JP2582148B2 - Method of producing low yield ratio nickel steel sheet for low temperature with excellent weld toughness - Google Patents

Method of producing low yield ratio nickel steel sheet for low temperature with excellent weld toughness

Info

Publication number
JP2582148B2
JP2582148B2 JP1011811A JP1181189A JP2582148B2 JP 2582148 B2 JP2582148 B2 JP 2582148B2 JP 1011811 A JP1011811 A JP 1011811A JP 1181189 A JP1181189 A JP 1181189A JP 2582148 B2 JP2582148 B2 JP 2582148B2
Authority
JP
Japan
Prior art keywords
toughness
temperature
transformation point
less
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1011811A
Other languages
Japanese (ja)
Other versions
JPH02194121A (en
Inventor
高宏 久保
善文 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1011811A priority Critical patent/JP2582148B2/en
Publication of JPH02194121A publication Critical patent/JPH02194121A/en
Application granted granted Critical
Publication of JP2582148B2 publication Critical patent/JP2582148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、溶接部靭性の優れた低温用低降伏比ニッ
ケル鋼板の製造方法に係り、とくに液化天然ガス(LN
G)用鋼材など−160℃以下のような極低温での使用にお
いて溶接部靭性が重要な要因となる低温用低降伏比ニッ
ケル鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a low-yield-ratio nickel steel sheet for low temperature with excellent weld toughness, and particularly to liquefied natural gas (LN).
The present invention relates to a method for producing a low-temperature low-yield-ratio nickel steel sheet in which weld toughness is an important factor when used at extremely low temperatures such as -160 ° C or lower, such as steel materials for G).

<従来の技術> LNGタンクなどに用いられる鋼材、たとえば9%Ni鋼
はすでに規格鋼として公知であり、再加熱焼入れ−焼戻
し処理によるASTM A553、直接焼入れ−焼戻し処理によ
るASTM A844、2回焼ならし−焼戻し処理によるASTM 35
3などがある。2回焼ならし−焼戻し処理ニッケル鋼板
はLNGタンクの鏡板や外側タンクのアニュラー部分に用
いることが多いが、これは降伏比(YR)が低く安全設計
上有利であることなどに起因している。
<Prior art> Steel materials used for LNG tanks, for example, 9% Ni steel are already known as standard steels, and are ASTM A553 by reheating quenching and tempering, and ASTM A844 by direct quenching and tempering. ASTM 35 by tempering
There are three. Nickel steel sheet with normalizing and tempering twice is often used for the head plate of LNG tank and the annular part of the outer tank. This is due to its low yield ratio (YR), which is advantageous for safety design. .

これらの鋼材には、低温での高靭性、とくに溶接部に
おける低温靭性が要求される。
These steel materials are required to have high toughness at low temperatures, especially at low temperatures in welds.

溶接部のうち、1350℃以上に加熱される熱影響部の靭
性を確保するためには種々の手立てが講じられている。
Various measures have been taken to ensure the toughness of the heat-affected zone, which is heated to 1350 ° C or higher, of the welded portion.

しかしながら最近、溶接部のうち700〜900℃に加熱さ
れる熱影響部において、島状マルテンサイトが生成する
ことにより靭性が低下することが明らかとなり問題にな
っている。
However, recently, in the heat-affected zone of the weld zone heated to 700 to 900 ° C., it has become clear that toughness is reduced due to the formation of island-like martensite, which poses a problem.

溶接の際、700〜900℃に加熱される熱影響部の靭性低
下を解決するための手立てとしては、たとえば特開昭53
−112219号公報でSi量の低減化が提案されている。しか
しながらこの方法では母材強度が規格値を満足できな
い。また母材靭性の低下を避けることができない。
In order to solve the decrease in toughness of the heat-affected zone heated to 700 to 900 ° C. during welding, for example, Japanese Patent Application Laid-Open No.
-112219 proposes a reduction in the amount of Si. However, in this method, the base material strength cannot satisfy the standard value. In addition, a decrease in base metal toughness cannot be avoided.

また、上記問題点を解決するために本願出願人は先に
Si量とMn量を低減し、Tiを添加する方法(特開昭63−29
0246号公報)を出願している。しかしながらさらに検討
を行った結果、この方法では1000〜1200℃に加熱される
熱影響部の−196℃におけるシャルピー衝撃試験におい
て、脆性破面が現れることが明らかとなった。
In order to solve the above problems, the applicant of the present application
A method of reducing the amount of Si and Mn and adding Ti (Japanese Patent Laid-Open No.
No. 0246). However, as a result of further study, it became clear that a brittle fracture surface appears in this method in a Charpy impact test at -196 ° C of a heat-affected zone heated to 1000 to 1200 ° C.

