JPS61159554A - High tensile steel less in softening of weld heateffected-zone and excellent in weldability and its production - Google Patents

High tensile steel less in softening of weld heateffected-zone and excellent in weldability and its production

Info

Publication number
JPS61159554A
JPS61159554A JP132985A JP132985A JPS61159554A JP S61159554 A JPS61159554 A JP S61159554A JP 132985 A JP132985 A JP 132985A JP 132985 A JP132985 A JP 132985A JP S61159554 A JPS61159554 A JP S61159554A
Authority
JP
Japan
Prior art keywords
less
rolling
steel
softening
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP132985A
Other languages
Japanese (ja)
Inventor
Yasushi Moriyama
康 森山
Yasuo Sogo
十河 泰雄
Atsuhiko Yoshie
吉江 淳彦
Yasumitsu Onoe
尾上 泰光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP132985A priority Critical patent/JPS61159554A/en
Publication of JPS61159554A publication Critical patent/JPS61159554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the high tensile steel which is less in the softening of a heateffected-zone and excellent in the weldability by blending C, Si, Mn, Al, N, Nb and B of the specified quantity to steel and making the carbon equivalent a specified range. CONSTITUTION:The composition of steel is made to 0.07-0.23 C by wt%, 0.05-0.35 Si, 0.2-1.3 Mn, 0.01-0.08 Al, <0.004 N, 0.004-0.04 Nb and 0.0005-0.002 B and the carbon equivalent Ceq shown in a formula is 0.22-0.34 and the balance is Fe and the inevitable impurities. Billet is produced by casting continuously this steel and the rolling of billet is started from >=900 deg.C temp. or when it is cooled at <=900 deg.C, the rolling is started after reheating it >=1,050 deg.C. The rolling is performed so that at least >=20% cumulative rolling reduction is secured at 800-900 deg.C temp. range and the billet is acceleratedly cooled in >=3 deg.C/sec average cooling velocity after finishing the rolling at >=800 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野ン 本発明は浴接熱影響部の硬化性と溶接割れ感受性が啄め
て小さく、かつ大入熱溶接を施工しても溶接熱による熱
影響部の軟化が少ない48〜65’qf/ljの引張強
さを有する高張力鋼及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is characterized in that the hardenability and weld cracking susceptibility of the bath heat affected zone are extremely small, and even when high heat input welding is performed, there is no thermal influence due to welding heat. The present invention relates to a high tensile strength steel having a tensile strength of 48 to 65'qf/lj with little softening of parts, and a method for manufacturing the same.

(従来の技術] 近年、制御圧延とそれに続く加速冷却技術にょシ溶接性
の良好な各種高張力鋼が開発され、造船材を始めとする
各種構造物に使用されつ\あるが、これらの鋼は従来鋼
に比し炭素当量 Ceq=O4Mn/6 + (Or+Mo−hV)15
 + (N j+ou )/15が0.36チ以下と大
幅に低下されているものが多い。例えば特開昭55−1
13834号公報によれば、0.24〜0.35%のO
eqを有するO−Mr+#4または0−Mn−Nb鋼で
引張強さが50kff 1wIj級の高張力鋼を製造す
る技術が開示されている。
(Prior art) In recent years, various high-strength steels with good weldability have been developed through controlled rolling and subsequent accelerated cooling technology, and are being used in various structures including shipbuilding materials. Compared to conventional steel, carbon equivalent Ceq=O4Mn/6 + (Or+Mo-hV)15
+ (N j + ou )/15 is significantly reduced to 0.36 inches or less in many cases. For example, JP-A-55-1
According to Publication No. 13834, 0.24 to 0.35% O
A technique for manufacturing high tensile strength steel with a tensile strength of 50 kff 1 wIj class using O-Mr+#4 or 0-Mn-Nb steel having eq.

ところが、これらの高張力鋼はその低Ceq化の効果で
溶接熱影響部の硬化性や隣接割れ感受性が極めて低く、
切欠靭性が高いといういわゆる溶接性が優れているとい
う特長を有するものの、多電極サブマージアーク溶接や
エレクトロガスアーク溶接などによる片面1ノぐスや両
面1ノぞスの大入熱溶接施工を加えると溶接熱影響部の
軟化が大きくなシ、溶接継手の強度低下を惹起するとい
う問題がある。
However, due to the low Ceq effect of these high-strength steels, the hardenability of the weld heat-affected zone and adjacent crack susceptibility are extremely low.
Although it has the feature of high notch toughness, so-called excellent weldability, welding becomes difficult when welding with high heat input of 1 nozzle on one side or 1 nozzle on both sides by multi-electrode submerged arc welding or electrogas arc welding. There is a problem in that the softening of the heat affected zone is large, causing a decrease in the strength of the welded joint.

