JPS61248213A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS61248213A
JPS61248213A JP60091667A JP9166785A JPS61248213A JP S61248213 A JPS61248213 A JP S61248213A JP 60091667 A JP60091667 A JP 60091667A JP 9166785 A JP9166785 A JP 9166785A JP S61248213 A JPS61248213 A JP S61248213A
Authority
JP
Japan
Prior art keywords
film
magnetic
yoke
substrate
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60091667A
Other languages
Japanese (ja)
Inventor
Koji Otsuka
光司 大塚
Toru Kira
吉良 徹
Kazuyoshi Imae
一義 今江
Mitsuhiko Yoshikawa
吉川 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60091667A priority Critical patent/JPS61248213A/en
Priority to DE19863613619 priority patent/DE3613619A1/en
Priority to GB8610163A priority patent/GB2175735B/en
Priority to US06/855,934 priority patent/US4789910A/en
Publication of JPS61248213A publication Critical patent/JPS61248213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Abstract

PURPOSE:To improve the magnetic characteristics of a lower yoke and upper yoke by forming the yokes via an SiO2 film formed by a coating stage on a substrate. CONSTITUTION:The upper yoke 11 consists of a high-permeability magnetic film such as 'Permalloy(R)' and acts as the magnetic path to conduct the magnetic field generated by a magnetic recording medium 13 to an MR element 7. The MR element 7 consists of a vapor-deposited 'Permally(R)' film and the conductor 5 consists of a film of Al, Cu or Al-Cu alloy, etc. The conductor 5, the MR element 7 and the upper yoke 11 are formed via the insulating layers 4, 6, 9 and the lower yoke 3 consists of a high-permeability magnetic film of 'Sendust(R)' or 'Permalloy(R)' and is formed via the coating type SiO2 film 2 on a nonmagnetidc substrate 1 having the coefft. of thermal expansion approximate to the coefft. of thermal expansion of the lower yoke 3. The ruggedness on the surface of the substrate 1 is flattened by the coating type SiO2 film 2. The coating type SiO2 film has the excellent film quality as a substrate so that the high-permeability magnetic film of the lower yoke 3 has the good magnetic characteristics.

Description

【発明の詳細な説明】 く技術分野〉 本発明は1軸磁気異方性を有する強磁性薄膜の磁化困難
軸方向に印加される信号磁界の変化を磁化容易軸方向の
電気抵抗変化として検出する磁気抵抗効果素子(以下、
MR素子という)を具備して磁気記録媒体に記録される
信号の検出を行なう薄膜磁気ヘッド(以下、薄膜MRヘ
ッドという)に関する。
[Detailed Description of the Invention] Technical Field> The present invention detects changes in a signal magnetic field applied in the direction of the hard axis of magnetization of a ferromagnetic thin film having uniaxial magnetic anisotropy as changes in electrical resistance in the direction of the easy axis of magnetization. Magnetoresistive element (hereinafter referred to as
The present invention relates to a thin film magnetic head (hereinafter referred to as a thin film MR head) that is equipped with an MR element (hereinafter referred to as a thin film MR element) and detects a signal recorded on a magnetic recording medium.

〈従来技術〉 従来、薄膜MRヘッドは、巻線型の磁気ヘッドと比較し
て多くの利点があることが知られている。
<Prior Art> Conventionally, thin film MR heads are known to have many advantages over wire-wound magnetic heads.

この薄膜MRヘッドは、磁気テープ等の磁気記録媒体に
書き込まれた信号磁界を受けることにより、MR素子内
部の磁化方向が変化し、この磁化方向の変化に応じたM
R素子の内部抵抗の変化を外部出力として取り出すもの
である。したがって、薄膜MRヘッドは、磁束応答型の
ヘッドであり、磁気記録媒体の移送速度に依存せずに信
号磁界を再生できる。この薄膜MRヘッドは、半導体の
微細加工技術により高集積化及び多素子化が容易である
ので、高密度記録が行われる固定ヘッド式PCM録音機
の再生用磁気ヘッドとして有望視されている。
In this thin-film MR head, the magnetization direction inside the MR element changes by receiving a signal magnetic field written on a magnetic recording medium such as a magnetic tape, and the M
The change in internal resistance of the R element is extracted as an external output. Therefore, the thin film MR head is a magnetic flux responsive head and can reproduce a signal magnetic field without depending on the transport speed of the magnetic recording medium. Since this thin film MR head can easily be highly integrated and multi-elemented using semiconductor microfabrication technology, it is seen as a promising magnetic head for reproduction in fixed head type PCM recorders that perform high-density recording.