<発明が解決しようとする課題> この発明は、上記の問題を有利に解決すためのもの
で、700℃以上に加熱される溶接部における低温靭性に
優れ、かつASTM A353に規定される強度を有し、しかも
低降伏比の低温用ニッケル鋼の製造方法を提供すること
を目的とする。
<Problems to be Solved by the Invention> The present invention is to advantageously solve the above-described problems, and has excellent low-temperature toughness in a welded portion heated to 700 ° C. or more, and has a strength specified in ASTM A353. Another object of the present invention is to provide a method for producing a low-temperature nickel steel having a low yield ratio.

<課題を解決するための手段> 本発明は、重量%にて、C:0.04〜0.12%,Si:0.02〜0.
19%,Mn:0.05〜0.30%未満,P:0.01%以下,S:0.005%以
下,Ni:7.65〜12.0%,Al:0.01〜0.10%,及びN:0.0035%
以下を含み、さらにNb:0.005〜0.06%,V:0.005〜0.07
%,及びCu:0.05〜0.50%のうちから選んだ少なくとも
一種を含有し残余は実質的にFeから成る鋼を通常の熱間
圧延で所定の板厚に圧延し、次いでこの熱延鋼板にAc3
変態点〜(Ac3変態点+200℃)の温度範囲に加熱後室温
まで冷却する1次焼ならし処理を施し、さらにこれに
(Ac3変態点−50℃)〜(Ac3変態点+150℃)の温度範
囲に加熱後室温まで冷却する2次焼ならし処理を施し、
さらにこれに(Ac1変態点+70℃)〜(Ac1変態点−150
℃)の温度範囲に加熱後室温まで冷却する焼もどし処理
を施すことを特徴とする溶接部靭性の優れた低温用低降
伏比ニッケル鋼板の製造方法である。
<Means for Solving the Problems> In the present invention, C: 0.04 to 0.12% and Si: 0.02 to 0.
19%, Mn: 0.05 to less than 0.30%, P: 0.01% or less, S: 0.005% or less, Ni: 7.65 to 12.0%, Al: 0.01 to 0.10%, and N: 0.0035%
Including the following, further Nb: 0.005 to 0.06%, V: 0.005 to 0.07
% And Cu: 0.05 to 0.50%, containing at least one selected from the group consisting essentially of Fe, with the balance being substantially hot-rolled to a predetermined thickness by ordinary hot rolling. Three
A first normalizing treatment of heating to a temperature range from the transformation point to (Ac 3 transformation point + 200 ° C.) and then cooling to room temperature is performed, and further, (Ac 3 transformation point −50 ° C.) to (Ac 3 transformation point + 150 ° C.) ) Is subjected to a second normalizing process of heating to the temperature range and then cooling to room temperature.
In addition, (Ac 1 transformation point + 70 ° C) ~ (Ac 1 transformation point-150
(C), a tempering treatment of heating to a temperature range after cooling to room temperature, and producing a low yield ratio nickel steel sheet for low temperature with excellent weld toughness.

<作 用> この発明の基礎は、7.65〜12.0%(重量%以下同じ)
の範囲のNiを含有する低温用鋼組成のうち、とくにSi量
を0.02〜0.19%、Mn量を0.05〜0.30%未満,N量を0.0035
%以下に低減することによって、溶接部の高靭性が確保
されることを知見したところにある。
<Operation> The basis of the present invention is 7.65 to 12.0% (the same applies to weight% or less)
Among the low-temperature steel compositions containing Ni in the range of Ni, in particular, the Si content is 0.02-0.19%, the Mn content is 0.05-0.30%, and the N content is 0.0035.
It has been found that by reducing the content to not more than%, high toughness of the welded portion is ensured.

まずこの発明における鋼の成分組成の限定理由を説明
する。
First, the reasons for limiting the composition of steel in the present invention will be described.