この軟化した溶接熱影響部を詳細に見ると、第1図に示
すように、■Ac1点以下に加熱された部分、■Ar1
〜Ac5点の中間温度域に加熱された部分、■kc5点
以上から鋼の溶融点までの間の温度に加熱された部分に
大別され、制御圧延+加速冷却法で製造された低Oeq
の高張力鋼を大入熱浴接した場合に軟化を起こすのは■
と■の領域に加えて400℃以上に加熱される■の領域
である。つまり■。
If we look at this softened weld heat-affected zone in detail, as shown in Fig.
Low Oeq manufactured by controlled rolling + accelerated cooling method, roughly divided into a part heated to an intermediate temperature range of ~Ac5 point, ■ a part heated to a temperature between KC5 point and above and the melting point of steel.
What causes softening when high tensile strength steel is welded in a large heat input bath is ■
In addition to the areas 2 and 3, the area 2 is heated to 400°C or higher. In other words ■.

■の領域では低Ceq組成による焼入性不足によりベイ
ナイトやマルテンサイトの硬化組織が大入熱溶接時に得
られる冷却条件ではわずかじか現出しないためであ、9
.400℃〜AC1点までに加熱されだ■の部分ではそ
の浴接熱サイクルによシ焼戻処理を受けるからである。
This is because in the region (2), due to insufficient hardenability due to the low Ceq composition, hardened structures of bainite and martensite appear only slightly under the cooling conditions obtained during high heat input welding.
.. This is because the portion (2) that has been heated to 400° C. to AC1 point undergoes tempering treatment during the bath heat cycle.

第1し1に示す如き軟化状態では結果的に母材や溶接金
属よりも低強度の部分が含まれることになり、JISZ
3121のような試験片で引張試験を行なうと破断部分
は轟然のことながら熱影響部内となり、引張強さは母材
よりも低下する。ただし、軟化の度合がある程度以内の
場合には、試験片の幅が大きくなると軟化部での塑性変
形の拘束とその部分の加工硬化とによってそのような溶
接継手の引張強さははソ母材のレベルまで回復すること
が知られており、実構造物の強度上は問題とならない。
In the softened state shown in No. 1 and 1, as a result, parts with lower strength than the base metal or weld metal are included, and JIS Z
When a tensile test is carried out using a test piece such as 3121, the fractured portion will be within the heat affected zone, and the tensile strength will be lower than that of the base material. However, if the degree of softening is within a certain level, the tensile strength of such welded joints will decrease as the width of the test specimen increases due to the restraint of plastic deformation in the softened part and work hardening of that part. It is known that the damage can be recovered to the level of 100%, so there is no problem in terms of the strength of the actual structure.

以上の如き低Oeqの高張力鋼の熱影響部軟化対策に関
し、特開昭59−6355号公報は基本要素として微量
のNbと■とを添加し、その焼入性向上効果により80
0℃から500℃までの冷却時間が30秒以上の溶接条
件で軟化を軽減する技術を与えている。しかしながら、
この技術は単(・二ごζbとVを添加するというだけで
、製造方法の規定特にこれらの元素を焼入性向上のため
に使用する条件を与えておらず、また対象溶接人熱曾も
比較的小さい1t=15+m+で35kJ/crnが下
限2場合を考えておシ、本発明が対象とした片面1パス
溶接(t=15讃で約90 kJ/cm)条件では有効
でないことが多いものと推定される。
Regarding the above-mentioned measures to soften the heat affected zone of low Oeq high tensile strength steel, JP-A-59-6355 discloses the addition of trace amounts of Nb and
It provides a technology that reduces softening under welding conditions where the cooling time from 0°C to 500°C is 30 seconds or more. however,
This technology simply adds ζb and V, but does not specify the manufacturing method, especially the conditions for using these elements to improve hardenability. Considering the case where the lower limit is 35 kJ/crn at a relatively small 1 t=15+m+, this is often not effective under the single-sided, 1-pass welding (approximately 90 kJ/cm at t=15 cm) condition targeted by the present invention. It is estimated to be.

(発明が解決しようとする問題点) 本発明は浴接性を害することなく、つまり低炭素蟲量を
維持しつつ上述の如き大入熱溶接における溶接熱影響部
の軟化を大幅に@減した高張力鋼及びその製造方法を提
供するものである。
(Problems to be Solved by the Invention) The present invention has significantly reduced the softening of the weld heat affected zone during high heat input welding as described above, without impairing bath weldability, that is, while maintaining a low carbon content. The present invention provides a high tensile strength steel and a method for manufacturing the same.