元来、MR素子は外部磁界に対して2乗変化を示す感応
特性をもつことから、M−R素子を再生ヘッドとして構
成する場合には、素子形状をストライプ状にするともに
、線型応答特性を得るために所定のバイアス磁界を印加
する構成を備えることが必要である。このバイアス磁界
を印加する方法には、導体に直流電流を流すことにより
バイアス磁界を誘起する方法及びCo−P層等の高抗磁
力薄膜を用いてバイアス磁界を印加する方法等が知られ
ている(特願昭55−126255号、第4回日本応用
磁気学会学術講演概要集(1980)5PA−4rマル
チトラック薄膜MRヘッド」参照)。実際の使用に際し
ては、薄膜MRヘッドでは上記導体または高抗磁力薄膜
の上に絶縁層を介してMR素子が形成される。
Originally, an MR element has a sensitivity characteristic that shows a square change in response to an external magnetic field. Therefore, when configuring an MR element as a read head, the element shape should be made into a stripe shape and linear response characteristics. In order to obtain this, it is necessary to provide a configuration for applying a predetermined bias magnetic field. Known methods for applying this bias magnetic field include a method of inducing a bias magnetic field by flowing a direct current through a conductor, and a method of applying a bias magnetic field using a high coercive force thin film such as a Co-P layer. (Refer to Japanese Patent Application No. 55-126255, 4th Japanese Society of Applied Magnetics Academic Lecture Abstracts (1980) 5PA-4r Multitrack Thin Film MR Head). In actual use, in a thin film MR head, an MR element is formed on the conductor or high coercive force thin film with an insulating layer interposed therebetween.

一方、MR素子単体で構成した薄膜MRヘッドよりも、
MR素子をヘッド先端から離して磁気記録媒体に発生し
た磁束をMR素子まで導く磁束導入路(以下、ヨークと
いう)を配置した第3図のような構造の通常ヨークタイ
プMRヘッド(以下、YMRヘッドという)と呼ばれる
薄膜磁気ヘッドの方が信号の分解能の向上やMR素子の
耐久性の向上に有効であることが知られている。(第8
回日本応用磁気学会学術講演概要集(1984)14P
B−11rヨ一クタイプMRヘッドの再生特性」参照)
On the other hand, compared to a thin film MR head composed of a single MR element,
A normal yoke type MR head (hereinafter referred to as YMR head) has a structure as shown in Figure 3, in which a magnetic flux introduction path (hereinafter referred to as yoke) is arranged to separate the MR element from the tip of the head and guide the magnetic flux generated in the magnetic recording medium to the MR element. It is known that a thin-film magnetic head called MR head is more effective in improving the resolution of signals and the durability of MR elements. (8th
Japanese Society of Applied Magnetics Academic Lecture Abstracts (1984) 14 pages
(Refer to "Reproduction characteristics of B-11r York type MR head")
.

第3図は従来のYMRヘフドの磁気記録媒体のトラック
幅方向に垂直な方向の断面構造を示す。
FIG. 3 shows a cross-sectional structure of a conventional YMR hefed magnetic recording medium in a direction perpendicular to the track width direction.