C:0.04〜0.12% Cは、十分な高張力を得るための有用な元素である
が、含有量が0.04%に満たないと強度上Si,Mnを増加す
る必要が生じ、前述したとおり700〜900℃に加熱された
部分の靭性が低いという問題があり、一方0.12%を超え
ても靭性を損なうので、0.04〜0.12%の範囲とした。
C: 0.04 to 0.12% C is a useful element for obtaining a sufficiently high tensile strength. However, if the content is less than 0.04%, it is necessary to increase Si and Mn in terms of strength. There is a problem that the toughness of a portion heated to 900 ° C. is low. On the other hand, if it exceeds 0.12%, the toughness is impaired. Therefore, the range is 0.04 to 0.12%.

Si:0.02〜0.19% Siは、この発明の特徴の一つであり、それというの
は、Siの低減は溶接部靭性改善に顕著な効果を示すから
である。しかしながら、0.02%未満にしても漸進的効果
は認められないので下限を0.02%とした。一方0.19%を
超えるとかえって靭性の劣化を招くだけでなく強度が過
剰に上昇するため0.19%を上限とした。
Si: 0.02 to 0.19% Si is one of the features of the present invention, because the reduction of Si has a remarkable effect on the improvement of weld toughness. However, even if less than 0.02%, no gradual effect is observed, so the lower limit was set to 0.02%. On the other hand, when the content exceeds 0.19%, not only is the toughness deteriorated but also the strength is excessively increased, so the upper limit is 0.19%.

Mn:0.05〜0.30%未満 Mnも、Siと同様にこの発明の特徴の一つである。Mnの
低減もSiの低減と相まることにより溶接部靭性改善に顕
著な効果を示す。しかしながら0.05%を下回る低減は漸
進的効果を示さないので、下限を0.05%とした。Mnはこ
の範囲で低減すれば漸進的に溶接部靭性を改善し、とく
に0.30%未満で顕著である。このため、Mnは0.05〜0.30
%未満とした。
Mn: 0.05 to less than 0.30% Mn is one of the features of the present invention like Si. The reduction of Mn, combined with the reduction of Si, has a remarkable effect on the improvement of weld toughness. However, a reduction below 0.05% does not show a gradual effect, so the lower limit was made 0.05%. If Mn is reduced in this range, the weld toughness is gradually improved, and is particularly remarkable at less than 0.30%. Therefore, Mn is 0.05 to 0.30
%.

P≦0.01%,S≦0.005% P,Sはいずれも、母材および溶接部の靭性を害するの
で極力低減することが望ましいが、それぞれ0.01%以
下、0.005以下の範囲で許容できる。
P ≦ 0.01%, S ≦ 0.005% Since both P and S impair the toughness of the base material and the welded portion, it is desirable to reduce them as much as possible. However, P and S are acceptable in the range of 0.01% or less and 0.005 or less, respectively.

Ni:7.65〜12.0% Niは、この発明の低温用鋼には必須の元素で、低温に
おいて高靭性を与える効果を有するが、7.65%未満では
その効果に乏しく、一方12%を超えて多量に添加しても
その効果は飽和に達し、また不経済でもあるので、7.65
〜12,0%の範囲に限定した。
Ni: 7.65 to 12.0% Ni is an essential element in the low-temperature steel of the present invention, and has an effect of giving high toughness at low temperatures. However, if it is less than 7.65%, the effect is poor, while on the other hand, more than 12% Even if added, the effect reaches saturation and is uneconomical, so 7.65
Limited to the range of ~ 12.0%.

Al:0.01〜0.10% Alは、脱酸上必要な元素であるが、0.01%未満ではそ
の効果に乏しく、一方0.10%を超えると清浄性を損なう
ので、0.01〜0.10%の範囲とした。
Al: 0.01 to 0.10% Al is an element necessary for deoxidation. If it is less than 0.01%, its effect is poor. On the other hand, if it exceeds 0.10%, cleanliness is impaired.

N:0.0035%以下 Nは本発明の特徴の一つである。Nを低減すると、可
動転位が減少しまた島状マルテンサイトが減少するため
に靭性は向上する。とくに、Nを0.0035%以下のするこ
とにより、SiとMnの低減と相まることにより、700〜900
℃に加熱される熱影響部の靭性を著しく改善できる。ま
た、1350℃以上に加熱される熱影響部の靭性も、Tiを添
加するのと同等に改善できる。
N: 0.0035% or less N is one of the features of the present invention. When N is reduced, toughness is improved because mobile dislocations are reduced and island martensite is reduced. In particular, by setting the N content to 0.0035% or less, the reduction of Si and Mn is combined with 700 to 900%.
The toughness of the heat-affected zone heated to ℃ can be significantly improved. Further, the toughness of the heat-affected zone heated to 1350 ° C. or more can be improved as well as the case where Ti is added.

