a sense current, 23 is a high input impedance inverting amplifier, 24 is a current monitoring resistor that energizes the coil, 25 is the X input of the synchroscope, and 26 is the 7-man power of the synchroscope. ,
27 represents the tube surface of the synchroscope.

−8= 第9図に示す測定位置において、入力磁界(X)と、抵
抗変化率△ρ/ρの変化に対応したヘッド出力(Y)を
測定すると、シンクロスコープ管面27に第7図及び第
8図のような磁界H−抵抗変化率△ρ/ρ特性が得られ
る。ここでセンス電流は5mA、アンプゲインは60d
Bである。
-8= When the input magnetic field (X) and the head output (Y) corresponding to the change in the resistance change rate Δρ/ρ are measured at the measurement position shown in FIG. A magnetic field H-resistance change rate Δρ/ρ characteristic as shown in FIG. 8 is obtained. Here, the sense current is 5mA, and the amplifier gain is 60d.
It is B.

本発明に基づき試作されたヨークタイプのMRヘッドの
磁界H−抵抗変化率△ρ/ρ特性(第7図)は、入力磁
界(X)が零のところが直線性の優れた部分になってお
り、センス電流Isによる自己バイアス磁界I4’B 
が所要のバイアス磁界Haと同等になっていることを示
している。一方、従来のヨークタイプのMRヘッドの磁
界H−抵抗変化率△ρ/ρ特性(第8図)は、入力磁界
(X)が零のところでは出力特性の直線性が悪く、セン
ス電流Isによる自己バイアス磁界1(’B が所要の
バイアス磁界HBと同等となるにいたっていないことを
示している。
The magnetic field H-resistance change rate Δρ/ρ characteristic (Figure 7) of the yoke-type MR head prototyped based on the present invention has a portion with excellent linearity where the input magnetic field (X) is zero. , self-bias magnetic field I4'B due to sense current Is
is equivalent to the required bias magnetic field Ha. On the other hand, the magnetic field H-resistance change rate Δρ/ρ characteristic (Fig. 8) of the conventional yoke type MR head has poor linearity of the output characteristic when the input magnetic field (X) is zero, and the sense current Is This shows that the self-bias magnetic field 1 ('B) has not reached the same level as the required bias magnetic field HB.

このように本発明によれば、センス電流Isが4〜6m
Aの範囲において、ovh 1 (8)及びovh 2
(9)を1500Å〜2500人の範囲に設定すること
によって、バイアス電流を通じることなしに、センス電
流Isによって所要のバイアス磁界I−IBと同等の自
己バイアス磁界H’n を得ることができる。
As described above, according to the present invention, the sense current Is is 4 to 6 m
In the range of A, ovh 1 (8) and ovh 2
By setting (9) in the range of 1500 Å to 2500 Å, a self-bias magnetic field H'n equivalent to the required bias magnetic field I-IB can be obtained by the sense current Is without passing a bias current.

〈発明の効果〉 本発明によれば、ヨークタイプMRヘッドにおけるMR
素子に所要のバイアス磁界を印加するにあたり、バイア
ス電流を通じるための導体の形成を必要としないため、
ヨークタイプMRヘッドの製造上、工程を簡略化するこ
とができるとともに、バイアス電流が不要であるため、
ヘッド周辺の回路の負担を小さくすることができる。
<Effects of the Invention> According to the present invention, MR in a yoke type MR head
In order to apply the required bias magnetic field to the element, it is not necessary to form a conductor to conduct the bias current.
In manufacturing the yoke type MR head, the process can be simplified and no bias current is required.
The load on the circuits around the head can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のヨークタイプのMRヘッド
の側面断面図、第2図は従来のヨークタイプのMRヘッ
ドの側面断面図、第3図は抵抗変化率のグラフ図、第4
図はセンス電流Tsによる発生した磁界を示す図、第5
図は磁化した第1のヨークと第2のヨークの磁極により
発生した磁界を示す図、第6図は本発明のヨークタイプ
のMRヘッドと従来のヨークタイプのMRヘッドの構造
パラメータを示す図、第7図は本発明1こ基づき試作し
たヨークタイプMRヘッドの磁界H〜抵抗変化率△ρ/
ρ特性を示す図、第8図は従来のヨークタイプMRヘッ
ドの磁界H−抵抗変化率△ρ/ρ特性を示す図、第9図
はヘッドの磁界H−抵抗変化率△ρ/ρ特性を測定する
装置のブロック図である。 !・・・磁気抵抗効果素子、  2.3・・・ヨーク、
5・・・磁気記録媒体、  6・・・ヘッドギャップ、
  8゜9・・・ギャップ。
FIG. 1 is a side sectional view of a yoke type MR head according to an embodiment of the present invention, FIG. 2 is a side sectional view of a conventional yoke type MR head, FIG. 3 is a graph of resistance change rate, and FIG.
Figure 5 shows the magnetic field generated by the sense current Ts.
The figure shows the magnetic field generated by the magnetic poles of the magnetized first yoke and the second yoke, and FIG. 6 shows the structural parameters of the yoke type MR head of the present invention and the conventional yoke type MR head. Figure 7 shows the magnetic field H~resistance change rate △ρ/ of the yoke type MR head prototyped based on the present invention 1.
Figure 8 shows the magnetic field H vs. resistance change rate △ρ/ρ characteristic of a conventional yoke type MR head. Figure 9 shows the magnetic field H vs. resistance change rate △ρ/ρ characteristic of the head. FIG. 2 is a block diagram of a measuring device. ! ... Magnetoresistive element, 2.3... Yoke,
5... Magnetic recording medium, 6... Head gap,
8゜9...gap.