上部ヨーク11は、通常膜厚が0.5〜1.0μm程度
のパーマロイ(Ni−Fe合金)膜で作製され、磁気記
録媒体13で発生した磁界をMR素子7に導くための磁
路となる。MR素子7は、パーマロイ (Ni−Fe合
金)蒸着膜で作製され、膜厚が200〜500人、トラ
ック幅は多トラツク構成となるため50〜200μm程
度に設定される。さらに、バイアス磁界を印加するため
に、Al、CuまたはAN−Cu合金等の膜からなる導
体5が配設される。ヘッドギャップ部12は、実際に使
用される記録波長が0.5μm程度であるので、0.2
〜0.3μm程度に設定される。
The upper yoke 11 is usually made of a permalloy (Ni-Fe alloy) film with a film thickness of about 0.5 to 1.0 μm, and serves as a magnetic path for guiding the magnetic field generated by the magnetic recording medium 13 to the MR element 7. . The MR element 7 is made of a permalloy (Ni--Fe alloy) vapor-deposited film, and has a film thickness of 200 to 500 μm, and a track width of about 50 to 200 μm since it has a multi-track configuration. Further, in order to apply a bias magnetic field, a conductor 5 made of a film of Al, Cu, AN-Cu alloy, or the like is provided. Since the recording wavelength actually used is about 0.5 μm, the head gap portion 12 has a diameter of 0.2 μm.
It is set to about 0.3 μm.

上述の導体5、MR素子7及び上部ヨーク11は、絶縁
層4.6.9を介して形成される。下部ヨーク3は、高
透磁率磁性膜からなり、例えばセンダスト(Fe−Al
l−3i合金)膜またはパーマロイ(Ni−Fe合金)
膜が用いられ、結晶化ガラス等の非磁性基板1上に電子
ビーム蒸着法またはスパッタ法等により形成される。
The above-described conductor 5, MR element 7, and upper yoke 11 are formed via the insulating layer 4.6.9. The lower yoke 3 is made of a high permeability magnetic film, such as Sendust (Fe-Al
l-3i alloy) membrane or permalloy (Ni-Fe alloy)
A film is used and is formed on a nonmagnetic substrate 1 such as crystallized glass by electron beam evaporation, sputtering, or the like.

上述の高透磁率磁性膜からなる下部ヨーク3は数μm程
度の膜厚がYMRヘッドの動作上必要であるため、この
磁性膜の良好な特性を得るには、基板1の熱膨張係数を
この高透磁率磁性膜の熱膨張係数に合せる必要があるこ
とは言うまでもない。
The lower yoke 3 made of the above-mentioned high permeability magnetic film needs to have a film thickness of about several μm for the operation of the YMR head. Therefore, in order to obtain good characteristics of this magnetic film, the thermal expansion coefficient of the substrate 1 should be adjusted to this value. Needless to say, it is necessary to match the thermal expansion coefficient of the high permeability magnetic film.

さらに、良好な磁気特性を得るためには、基板1の表面
粗度が小さいことが必要である。しかるに、一般に入手
できる結晶化ガラスの表面粗度はおよそ50〜200人
であり、この結晶化ガラスの上に高透磁率磁性膜を形成
すると、磁性膜の結晶の配向性等が変化し、所望の磁気
特性が得られない。また、この結晶化ガラスの基板の上
に形成した高透磁率磁性膜の表面粗度は基板のそれと変
らず、磁性膜の表面粗度は基板の表面粗度が反映して5
0〜200人程度になる。この結果、ヘッドギャップ部
12においては、下部ヨーク3の表面の凹凸によりギャ
ップ長の加工精度が低下するとともに、上部ヨーク11
を形成する磁性膜の特性変化を来たすことになる。さら
に、バンクヨーク部10が下部ヨーク3と結晶性の不揃
い等が生じた状態で結合されるため、磁気的な挙動が不
連続となり良好な磁気特性が得られない。
Furthermore, in order to obtain good magnetic properties, it is necessary that the surface roughness of the substrate 1 is small. However, the surface roughness of commonly available crystallized glass is about 50 to 200, and when a high permeability magnetic film is formed on this crystallized glass, the crystal orientation of the magnetic film changes, resulting in a desired surface roughness. magnetic properties cannot be obtained. In addition, the surface roughness of the high permeability magnetic film formed on this crystallized glass substrate is the same as that of the substrate, and the surface roughness of the magnetic film is 5%, reflecting the surface roughness of the substrate.
It will be about 0 to 200 people. As a result, in the head gap portion 12, the machining accuracy of the gap length decreases due to the unevenness of the surface of the lower yoke 3, and the upper yoke 11
This results in changes in the characteristics of the magnetic film forming the magnetic film. Furthermore, since the bank yoke portion 10 is coupled to the lower yoke 3 in a state where crystallinity is uneven, the magnetic behavior becomes discontinuous and good magnetic properties cannot be obtained.