(問題点を解決するための手段) 本発明者らは鋼中の微量元素の誓と存在形態をコントロ
ールすると溶接熱影響部の軟化(以下HAZ軟化とする
)を防止出来ることを発見し、それを従来型の制御圧延
+加速冷却鋼に併用することによりHAZ軟化の小さい
高張力鋼を製造することに成功したのである。
(Means for solving the problem) The present inventors have discovered that softening of the weld heat affected zone (hereinafter referred to as HAZ softening) can be prevented by controlling the presence and form of trace elements in steel. By combining this with conventional controlled rolling and accelerated cooling steel, they succeeded in producing high-strength steel with low HAZ softening.

叩ら、本発明の要旨は、重tチで、0:0.07〜0.
23 、Si:  0.05〜0.35 、Mn:  
0.2〜1.3  、At: 0.01〜0.08 、
 N : 0.004以下、 Nb: 0.004〜0
.040 、 B :0.0005〜0.0020を必
須元素とし、必要によシ更に、Ou:0.2以下、 N
i : 0.4以下、 Or: 0.1以下、Mo:0
.1以下、V:0.05以下、Ti:0.03以下を適
宜含有し、炭素当量(Oeq=0+Mn /fi+ (
Cu+Ni )/15+ (Or4M。
However, the gist of the present invention is that the gist of the present invention is 0:0.07 to 0.
23, Si: 0.05-0.35, Mn:
0.2-1.3, At: 0.01-0.08,
N: 0.004 or less, Nb: 0.004 to 0
.. 040, B: 0.0005 to 0.0020 as essential elements, and optionally Ou: 0.2 or less, N
i: 0.4 or less, Or: 0.1 or less, Mo: 0
.. 1 or less, V: 0.05 or less, Ti: 0.03 or less, and carbon equivalent (Oeq=0+Mn/fi+ (
Cu+Ni)/15+ (Or4M.

+V)/5}が0.22〜0.34であり、残部がFe
及び不可避的不純物よりなることを特徴とする溶接熱影
響部の軟化が少ない良溶接性高張力鋼、並びに、重i%
で、O:0.07〜0.23.Si: 0.05〜0.
35 、Mn:0.2〜1.3 、 At: 0.01
〜0.08 、 N : 0.004以下、Nb:0.
004〜0.040.R:0.0005〜0.0020
を必須元素とし、必要により更に、Ou:0.2以下、
Ni:0.4以下。
+V)/5} is 0.22 to 0.34, and the remainder is Fe
and unavoidable impurities, and a high-strength steel with good weldability characterized by less softening of the weld heat-affected zone, and a weight i%
So, O: 0.07-0.23. Si: 0.05-0.
35, Mn: 0.2-1.3, At: 0.01
~0.08, N: 0.004 or less, Nb: 0.
004-0.040. R: 0.0005-0.0020
is an essential element, and if necessary, Ou: 0.2 or less,
Ni: 0.4 or less.

Or:0.1以下、 Mo: 0.1以下、V:0.0
5以下、Tに0,03以下を適宜含有し、炭素当量{C
eq=C+Mn/6+(Cu+Ni)/15+TOr+
Mo+V)/5}が0.22〜0.34であり、残部が
Fe及び不可避的不純物よりなる鋼を連続鋳造して鋳片
を製造し、該鋳片を900℃以上の温度より圧延開始し
、又は900℃以下に冷却した場合は1050℃以上の
温度に再加熱してから圧延開始し、800〜900℃の
温度範囲で少くとも20%以上の累積圧下量が確保され
るように圧延を施し、圧延終了後3℃/ See以上の
平均冷却速度で加速冷却することを特徴とする溶接熱影
響部の軟化が少ない良溶接性高張力鋼の製造方法である
Or: 0.1 or less, Mo: 0.1 or less, V: 0.0
5 or less, T contains 0.03 or less as appropriate, carbon equivalent {C
eq=C+Mn/6+(Cu+Ni)/15+Tor+
Mo+V)/5} is 0.22 to 0.34, the balance is Fe and unavoidable impurities, and a slab is produced by continuous casting, and rolling of the slab is started at a temperature of 900 ° C. or higher. Or, if it has been cooled to 900°C or lower, it must be reheated to a temperature of 1050°C or higher before rolling is started, and the rolling is carried out to ensure a cumulative reduction of at least 20% in the temperature range of 800 to 900°C. This is a method for producing high-strength steel with good weldability, which reduces softening of the weld heat-affected zone and is characterized by accelerated cooling at an average cooling rate of 3° C./See or higher after completion of rolling.

以下に本発明鋼のfヒ学成分および製造条件の限定理由
を詳細に述べる。
Below, the reasons for limiting the chemical components and manufacturing conditions of the steel of the present invention will be described in detail.

0は本発明鋼において母材の強度を高めると同時KHA
Z軟fヒの度合を左右する重要な元素である。しかし大
量に添加すると溶接性を急激に悪くし、また母材の靭性
をも低下せしめるので1本発明のOeq範囲で必要限度
として上、下限をそれぞれO,O’7係、 0.23チ
とする。
0 is KHA at the same time as increasing the strength of the base material in the steel of the present invention.
It is an important element that influences the degree of Z soft f-hi. However, if added in large quantities, the weldability will deteriorate rapidly and the toughness of the base metal will also be reduced, so the upper and lower limits are set as O, O'7 and 0.23, respectively, as necessary limits within the Oeq range of the present invention. do.

8iとAtは脱酸元素として使用するものであるが、こ
れらの共存下でそれぞれ0.05 %と0.01係未満
では鋼の脱酸が不十分となり、連続鳥造鋼片に気泡が生
成したシ、鋼の延、靭性を低下せしめるのでこれらの値
を添加量の下限とし・、逆に添加量が多すぎると酸化物
系の介在物を増大させる危険性があるのでSiについて
は0.35 %を、Atについて0.08%をその上限
値とした。なお、 Siuこの範囲内で母材の強度をや
\高める副次的な効果も:竹し、Atはこの範囲内で一
部がAtNとなってNを固定する効果がある。
8i and At are used as deoxidizing elements, but if they coexist with less than 0.05% and 0.01%, respectively, the deoxidation of the steel will be insufficient and bubbles will be formed in the continuous steel billet. These values should be set as the lower limits for the amount of Si added, since Si may reduce the elongation and toughness of the steel.On the other hand, if the amount added is too large, there is a risk of increasing oxide-based inclusions, so Si should be set at 0. 35%, and the upper limit was 0.08% for At. In addition, Siu also has the secondary effect of slightly increasing the strength of the base material within this range: Bamboo, and At within this range, part of it becomes AtN and has the effect of fixing N.

Mnは本発明鋼で母材の靭性を低下せしめることなく強
度を高めるので必要不可欠の元素であり、またHAZ欧
化防止にも有効であるが、経済性を害し、彪接性にも有
害である。したがって母材強度確保上の必要から0.2
%を下限とし、上限値は経済性、盤接性を考慮して1.
3%とする。
Mn is an essential element in the steel of the present invention because it increases the strength without reducing the toughness of the base metal, and is also effective in preventing HAZ corrosion, but it harms economic efficiency and is harmful to the weldability. . Therefore, 0.2
% as the lower limit, and the upper limit as 1. considering economic efficiency and board connectability.
3%.

Nbと8は本発明IA′5r:特徴づけるもので、いづ
れも浴接性を害することなく微量添加でHA Z軟化貼
止VC顕著な効果を有する。すなわち、これらを複合添
加することで、熱影曽部の■と■の領域で固溶した状態
が焼入性を高め、片面1ノ紀ス溶接のような大入熱熱f
#響部の節度低下を軽減する一方、Nbは■と■の領域
で歪訪起により転位上に炭窒化物となって析出し、析出
硬化を連じてこの部分の軟化を低減せ(7める。以上の
効果はNbについては0.004係以上より顕著となる
が、0.04%超では飽和すると同時に母材と熱形I!
i部の靭性を害するので、これらを下限、上限とし、8
についても(1,0005%より効果が現われ、0.0
02係超になるとFe−Rの化合物が生成して焼入性が
かえって減少するとともに母材靭性が低下するので、下
限値を0.00054、上限値を0.002 %とする
Nb and 8 are characteristic of the present invention IA'5r, and both have a remarkable effect on the HAZ softening adhesive VC when added in small amounts without impairing bath contact properties. In other words, by adding these in combination, the solid solution state in the areas ■ and ■ of the heat shadow area increases the hardenability, and the large heat input f
# While reducing the moderation decline in the sound part, Nb precipitates as carbonitrides on dislocations due to strain in the regions of ■ and ■, and reduces the softening of this part through precipitation hardening (7 The above effect becomes more pronounced for Nb when the coefficient exceeds 0.004%, but when it exceeds 0.04%, it becomes saturated and at the same time the base metal and the thermal form I!
Since this will damage the toughness of the i part, these are set as the lower limit and upper limit, and 8
Regarding (the effect appears from 1,0005%, 0.0
If the ratio exceeds 02%, Fe--R compounds will be formed, which will actually reduce the hardenability and the toughness of the base material, so the lower limit is set to 0.00054 and the upper limit is set to 0.002%.

NはBと結合して8Nを形成し、上記の8の焼入性向上
効果を消失させる元素なので極力低い方が望ましいが、
上記範囲のA/−、Bと共存すると0.0040%以下
であればBの焼入性をほとんど低下させないのでこの値
を上限値とする。また、このようにNを0.004%以
下にすれば副次的に溶接熱影響部の靭性も向上する。
N is an element that combines with B to form 8N and eliminates the hardenability improvement effect of 8 above, so it is desirable that it be as low as possible.
If it coexists with A/- and B in the above range, the hardenability of B will hardly decrease if it is 0.0040% or less, so this value is set as the upper limit. Further, by reducing N to 0.004% or less in this way, the toughness of the weld heat affected zone is also improved secondarily.

その他の元素は上記必須元素に加えて0.22〜0.3
4%のOeqの範囲内で補完的に添加するものあり、O
u 、 Ni 、 Or 、 MoはO、Mnと同様な
効果をVはNbと同様な効果を、TiはTiNとなって
Nを完全に固定して実質的な低N化を図る効果を目的と
してそれぞれ添加するものであるが、それらの上限は経
済性を考慮して前述の範囲に制限するっOeqは本発明
の製造条件と組合せて48kff/d以上の引張強さを
得るための下限値として0.22係を、電接性を害さな
い上限値として0.34%をそれぞれ限界値とした。
Other elements are 0.22 to 0.3 in addition to the above essential elements.
There are supplementary additions within the range of 4% Oeq, O
u, Ni, Or, Mo have the same effect as O and Mn, V has the same effect as Nb, and Ti has the effect of becoming TiN to completely fix N and achieve a substantial reduction in N. Each of these additives is added, but their upper limit is limited to the above-mentioned range in consideration of economic efficiency. The ratio of 0.22 was set as the upper limit value that does not impair the electrical connection property, and 0.34% was set as the limit value.

次に製造条件の限定理由につbて述べる。Next, the reasons for limiting the manufacturing conditions will be described.

本発明鋼は連続鋳造法で製造された鋳片を鋳込後900
℃以下に冷却することなく、またはもし900℃以下に
温度低下した場合には1050℃以上に再加熱して圧延
を開始するが、これは本発−の特徴とする各接熱影響部
の焼入性の向上及び析出硬化による硬化防止に必要な一
定量以上のNbと8とを固溶させるためである。その後
引続き圧延加工を実施し、800℃以上で圧延を終了す
るが、これは本発明鋼の場合これ以下の温度忙なると変
態点を下まわる温度となり、母材の強度確保が困難にな
るためであり、900℃〜800℃の低温オーステナイ
ト域での累積圧下率を20%とする゛のは、オーステナ
イトの細粒化を通じて母材の靭性を少くとも常温構造物
用鋼として必要なレベル以上(例えば0℃での2mVノ
ツチシャルピー値が3.5kg1m以上に維持するため
の必要条件である。圧延後の加速冷却は、本発明の化学
組成で48 kvf/mJ以上の強度を得るのに必要な
最小の平均冷速か3℃/Sであることと、3℃/S未満
の冷速で徐冷すると固溶状態の8 、 Nbが析出する
ために3℃/Sを必要下限平均冷速とした。
The steel of the present invention is produced by casting slabs produced by continuous casting.
Rolling is started without cooling to below 900°C, or by reheating to 1050°C or above if the temperature drops below 900°C. This is to dissolve a certain amount or more of Nb and 8 necessary for improving hardness and preventing hardening due to precipitation hardening. After that, rolling is continued, and rolling is completed at a temperature of 800°C or higher. This is because, in the case of the steel of the present invention, if the temperature is lower than this, the temperature will drop below the transformation point, making it difficult to ensure the strength of the base material. The reason why the cumulative reduction rate in the low-temperature austenite region of 900°C to 800°C is set to 20% is to increase the toughness of the base material at least to the level required for room-temperature structural steel (e.g., through grain refinement of austenite). This is a necessary condition for maintaining the 2 mV Notch Charpy value at 0°C at 3.5 kg/m or more. The average cooling rate is 3°C/S, and 3°C/S is the required lower limit average cooling rate because slow cooling at a cooling rate of less than 3°C/S will cause Nb in the solid solution state to precipitate. .

C実施例) 本発明の効果を確認するために行なった実施例について
以下に述べる。第1表に示すような化学組成の鋼片を連
続鋳造により製造し、第2表に示すプロセス条件で圧延
と加速冷却とを行なった。
Example C) Examples carried out to confirm the effects of the present invention will be described below. Steel slabs having chemical compositions as shown in Table 1 were produced by continuous casting, and rolled and accelerated cooling were performed under the process conditions shown in Table 2.

これらKついて調査した母材の機械的試験、J工S斜め
y開先拘束割れ試験と第3表に示す条件で溶接した溶接
継手の引張試験の結果を第4表に示す。
Table 4 shows the results of the mechanical tests of the base metal investigated for these K, the J-S, diagonal y-groove restraint cracking test, and the tensile test of welded joints welded under the conditions shown in Table 3.

以上の結果から、本発明鋼は成分とプロセス条件との組
合せで48〜65 kpf/Mノの間の範囲の強度レベ
ルの高張力鋼を提供することが可能であり、切欠靭性も
十分である。そして溶接性も良好で、かつ大入熱浴接継
手の引張強さが母材のそれとほぼ同等以上である。しか
るに比較鋼は本発明鋼と母材の機械的性質と溶接性の点
では大略同じであるが、大入熱溶接継手の強度低下が大
きい。
From the above results, the steel of the present invention can provide a high tensile strength steel with a strength level in the range of 48 to 65 kpf/M depending on the combination of ingredients and process conditions, and has sufficient notch toughness. . The weldability is also good, and the tensile strength of the large heat input joint is almost equal to or higher than that of the base metal. However, although the comparison steel is approximately the same as the invention steel in terms of mechanical properties and weldability of the base metal, the strength of the high heat input welded joint is greatly reduced.

本発明@a1比較鋼、■の場合の溶接部硬さ分布を示す
と第2図のようになる。第2図は上記各鋼を3電極片面
1パスサブマージドアーク廖接したc入熱Ji 137
 kJ/1yn)  ものの溶接金属中心からの距離と
硬さとの関係を示している。同図からもわかるように、
本発明鋼の硬さは比較鋼のようには大幅に低下していな
い。
Fig. 2 shows the weld hardness distribution for the comparative steel of the present invention @a1, (■). Figure 2 shows c heat input Ji 137 in which each of the above steels is welded with three electrodes and one pass on one side by submerged arc.
kJ/1yn) shows the relationship between the distance from the center of the weld metal and the hardness. As can be seen from the figure,
The hardness of the inventive steel is not as significantly reduced as that of the comparative steel.

(発明の効果) 以上に明らかにした如く、本発明は溶接性が優れていな
がら大入熱溶接継手のHAZ軟化の少ない高張力鋼及び
その製造方法を与えるものである。
(Effects of the Invention) As has been made clear above, the present invention provides a high-strength steel that exhibits excellent weldability and less HAZ softening of high-heat-input welded joints, and a method for manufacturing the same.

したがって溶接性の確保とHAZ軟化の防止という相反
する目的を同時に達成したことになり、工業界に使い易
くて安全な高張力鋼を提供し得るものであると云えよう
Therefore, it can be said that the conflicting objectives of ensuring weldability and preventing HAZ softening have been achieved at the same time, and that it is possible to provide an easy-to-use and safe high-strength steel to the industrial world.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低炭素当量の高張力鋼を大入熱溶接したときの
溶接部の一般的な硬さ分布の説明図であり、■は400
℃〜AC1点に加熱された領域、■はへC1〜Ac3に
加熱された領域、■はAc3〜溶融点に加熱された領域
を示す。 第2図は実際の溶接部硬さ分布を比較鋼と本発明鋼とに
ついて比較して示すもので、図中の■。 ■、■領域は第1図のそれらと同じである。 第3図(1)〜(4)は第3表の開先形状を示す図であ
る。 代理人 弁理士  秋 沢 政 光 他2名 5等才半含1中肥力・らのfI庄 71′3図
Figure 1 is an explanatory diagram of the general hardness distribution of the weld when high-strength steel with low carbon equivalent is welded with high heat input, and ■ is 400.
.degree. C. to AC1 point, ■ indicates a region heated to C1 to Ac3, and ■ indicates a region heated to Ac3 to melting point. Figure 2 shows a comparison of the actual weld hardness distribution of the comparative steel and the steel of the present invention, and is indicated by ■ in the figure. Areas ① and ② are the same as those in FIG. FIGS. 3(1) to 3(4) are diagrams showing the groove shapes shown in Table 3. Agent: Patent attorney Masamitsu Akizawa and 2 other people, including 5th grade and a half, 1st grade and a half age, 1st and 3rd grade, Rano fIsho 71'3 illustration

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、C:0.07〜0.23、Si:0.
05〜0.35、 Mn:0.2〜1.3、 Al:0.01〜0.08、 N:0.004以下、 Nb:0.004〜0.040、 B:0.0005〜0.0020、 を含み、炭素当量{Ceq=C+Mn/6+(Cu+N
i)/15+(Cr+Mo+V)/5}が0.22〜0
.34であり、残部がFe及び不可避的不純物よりなる
ことを特徴とする溶接熱影響部の軟化が少ない良溶接性
高張力鋼。
(1) In weight %, C: 0.07 to 0.23, Si: 0.
05-0.35, Mn: 0.2-1.3, Al: 0.01-0.08, N: 0.004 or less, Nb: 0.004-0.040, B: 0.0005-0 .0020, including carbon equivalent {Ceq=C+Mn/6+(Cu+N
i)/15+(Cr+Mo+V)/5} is 0.22 to 0
.. 34, and the balance is Fe and unavoidable impurities. A high-strength steel with good weldability and less softening of the weld heat-affected zone.
(2)重量%で、C:0.07〜0.23、Si:0.
05〜0.350 Mn:0.2〜1.3、 Al:0.01〜0.080 N:0.004以下、 Nb:0.004〜0.040、 B:0.0005〜0.0020 を含み、更に、 Cu:0.2以下、 Ni:0.4以下、 Cr:0.1以下、 Mo:0.1以下、 V:0.05以下、 Ti:0.03以下 の1種又は2種以上を含み、炭素当量 {Ceq=C+Mn/6+(Cu+Ni)/15+(C
r+Mo+V)/5}が0.22〜0.34であり、残
部がFe及び不可避的不純物よりなることを特徴とする
溶接熱影響部の軟化が少ない良溶接性高張力鋼。
(2) In weight %, C: 0.07 to 0.23, Si: 0.
05-0.350 Mn: 0.2-1.3, Al: 0.01-0.080 N: 0.004 or less, Nb: 0.004-0.040, B: 0.0005-0.0020 furthermore, one of Cu: 0.2 or less, Ni: 0.4 or less, Cr: 0.1 or less, Mo: 0.1 or less, V: 0.05 or less, Ti: 0.03 or less, or carbon equivalent {Ceq=C+Mn/6+(Cu+Ni)/15+(C
r+Mo+V)/5} is 0.22 to 0.34, the balance being Fe and unavoidable impurities. A high-strength steel with good weldability and less softening of the weld heat-affected zone.
(3)重量%で、C:0.07〜0.23、Si:0.
05〜0.35、 Mn:0.2〜1.3、 Al:0.04〜0.08、 N:0.004以下、 Nb:0.004〜0.040、 B:0.0005〜0.0020 を含み、炭素当量{Ceq=C+Mn/6+(Cu+N
i)/15+(Cr+Mo+V)/5}が0.22〜0
.34であり、残部がFe及び不可避的不純物よりなる
鋼を連続鋳造して鋳片を製造し、該鋳片を900℃以上
の温度より圧延開始し、又は900℃以下に冷却した場
合は1050℃以上の温度に再加熱してから圧延開始し
、800〜900℃の温度範囲で少くとも20%以上の
累積圧下量が確保されるように圧延を施し、800℃以
上で圧延終了後3℃/sec以上の平均冷却速度で加速
冷却することを特徴とする溶接熱影響部の軟化が少ない
良溶接性高張力鋼の製造方法。
(3) In weight %, C: 0.07 to 0.23, Si: 0.
05-0.35, Mn: 0.2-1.3, Al: 0.04-0.08, N: 0.004 or less, Nb: 0.004-0.040, B: 0.0005-0 .0020, carbon equivalent {Ceq=C+Mn/6+(Cu+N
i)/15+(Cr+Mo+V)/5} is 0.22 to 0
.. 34, and the balance is Fe and unavoidable impurities, if steel is continuously cast to produce a slab, and the slab is started rolling at a temperature of 900°C or higher, or cooled to 900°C or lower, the temperature is 1050°C. Rolling is started after reheating to the above temperature, and rolling is performed so as to ensure a cumulative reduction of at least 20% in the temperature range of 800 to 900°C, and after finishing rolling at 800°C or higher, rolling is performed at 3°C/ A method for producing high-strength steel with good weldability, characterized by performing accelerated cooling at an average cooling rate of sec or more, with little softening of the weld heat-affected zone.
(4)重量%で、C:0.07〜0.23、Si:0.
05〜0.35、 Mn:0.2〜1.3、 Al:0.01〜0.08、 N:0.004以下、 Nb:0.004〜0.040、 B:0.0005〜0.0020 を含み、更に、 Cu:0.2以下、 Ni:0.4以下、 Cr:0.1以下、 Mo:0.1以下、 V:0.05以下、 Ti:0.03以下 の1種又は2種以上を含み、炭素当量 {Ceq=C+Mn/6+(Cu+Ni)/15+(C
r+Mo+V)/5}が0.22〜0.34であり、残
部がFe及び不可避的不純物よりなる鋼を連続鋳造して
鋳片を製造し、該鋳片を900℃以上の温度より圧延開
始し、又は900℃以下に冷却した場合は1050℃以
上の温度に再加熱してから圧延開始し、800〜900
℃の温度範囲で少くとも20%以上の累積圧下量が確保
されるように圧延を施し、800℃以上で圧延終了後3
℃/sec以上の平均冷却速度で加速冷却することを特
徴とする溶接熱影響部の軟化が少ない良溶接性高張力鋼
の製造方法。
(4) In weight %, C: 0.07 to 0.23, Si: 0.
05-0.35, Mn: 0.2-1.3, Al: 0.01-0.08, N: 0.004 or less, Nb: 0.004-0.040, B: 0.0005-0 .0020, furthermore, Cu: 0.2 or less, Ni: 0.4 or less, Cr: 0.1 or less, Mo: 0.1 or less, V: 0.05 or less, Ti: 0.03 or less. carbon equivalent {Ceq=C+Mn/6+(Cu+Ni)/15+(C
r+Mo+V)/5} is 0.22 to 0.34, the balance is Fe and inevitable impurities, and the steel is continuously cast to produce a slab, and the slab is rolled at a temperature of 900°C or higher. , or if it has been cooled to 900°C or lower, reheat it to a temperature of 1050°C or higher before starting rolling.
Rolling is performed to ensure a cumulative reduction of at least 20% in the temperature range of 800°C or higher, and after rolling is completed at 800°C
A method for producing high-strength steel with good weldability, characterized by performing accelerated cooling at an average cooling rate of ℃/sec or more, with little softening of the weld heat affected zone.
JP132985A 1985-01-08 1985-01-08 High tensile steel less in softening of weld heateffected-zone and excellent in weldability and its production Pending JPS61159554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP132985A JPS61159554A (en) 1985-01-08 1985-01-08 High tensile steel less in softening of weld heateffected-zone and excellent in weldability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP132985A JPS61159554A (en) 1985-01-08 1985-01-08 High tensile steel less in softening of weld heateffected-zone and excellent in weldability and its production

Publications (1)

Publication Number Publication Date
JPS61159554A true JPS61159554A (en) 1986-07-19

Family

ID=11498457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP132985A Pending JPS61159554A (en) 1985-01-08 1985-01-08 High tensile steel less in softening of weld heateffected-zone and excellent in weldability and its production

Country Status (1)

Country Link
JP (1) JPS61159554A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235431A (en) * 1987-03-24 1988-09-30 Nippon Steel Corp Manufacture of steel plate excellent in strength and toughness and reduced in acoustic anisotropy
WO2000004200A1 (en) * 1998-07-16 2000-01-27 Nippon Steel Corporation High-strength steel plate reduced in softening in weld heat-affected zone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235431A (en) * 1987-03-24 1988-09-30 Nippon Steel Corp Manufacture of steel plate excellent in strength and toughness and reduced in acoustic anisotropy
JPH0583608B2 (en) * 1987-03-24 1993-11-26 Nippon Steel Corp
WO2000004200A1 (en) * 1998-07-16 2000-01-27 Nippon Steel Corporation High-strength steel plate reduced in softening in weld heat-affected zone

Similar Documents

Publication Publication Date Title
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
KR100723201B1 (en) High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPS60121228A (en) Manufacture of tempered high tension steel plate
JPS62256915A (en) Production of high-tension steel plate
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JPS61159554A (en) High tensile steel less in softening of weld heateffected-zone and excellent in weldability and its production
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP4461589B2 (en) Manufacturing method of high yield strength steel with low yield ratio 780N / mm2 excellent in weld crack sensitivity
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JP3212380B2 (en) Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2001059142A (en) High strength steel plate excellent in strain aging resistance, and its manufacture
JP2582148B2 (en) Method of producing low yield ratio nickel steel sheet for low temperature with excellent weld toughness
JPH0247525B2 (en)
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPH01275719A (en) Manufacture of thick steel plate having high strength and high toughness
JPS5913022A (en) Production of thick walled and unnormalized 50kg/cm2 class steel having high toughness and high resistance to softening of welded joint
JP2962110B2 (en) Manufacturing method of low yield ratio high strength steel sheet for box column
JPS6021326A (en) Production of tempered high tensile steel having exellent toughness
JPS62256947A (en) Tempered high-phosphorus-type weather-resisting steel plate excellent in weldability and toughness at low temperature
JPH04221015A (en) Production of steel sheet high in yield strength
JPS59136419A (en) Preparation of ultra-high tensile steel excellent in weldability