Claims (2)

【特許請求の範囲】[Claims] (1)磁気記録媒体に接するヨークをヘッドギャップ部
の上又は下に形成し、このヨークと磁気的に結合される
磁気抵抗効果素子を内設して成る薄膜磁気ヘッドにおい
て、 前記磁気抵抗効果素子に流される所定のセンス電流によ
り磁化された前記ヨークの端部の磁極により生じる自己
バイアス磁界により、入力磁界が零のもとで、磁界−抵
抗変化率特性の直線性が良好になるように、前記ヨーク
と前記磁気抵抗効果素子の磁気的結合部におけるギャッ
プ長さが設定されていることを特徴とする薄膜磁気ヘッ
ド。
(1) A thin film magnetic head comprising a yoke in contact with a magnetic recording medium formed above or below a head gap portion, and a magnetoresistive element magnetically coupled to the yoke disposed therein, wherein the magnetoresistive element A self-bias magnetic field generated by the magnetic pole at the end of the yoke magnetized by a predetermined sense current applied to the yoke improves the linearity of the magnetic field-resistance change rate characteristic when the input magnetic field is zero. A thin film magnetic head characterized in that a gap length in a magnetic coupling portion between the yoke and the magnetoresistive element is set.
(2)前記ギャップ長さが1500Å〜2500Åの範
囲であることを特徴とする特許請求の範囲第1項に記載
の薄膜磁気ヘッド。
(2) The thin film magnetic head according to claim 1, wherein the gap length is in a range of 1500 Å to 2500 Å.
JP60281712A 1985-12-14 1985-12-14 Thin film magnetic head Pending JPS62140219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60281712A JPS62140219A (en) 1985-12-14 1985-12-14 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60281712A JPS62140219A (en) 1985-12-14 1985-12-14 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS62140219A true JPS62140219A (en) 1987-06-23

Family

ID=17642931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60281712A Pending JPS62140219A (en) 1985-12-14 1985-12-14 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS62140219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422916A2 (en) * 1989-10-11 1991-04-17 Matsushita Electric Industrial Co., Ltd. Manufacturing method for a magnetoresistive head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422916A2 (en) * 1989-10-11 1991-04-17 Matsushita Electric Industrial Co., Ltd. Manufacturing method for a magnetoresistive head

Similar Documents

Publication Publication Date Title
US4280158A (en) Magnetoresistive reading head
US5949600A (en) Signal reproduction method and magnetic recording and reproducing apparatus using tunnel current
EP0669608A1 (en) Planar head having separate read and write gaps
JPH0660330A (en) Shielded double-element magnetoresistance regenerating head indicating amplification of high-density signal
US4122505A (en) Magneto-resistive reading head with suppression of thermal noise
JPS6047223A (en) Magneto-resistance effect type magnetic head
US4797766A (en) Magnetic head with magnetoresistive element
US4524401A (en) Magnetic transducer head utilizing magneto resistance effect with a bias field and partial saturation
JPS62140219A (en) Thin film magnetic head
CA1101120A (en) Magneto-resistive reading head
JP3581051B2 (en) Magnetic head and magnetic recording / reproducing apparatus using the same
JPS6032885B2 (en) thin film magnetic head
JPH06251339A (en) Magnetoresistive effect type thin film magnetic head and bias characteristics measuring method
JP2583851B2 (en) Magnetoresistive magnetic head
JPH08203032A (en) Magneto-resistance effect reproducing head
JPS6224848B2 (en)
US6590740B2 (en) Shielded magnetic head and magnetic reproducing apparatus
JPS62102411A (en) Magneto-resistance effect head
KR100532377B1 (en) Unbiased magnetoresistive head
JPS639285B2 (en)
JPH02130711A (en) Magneto-resistance effect element and magnetic head using thereof
JP2563255B2 (en) Thin film magnetic head
JPS6288122A (en) Bias magnetic field impressing method for magneto-resistance effect type magnetic head
JPS5856485A (en) Magneto-resistance effect element
JPH11203634A (en) Magneto-resistive head