したがって、上述のYMRヘッドにおいては、強磁性体
特有のノイズや信号波形の歪が再生波形のS/N比に与
える影響が大きい問題となる。
Therefore, in the above-mentioned YMR head, noise peculiar to ferromagnetic materials and distortion of the signal waveform have a large effect on the S/N ratio of the reproduced waveform.

〈発明の目的〉 本発明は、上記問題点に鑑みてなされたものであり、基
板の表面粗度が大きい場合においても下部ヨーク及び上
部ヨークの磁気特性が良好であるようにした薄膜磁気ヘ
ッドを提供することを目的とする。
<Object of the Invention> The present invention has been made in view of the above problems, and provides a thin film magnetic head in which the magnetic properties of the lower yoke and the upper yoke are good even when the surface roughness of the substrate is large. The purpose is to provide.

〈発明の構成〉 本発明は、磁気記録媒体に接触するヨークがヘッドギャ
ップ部の上または下に形成されるとともにこのヨークを
磁路として磁気的に結合された磁気抵抗効果素子を内設
した薄膜磁気ヘッドにおいて、基板上に塗布工程を経て
形成された5102膜を介して上記ヨークが形成されて
なることを特徴とする。
<Structure of the Invention> The present invention provides a thin film in which a yoke in contact with a magnetic recording medium is formed above or below a head gap portion, and a magnetoresistive effect element is internally connected to the yoke, which is magnetically coupled using this yoke as a magnetic path. The magnetic head is characterized in that the yoke is formed through a 5102 film formed on a substrate through a coating process.

〈実施例〉 以下、本発明の一実施例について説明する。<Example> An embodiment of the present invention will be described below.

第1図は本実施例のYMRヘッドの磁気記録媒体のトラ
ック幅方向に垂直な方向の断面構造を示し、第2図はこ
のYMRヘッドの平面構成を示す。
FIG. 1 shows the cross-sectional structure of the YMR head of this embodiment in a direction perpendicular to the track width direction of the magnetic recording medium, and FIG. 2 shows the planar structure of this YMR head.

第1図は第2図のYMRヘッドのA−A’断面の構造を
示す。
FIG. 1 shows the structure of the YMR head shown in FIG. 2 taken along the line AA'.

上部ヨーク11は、厚さが0.5〜1.0μm程度のパ
ーマロイ(Ni−Fe合金)等の高透磁率磁性膜からな
り、この上部ヨーク11は磁気記録媒体13で発生した
磁界をMR素子7に導くための磁路となる。MR素子7
はパーマロイ (Ni−Fe合金)蒸着膜からなり、そ
の膜厚は200〜50,0人であり、トラック幅は多ト
ランク構成となるため50〜200μm程度に設定され
る。
The upper yoke 11 is made of a high permeability magnetic film such as permalloy (Ni-Fe alloy) with a thickness of about 0.5 to 1.0 μm, and the upper yoke 11 transfers the magnetic field generated by the magnetic recording medium 13 to the MR element. It becomes a magnetic path to lead to 7. MR element 7
is made of a permalloy (Ni-Fe alloy) vapor-deposited film, the thickness of which is 200 to 50,000 mm, and the track width is set to about 50 to 200 μm since it has a multi-trunk configuration.