Nb:0.005〜0.06%,V:0.005〜0.07% NbおよびVはいずれも、析出強化により強度を向上さ
せるのに有効に寄与するが、両者とも0.005%未満では
添加効果が少ないので0.005%を下限とし、一方Nbは0.0
6%、またVは0.07%を超えるとかえって靭性を損なう
のでそれぞれ上限をNb:0.06%、V:0.07%に限定した。
Nb: 0.005 to 0.06%, V: 0.005 to 0.07% Both Nb and V effectively contribute to improving the strength by precipitation strengthening, but if both are less than 0.005%, the effect of addition is small, so the lower limit is 0.005%. And Nb is 0.0
When the content exceeds 6% and V exceeds 0.07%, the toughness is impaired. Therefore, the upper limits are respectively limited to 0.06% for Nb and 0.07% for V.

Cu:0.05〜0.50% Cuは、焼入性向上により強度を改善するのに有用な元
素であるが、0.05%未満ではその添加効果に乏しく、一
方0.50%を超えるとかえって靭性を損なうので、0.05〜
0.50%の範囲に限定した。
Cu: 0.05 to 0.50% Cu is a useful element for improving strength by improving hardenability. However, if it is less than 0.05%, the effect of its addition is poor. On the other hand, if it exceeds 0.50%, the toughness is impaired. ~
The range was limited to 0.50%.

次に上記の限定成分を有するニッケル鋼の熱処理条件
について説明する。上記限定成分のニッケル鋼を通常の
熱間圧延工程で所定の板厚にした後、Ac3〜(Ac3+200
℃)の温度範囲に加熱後室温まで冷却する1次焼ならし
処理を行うのであるが、この加熱温度がAc3未満では完
全なオーステナイト組織にならず、またAc3+200℃を超
えるとオーステナイトが粗大化し靭性を損なうので、1
次焼ならし処理の温度をAc3〜(Ac3+200℃)の範囲に
設定した。
Next, the heat treatment conditions for the nickel steel having the above-described limited components will be described. After the nickel steel of the above-mentioned limited component is made to have a predetermined thickness by a normal hot rolling process, Ac 3 to (Ac 3 +200
Temperature) and then cooled to room temperature. However, if the heating temperature is lower than Ac 3 , the austenite structure will not be completely formed. If the heating temperature is higher than Ac 3 + 200 ° C, austenite will not be formed. Since it is coarse and impairs toughness,
The temperature of the next normalizing treatment was set in the range of Ac 3 to (Ac 3 + 200 ° C.).

次に2次焼ならし処理を行うのであるが、この加熱温
度が(Ac3−50℃)未満ではフェライトからオーステナ
イトへの変態が不十分で、未変態のフェライトが残り実
質的に2相域となり、熱処理後の強度の低下が著しくな
る2相域の悪影響を強く受け、また(Ac3+150℃)を超
えるとオーステナイトが粗大化し靭性を損なうので、2
次焼ならし処理の温度を(Ac3−50℃)〜(Ac3150℃)
の範囲に限定した。
Next, a secondary normalizing treatment is performed. If the heating temperature is lower than (Ac 3 -50 ° C.), the transformation from ferrite to austenite is insufficient, and untransformed ferrite remains, and the two-phase region substantially remains. , The strength of the two-phase region where the strength is significantly lowered after heat treatment is strongly affected, and if (Ac 3 + 150 ° C) is exceeded, austenite coarsens and the toughness is impaired.
The temperature of the next normalizing process is (Ac 3 -50 ° C) to (Ac 3 150 ° C)
Limited to the range.

次に焼戻し処理を行うのであるが、この加熱温度が
(Ac1−150℃)未満では靭性が確保できず、また(Ac1
+70℃)を超えると強度が低下してしまうので、焼戻し
処理の温度を(Ac1−150℃)〜(Ac1+70℃)の範囲に
限定した。
Next, tempering treatment is performed. If the heating temperature is lower than (Ac 1 -150 ° C.), toughness cannot be ensured, and (Ac 1
When the temperature exceeds (+ 70 ° C.), the strength is reduced. Therefore, the temperature of the tempering treatment is limited to a range of (Ac 1 −150 ° C.) to (Ac 1 + 70 ° C.).