バイアス磁界をMR素子7に印加するための導体5は、
Al5CuまたはA#−Cu合金等の膜からなる。ヘッ
ドギャップ部12は、実際に使用される記録波長が最小
0.5μm程度であるので、0.2〜0.3μm程度に
設定される。上述の導体5、MR素子7及び上部ヨーク
11は、絶縁層4.6.9を介して形成される。下部ヨ
ーク3は、例えばセンダスト(Fe−Aj!−3i合金
)またはパーマロイ (Ni−Fe合金)等の高透磁率
磁性膜からなる。この下部ヨーク3は、結晶化ガラス等
の熱膨張係数が下部ヨーク3と同程度の非磁性体からな
る基板1上に塗布型5i02膜2を介して形成される。
The conductor 5 for applying a bias magnetic field to the MR element 7 is
It is made of a film of Al5Cu or A#-Cu alloy. Since the minimum recording wavelength actually used is about 0.5 μm, the head gap portion 12 is set to about 0.2 to 0.3 μm. The above-described conductor 5, MR element 7, and upper yoke 11 are formed via the insulating layer 4.6.9. The lower yoke 3 is made of a high permeability magnetic film such as Sendust (Fe-Aj!-3i alloy) or Permalloy (Ni-Fe alloy). The lower yoke 3 is formed on a substrate 1 made of a non-magnetic material such as crystallized glass having a coefficient of thermal expansion similar to that of the lower yoke 3, with a coated 5i02 film 2 interposed therebetween.

塗布型5i02膜2は、ケイ素化合物等を有機溶媒等に
溶かしたものをスピナーにより基板1上に塗布し焼成す
ることにより得られる。この塗布型5t02膜2の厚さ
はスピンコードの回転数及び溶媒中のケイ素化合物の濃
度により制御することができ、この5i02膜によりP
IQ等の有機系材料を用いた場合と同様に基板1の表面
の凹凸が平坦化される。この塗布型5i02膜2を基板
1上に形成したときのS i 02膜2の表面粗度は、
基板1の表面粗度が50〜200人程度であるのに対し
て〜10人程度である。
The coating type 5i02 film 2 is obtained by applying a solution of a silicon compound or the like in an organic solvent or the like onto the substrate 1 using a spinner and baking it. The thickness of this coated 5t02 film 2 can be controlled by the rotation speed of the spin code and the concentration of silicon compound in the solvent.
Similar to the case where an organic material such as IQ is used, the unevenness on the surface of the substrate 1 is flattened. The surface roughness of the Si02 film 2 when this coating type 5i02 film 2 is formed on the substrate 1 is as follows:
While the surface roughness of the substrate 1 is about 50 to 200, it is about 10.

この塗布型5i02膜2の上に、高透磁率磁性膜からな
る下部ヨーク3が電子ビーム蒸着法またはスパッタ法等
により形成される。この場合、基板1の表面の凹凸が塗
布型5i02膜2により平坦化され、且つ塗布型5t0
2膜は下地としての膜質(膜密度、膜組成等)が優れて
いるので、上記方法で得られた下部ヨーク3を形成する
高透磁率磁性膜は良好な磁気特性をもつようになる。
On this coating type 5i02 film 2, a lower yoke 3 made of a high permeability magnetic film is formed by electron beam evaporation, sputtering, or the like. In this case, the unevenness on the surface of the substrate 1 is flattened by the coating type 5i02 film 2, and the coating type 5t0
Since the second film has excellent film quality (film density, film composition, etc.) as a base, the high permeability magnetic film forming the lower yoke 3 obtained by the above method has good magnetic properties.

下部ヨーク3上にSiO2、Si3N4、Al2O3等
の絶縁層4がP−CVD法またはRFスパッタ法により
形成された後、バイパス磁界を印加するための導体5が
抵抗加熱法、電子ビーム蒸着法またはRFスパッタ法に
より形成される。導体5には、上述のようにA 12 
% Cu −、A I  Cu合金等の膜が用いられ、
Cu膜は硝酸(HNOa)+過酸化アンモニウム((N
Ha ) 2 S20e )+水(H20)なるエツチ
ング液で、Aj2膜及びAl−Cu合金膜は水酸化カリ
ウム(KOH)+過硫酸アンモニウム((NH3)23
20B)+水(H20)またはリン酸(Ha PO4)
十硝酸(HNO3)十酢酸(CH3C00H)生水(H
2O)なるエツチング液を用いれば、それぞれ目的の寸
法に加工することができる。この導体5上に、P−CV
D法またはRFスパッタ法により、5t02.5t3N
4、Af203等からなる絶縁層6が形成される。
After an insulating layer 4 of SiO2, Si3N4, Al2O3, etc. is formed on the lower yoke 3 by P-CVD or RF sputtering, a conductor 5 for applying a bypass magnetic field is formed by resistance heating, electron beam evaporation, or RF. It is formed by sputtering. The conductor 5 has A 12 as described above.
% Cu −, A I Cu alloy, etc. films are used,
The Cu film is made of nitric acid (HNOa) + ammonium peroxide ((N
Ha ) 2 S20e ) + water (H20) as an etching solution, Aj2 film and Al-Cu alloy film were etched with potassium hydroxide (KOH) + ammonium persulfate ((NH3)23
20B) + water (H20) or phosphoric acid (Ha PO4)
Deca-nitric acid (HNO3) Deca-acetic acid (CH3C00H) Raw water (H
If an etching solution called 2O) is used, each can be processed into the desired dimensions. On this conductor 5, P-CV
5t02.5t3N by D method or RF sputtering method
4. An insulating layer 6 made of Af203 or the like is formed.

さらに、パーマロイ (Ni−Fe合金)からなる・M
R素子7及びAf等からなるリード層8が抵抗加熱法、
電子ビーム蒸着法等により形成された後、ヘッドギャッ
プ部12の絶縁層がエツチングされる。このヘッドギャ
ップ部12の絶縁層は平行平板型ドライエツチング装置
(RIE)を用い、CHFa  (フレオン23)、C
F4(フレオン14) 、CF4+02 、CF4 +
H2を導入ガスとしてエツチングすることができる。M
R素子7は、膜厚が200〜500人で、ケミカルエツ
チングまたはスパッタエツチングにより5〜20X50
〜100μmのストライプ状に加工される。
Furthermore, ・M made of permalloy (Ni-Fe alloy)
The lead layer 8 consisting of the R element 7 and Af etc. is heated by a resistance heating method.
After being formed by electron beam evaporation or the like, the insulating layer of the head gap portion 12 is etched. The insulating layer of this head gap portion 12 is etched using a parallel plate dry etching device (RIE), and is etched using CHFa (Freon 23), C
F4 (Freon 14), CF4+02, CF4+
Etching can be performed using H2 as an introduced gas. M
The R element 7 has a film thickness of 200 to 500 mm and is etched by chemical etching or sputter etching.
Processed into stripes of ~100 μm.

MR素子7及びリード層8の上にP−CVD法またはR
Fスパッタ法により絶縁層9が形成され、バックヨーク
部10の絶縁層が平行平板型ドライエツチング装置によ
りエツチングされる。最後に、上部ヨーク11としてパ
ーマロイ (Ni−Fe合金)等の高透磁率磁性膜がス
パッタ法等により形成される。
P-CVD method or R
An insulating layer 9 is formed by F sputtering, and the insulating layer of the back yoke portion 10 is etched by a parallel plate dry etching device. Finally, a high permeability magnetic film such as permalloy (Ni--Fe alloy) is formed as the upper yoke 11 by sputtering or the like.

下記の表は従来例と本実施例における薄膜磁気ヘッドの
高透磁率磁性膜の磁気特性を示す。Hcは磁化容易軸方
向の抗磁力、Hchは磁化困難軸方向の抗磁力、Hkは
異方性磁界である。
The table below shows the magnetic properties of the high permeability magnetic films of the thin film magnetic heads in the conventional example and the present example. Hc is the coercive force in the direction of the axis of easy magnetization, Hch is the coercive force in the direction of the axis of hard magnetization, and Hk is the anisotropic magnetic field.

この表から明らかなように、従来例において表面粗度が
50〜200人の結晶化ガラス(PEG)の基板上に直
接スパッタリングあるいは蒸着により形成されたパーマ
ロイ (Ni−Fe合−金)膜の磁気特性と比較して、
本実施例において同様の基板に塗布型S i 02膜が
形成されさらにこの塗布型S i 02膜の上にスパッ
タリングあるいは蒸着により形成されたパーマロイ (
Ni−Fe合金)膜の磁気特性が改善されていることが
わかる。すなわち、パーマロイスパッタ膜(膜厚1μm
)においては、磁化容易軸方向の抗磁力Hcが2.1o
eから1.2oeに小さくなっている。また、表面粗度
の影響がでやすい膜厚が300人のパーマロイ蒸着膜に
おいても、磁化容易軸方向の抗磁力Hcが4〜5oeか
ら2.Qoeに小さくなっている。これは、塗布型5i
02膜により基板表面の凹凸が平坦化されたためである
とともに、下地として膜質の向上が図れたためであると
考えられる。
As is clear from this table, in the conventional example, the magnetic properties of permalloy (Ni-Fe alloy) films formed by direct sputtering or vapor deposition on crystallized glass (PEG) substrates with surface roughness of 50 to 200. Compared to the characteristics
In this example, a coated Si02 film was formed on a similar substrate, and a permalloy film (permalloy) was formed on the coated Si02 film by sputtering or vapor deposition.
It can be seen that the magnetic properties of the Ni--Fe alloy film are improved. That is, permalloy sputtered film (thickness 1 μm)
), the coercive force Hc in the direction of the axis of easy magnetization is 2.1o.
e to 1.2oe. In addition, even in a permalloy vapor-deposited film with a thickness of 300, which is easily affected by surface roughness, the coercive force Hc in the direction of the axis of easy magnetization ranges from 4 to 5 oe to 2.5 oe. The QOE is small. This is a coating type 5i
This is thought to be because the unevenness on the substrate surface was flattened by the 02 film, and also because the quality of the film was improved as an underlying layer.

さらに、パーマロイ (Ni−Fe合金)膜からなる上
部ヨーク11を形成するにあたり、ベッドギャップ部1
2及びバックヨーク部10の表面凹凸の影響について考
察する。すなわち、本実施例では、塗布型5i02膜2
上に下部ヨーク3が形成されているので、下部ヨーク3
の表面粗度は〜10Å以下になっている。また、ベッド
ギャップ部12の絶縁層9を形成した後の表面粗度もや
はり〜10Å以下である。したがって、ヘッドギャップ
部12及びバックヨーク部10の表面粗度が小さいので
、パーマロイ(N i −F e 合金) 等の高透磁
率磁性膜からなる上部ヨーク11を形成した場合、良好
な磁気特性を有する膜が得られる。
Furthermore, when forming the upper yoke 11 made of permalloy (Ni-Fe alloy) film, the bed gap portion 1
2 and the influence of the surface irregularities of the back yoke portion 10 will be considered. That is, in this example, the coating type 5i02 film 2
Since the lower yoke 3 is formed above, the lower yoke 3
The surface roughness of is ~10 Å or less. Furthermore, the surface roughness of the bed gap portion 12 after the insulating layer 9 is formed is also ~10 Å or less. Therefore, since the surface roughness of the head gap part 12 and the back yoke part 10 is small, when the upper yoke 11 is made of a high permeability magnetic film such as permalloy (N i -F e alloy), good magnetic properties can be achieved. A film having the following properties is obtained.

さらに、ヘッドギャップ部12の凹凸が小さいので、ギ
ャップ損失も小さくすることができる。
Furthermore, since the unevenness of the head gap portion 12 is small, gap loss can also be reduced.

〈発明の効果) 以上詳述したように、本発明によれば、基板上に塗布型
S i 02膜を形成して表面粗度を小さくしたので、
基板表面の凹凸とともに膜質に影響されない良好な磁気
特性を有する高透磁率磁性膜からなる下部ヨーク及び上
部ヨークを形成することができ、したがって、良好なS
/N比を有する薄膜MRヘッドが得られる。
<Effects of the Invention> As detailed above, according to the present invention, a coated SiO2 film is formed on a substrate to reduce the surface roughness.
The lower and upper yokes can be formed of a high permeability magnetic film that has good magnetic properties that are not affected by the unevenness of the substrate surface and the film quality.
A thin film MR head having a /N ratio is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の断面図、第2図は本発明実施例
の平面図、第3図は従来例・の断面図である。 1・・・基板 2・・・塗布型SiO2膜 3・・・下部ヨーク
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a plan view of the embodiment of the present invention, and FIG. 3 is a cross-sectional view of a conventional example. 1...Substrate 2...Coated SiO2 film 3...Lower yoke

Claims (1)

【特許請求の範囲】[Claims] (1)磁気記録媒体に接触するヨークがヘッドギャップ
部の上または下に形成されるとともにこのヨークを磁路
として磁気的に結合された磁気抵抗効果素子を内設した
薄膜磁気ヘッドにおいて、基板上に塗布工程を経て形成
されたSiO_2膜を介して上記ヨークが形成されてな
ることを特徴とする薄膜磁気ヘッド。
(1) In a thin-film magnetic head in which a yoke that contacts the magnetic recording medium is formed above or below the head gap, and a magnetoresistive element that is magnetically coupled using this yoke as a magnetic path is installed, A thin film magnetic head characterized in that the yoke is formed through a SiO_2 film formed through a coating process.
JP60091667A 1985-04-26 1985-04-26 Thin film magnetic head Pending JPS61248213A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60091667A JPS61248213A (en) 1985-04-26 1985-04-26 Thin film magnetic head
DE19863613619 DE3613619A1 (en) 1985-04-26 1986-04-23 THICK FILM MAGNETIC HEAD
GB8610163A GB2175735B (en) 1985-04-26 1986-04-25 Thin film magnetic head
US06/855,934 US4789910A (en) 1985-04-26 1986-04-25 Thin film magnetic head with an application type silicon dioxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60091667A JPS61248213A (en) 1985-04-26 1985-04-26 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS61248213A true JPS61248213A (en) 1986-11-05

Family

ID=14032830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60091667A Pending JPS61248213A (en) 1985-04-26 1985-04-26 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS61248213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792546A (en) * 1993-11-22 1998-08-11 Fujitsu Limited Magneto-resistive head and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792546A (en) * 1993-11-22 1998-08-11 Fujitsu Limited Magneto-resistive head and method of producing the same

Similar Documents

Publication Publication Date Title
US4789910A (en) Thin film magnetic head with an application type silicon dioxide film
US5684658A (en) High track density dual stripe magnetoresistive (DSMR) head
US4413297A (en) Magnetic recording and playback apparatus of perpendicular recording type
US4286299A (en) Magnetic head assembly for recording or reproducing vertically magnetized records
JPS61248213A (en) Thin film magnetic head
JPS62172515A (en) Thin film magnetic head for varied servo system
JPS62132211A (en) Thin film magnetic head
JPS61248214A (en) Thin film magnetic head
JP2617185B2 (en) Thin film magnetic head
JP2833047B2 (en) Method of manufacturing magnetoresistive head
JPH0473210B2 (en)
JP2510625B2 (en) Magnetoresistive magnetic head
JP3431265B2 (en) Magnetic disk drive
JP3120012B2 (en) Magnetic sensor, magnetic recording / reproducing head and magnetic recording / reproducing apparatus using the same
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JPS5987616A (en) Magnetic thin film head
JPH011114A (en) thin film magnetic head
JPS5987615A (en) Manufacture of magnetic thin film head
JPH0154766B2 (en)
JPS5971124A (en) Magneto-resistance effect magnetic head
JPH07176020A (en) Magneto-resistance effect head and its production
JPS62146420A (en) Thin film magnetic head
Muraoka et al. Low inductance single-pole head on flying slider
JP2003208708A (en) Magnetic head and magnetic storage device using the same