<実施例> 表1に示す化学組成になる鋼を通常の熱間圧延工程で
15mm厚まで圧延し、ついで900℃で1次焼ならし処理を
施し、ついで800℃で2次焼ならし処理を施し、ついで5
70℃で焼戻し処理(N−N−T)を施した。比較のた
め、表1に示す鋼を通常の熱間圧延工程で15mm厚まで圧
延し、ついで780℃で加熱後直ちに水冷する再加熱焼入
れを施し、ついで570℃で焼戻し処理(PQ−T)を施し
た。その時の母材強度について調べた結果を表2に示
す。本発明のN−N−T処理において、低降伏比が得ら
れていることがわかる。
<Example> Steel having the chemical composition shown in Table 1 was subjected to a normal hot rolling process.
Rolled to a thickness of 15 mm, then subjected to a first normalizing process at 900 ° C, then a second normalizing process at 800 ° C,
A tempering treatment (N-NT) was performed at 70 ° C. For comparison, the steels shown in Table 1 were rolled to a thickness of 15 mm in a normal hot rolling step, then heated again at 780 ° C., then immediately re-quenched with water, and then tempered at 570 ° C. (PQ-T). gave. Table 2 shows the results obtained by examining the base metal strength at that time. It can be seen that a low yield ratio was obtained in the N-N-T process of the present invention.

次に表3に示す種々の化学組成になる鋼板(板厚10m
m)に、前記と同様にN−N−T処理を施した後、入熱
量19kJ/cm、パス数3の条件でオーステナイト系ワイヤ
ーを用いてサブマージアーク溶接した。そしてBond部、
HAZ3,5,7mmからシャルピー衝撃試験片を採取し実験に供
した。その結果を母材の強度とともに表4に示す。
Next, steel plates with various chemical compositions shown in Table 3 (thickness 10m
m) was subjected to NNT processing in the same manner as described above, and submerged arc welding was performed using an austenitic wire under the conditions of a heat input of 19 kJ / cm and three passes. And Bond part,
Charpy impact test pieces were sampled from HAZ 3, 5, 7 mm and used for the experiment. Table 4 shows the results together with the strength of the base material.

表4より本発明の組成を満足する鋼をN−N−T処理
した供試鋼No.1〜11は低降伏比が得られ、また比較鋼に
比して十分な溶接部靭性が得られている。特に加熱温度
が700〜900℃に達するHAZ7mmの溶接部靭性の改善は著し
い。これに対して供試鋼No.12〜17(比較鋼)のように
本発明鋼の基本成分のうち例えC,P,S,Ni,Alを満足して
も残りのSi,Mn,Nのうちいずれか一つでも満足できない
と、十分な溶接部靭性は確保できず、また供試鋼18(比
較鋼)のようにTiを添加すると1000〜1200℃に昇温する
HAZ3mmにおいて十分な溶接部靭性が確保できないことが
わかる。
Table 4 shows that the steels satisfying the composition of the present invention were subjected to N-N-T treatment and the test steels Nos. 1 to 11 exhibited low yield ratios and sufficient weld toughness compared to the comparative steels. ing. In particular, the improvement of the weld toughness of HAZ7mm where the heating temperature reaches 700 to 900 ° C is remarkable. On the other hand, even if C, P, S, Ni, and Al are satisfied among the basic components of the steel of the present invention, such as test steel Nos. 12 to 17 (comparative steel), the remaining Si, Mn, and N If at least one of them is not satisfactory, sufficient weld toughness cannot be secured, and if Ti is added as in test steel 18 (comparative steel), the temperature will rise to 1000-1200 ° C.
It can be seen that sufficient weld toughness cannot be secured with HAZ of 3 mm.

<発明の効果> かくしてこの発明によれば、降伏比が低く、溶接部靭
性に優れた低温用鋼を容易に得ることができ有利であ
る。
<Effect of the Invention> Thus, according to the present invention, a low-temperature steel having a low yield ratio and excellent weld toughness can be easily obtained, which is advantageous.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−194122(JP,A) 特開 昭53−97917(JP,A) 特公 昭46−13478(JP,B1) 鉄と鋼68[12](1982)福重5 P. 419 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-194122 (JP, A) JP-A-53-97917 (JP, A) JP-B-46-13478 (JP, B1) Iron and steel 68 [ 12] (1982) Fukushige 5 P. 419

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%にて、C:0.04〜0.12%,Si:0.02〜0.
19%,Mn:0.05〜0.30%未満,P:0.01%以下,S:0.005%以
下,Ni:7.65〜12.0%,Al:0.01〜0.10%,及びN:0.0035%
以下を含み、さらにNb:0.005〜0.06%,V:0.005〜0.07
%,及びCu:0.05〜0.50%のうちから選んだ少なくとも
一種を含有し残余は実質的にFeから成る鋼を通常の熱間
圧延で所定の板厚に圧延し、次いでこの熱延鋼板にAc3
変態点〜(Ac3変態点+200℃)の温度範囲に加熱後室温
まで冷却する1次焼ならし処理を施し、さらにこれに
(Ac3変態点−50℃)〜(Ac3変態点+150℃)の温度範
囲に加熱後室温まで冷却する2次焼ならし処理を施し、
さらにこれに(Ac1変態点+70℃)〜(Ac1変態点−150
℃)の温度範囲に加熱後室温まで冷却する焼もどし処理
を施すことを特徴とする溶接部靭性の優れた低温用低降
伏比ニッケル鋼板の製造方法。
(1) C: 0.04 to 0.12% and Si: 0.02 to 0.
19%, Mn: 0.05 to less than 0.30%, P: 0.01% or less, S: 0.005% or less, Ni: 7.65 to 12.0%, Al: 0.01 to 0.10%, and N: 0.0035%
Including the following, further Nb: 0.005 to 0.06%, V: 0.005 to 0.07
% And Cu: 0.05 to 0.50%, containing at least one selected from the group consisting essentially of Fe, with the balance being substantially hot-rolled to a predetermined thickness by ordinary hot rolling. Three
A first normalizing treatment of heating to a temperature range from the transformation point to (Ac 3 transformation point + 200 ° C.) and then cooling to room temperature is performed, and further, (Ac 3 transformation point −50 ° C.) to (Ac 3 transformation point + 150 ° C.) ) Is subjected to a second normalizing process of heating to the temperature range and then cooling to room temperature.
In addition, (Ac 1 transformation point + 70 ° C) ~ (Ac 1 transformation point-150
A method for producing a low-yield-ratio nickel steel sheet for low-temperature use having excellent weld toughness, characterized by performing a tempering treatment of heating to a temperature range of (° C) and then cooling to room temperature.
JP1011811A 1989-01-23 1989-01-23 Method of producing low yield ratio nickel steel sheet for low temperature with excellent weld toughness Expired - Fee Related JP2582148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011811A JP2582148B2 (en) 1989-01-23 1989-01-23 Method of producing low yield ratio nickel steel sheet for low temperature with excellent weld toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011811A JP2582148B2 (en) 1989-01-23 1989-01-23 Method of producing low yield ratio nickel steel sheet for low temperature with excellent weld toughness

Publications (2)

Publication Number Publication Date
JPH02194121A JPH02194121A (en) 1990-07-31
JP2582148B2 true JP2582148B2 (en) 1997-02-19

Family

ID=11788200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011811A Expired - Fee Related JP2582148B2 (en) 1989-01-23 1989-01-23 Method of producing low yield ratio nickel steel sheet for low temperature with excellent weld toughness

Country Status (1)

Country Link
JP (1) JP2582148B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220047862A (en) * 2019-09-25 2022-04-19 제이에프이 스틸 가부시키가이샤 Clad steel plate and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397917A (en) * 1977-02-08 1978-08-26 Kobe Steel Ltd Alloy steel for low temperature use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鉄と鋼68[12](1982)福重5 P.419

Also Published As

Publication number Publication date
JPH02194121A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
EP0940477B1 (en) Wide-flange beams made from a steel with high toughness and yield strength, and process for manufacturing these products
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
CN112236539B (en) High-tensile thick steel plate for extremely low temperature and method for producing same
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP2582148B2 (en) Method of producing low yield ratio nickel steel sheet for low temperature with excellent weld toughness
JP2582147B2 (en) Method for producing low temperature nickel steel sheet with excellent weld toughness
JP2688312B2 (en) High strength and high toughness steel plate
JP3202310B2 (en) High heat input welding
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH048486B2 (en)
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
JP3212380B2 (en) Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding
JPH03223442A (en) Thin nickel steel sheet for low temperature use excellent in toughness of weld zone
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JP3212363B2 (en) Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding
JP7396507B2 (en) Steel plate and its manufacturing method
WO2024038612A1 (en) Thick steel sheet and manufacturing method therefor
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees