JPS61159134A - Particle detecting device - Google Patents

Particle detecting device

Info

Publication number
JPS61159134A
JPS61159134A JP59278663A JP27866384A JPS61159134A JP S61159134 A JPS61159134 A JP S61159134A JP 59278663 A JP59278663 A JP 59278663A JP 27866384 A JP27866384 A JP 27866384A JP S61159134 A JPS61159134 A JP S61159134A
Authority
JP
Japan
Prior art keywords
detection
detector
particles
pellet
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59278663A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kio
木尾 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP59278663A priority Critical patent/JPS61159134A/en
Publication of JPS61159134A publication Critical patent/JPS61159134A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/131Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To perform the simple quantitative estimation of a sample right after being passed through the small detection hole of a detection pellet and to prevent an error in the plural-time detection of particles by providing a suction pipe at the upper side of the small detection hole of the detection pellet, and providing a cleaning pipe and connecting its upper end to a diluting liquid tank. CONSTITUTION:The detection pellet 2 which has the small hole for detection at the lower end is provided in a cylindrical detector 3 and a particle suspension is sucked through the small hole; and particles are detected on the basis of the difference in electric impedance between the suspension and particles when the particles pass through the small hole and converted into an electric signal by electrodes 4 and 5 provided inside and outside the detector 3. On the other hand, a suction pipe 6 is provided at the upper side of the small hole of the detection pellet 2 so that its lower end is positioned with a slight gap. A communication hole 7 is formed in the detector above the suction pipe 6 and a cleaning pipe 11 is provided in the detector so that its lower end is positioned nearby the detection pellet. The upper end of the cleaning pipe 11 is connected to the diluting liquid tank 8 through an on-off valve 10. Thus, diluting liquid is caused to flow to the suction pipe port and circulates to outside the suction pipe 6 through the communication hole 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液体に浮懸する血球などの懸濁微粒子を細孔
に通過させ、液と粒子との電気インピーダンスの差異に
基づいて検出し計数する粒子横出装置、詳しくは混在す
る大きさの異なる2種以上の微粒子を同時に正確に計測
することができる粒子横出装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention allows suspended fine particles such as blood cells suspended in a liquid to pass through pores, and detects and counts them based on the difference in electrical impedance between the liquid and the particles. The present invention relates to a particle extraction device, and more particularly to a particle extraction device that can accurately measure two or more types of fine particles of different sizes coexisting at the same time.

従来の技術 、従来から、血球などの粒子を計測する場合、液体に浮
懸する血球などの粒子を細孔に通過させ、液と粒子との
電気インピーダンスの差に基づいて検出し、これを電気
パルス信号に変換して粒子に相当するバ〃ス信号を計数
する粒子横出装置が用いられている。
Conventional technology: Conventionally, when measuring particles such as blood cells, particles such as blood cells suspended in a liquid are passed through pores, detected based on the difference in electrical impedance between the liquid and the particles, and then detected using electrical A particle extraction device is used that converts into pulse signals and counts bus signals corresponding to particles.

このエラな導電式粒子横出装置において、大きさの異な
る粒子を計測するとき、細孔通過直後の渦流形成による
再検出誤差を防止するため、試料流が拡がらないよう包
み込む方法はパックシース技術と呼ばれ、特開昭58−
119086号公報、特開昭58−160844号公報
、米国特許4258058号公報、米国特許82993
54号公報、特公昭5ea−26518号公報、特公昭
55−22784号公報などで種々め技術が開示さ扛て
いる。
When measuring particles of different sizes with this elegant conductive particle extraction device, pack sheath technology is used to wrap the sample flow to prevent it from spreading in order to prevent re-detection errors due to the formation of eddy currents immediately after passing through the pores. It was called JP-A-58-
119086, JP 58-160844, U.S. Pat. No. 4,258,058, U.S. Pat. No. 82993
Various techniques have been disclosed in Japanese Patent Publication No. 54, Japanese Patent Publication No. 5EA-26518, Japanese Patent Publication No. 22784-1984, and the like.

発明が解決しようとする問題点 従来の粒子横出装置においては、細孔の裏側(検出器内
側)ですでに吸引された前回、前々回あるいは今回の試
料のまい戻り(巻込み)によって不要なパルス信号全発
生させるという現象が生じていた。とくにこの現象は、
細孔の近辺の検出領域内に大小の入り混じった粒子が巻
き込まれ、大きい方の粒子によるパルスがあたかも小さ
い粒子が細孔全通過したときと同じようなパルスを発生
し、たとえば赤血球と血小板のような大小の粒子を同時
に細孔を通過させ、出力パルスの大きさの違いから分類
計数を行う際などに大きな誤差を与えるという欠点があ
った。
Problems to be Solved by the Invention In conventional particle extraction devices, unnecessary pulses are generated due to the return (engulfment) of the previous, previous, or current sample that has already been aspirated on the back side of the pore (inside the detector). A phenomenon occurred in which all signals were generated. In particular, this phenomenon
A mixture of large and small particles gets caught up in the detection area near the pore, and the pulse from the larger particle generates a pulse similar to when a small particle passes through the pore, e.g. red blood cells and platelets. This method has the disadvantage that large and small particles such as these are allowed to pass through the pores at the same time, resulting in large errors when performing classification and counting due to the difference in the size of the output pulse.

上記の現象を防止するために、検出器の細孔の裏側を2
重構造として細孔を通過した粒子をすべて吸引してしま
う方法や、あるいは粒子を含む液体の流れを粒子を含ま
ない液体で包み込んで細孔全通過させ、まい戻り(巻込
み)現象が生じない構造とするなどの方法(前述のパッ
クシース技術)が考えられるが、構造がきわめて複雑と
なり、また吸引した液体の定量が不可能となったりする
欠点があった。
To prevent the above phenomenon, the back side of the detector pore should be
A method that uses a heavy structure to absorb all the particles that have passed through the pores, or a method that allows the flow of liquid containing particles to be wrapped in a liquid that does not contain particles and allows it to pass through all the pores, eliminating the phenomenon of entrainment. Although methods such as the above-mentioned pack sheath technology have been considered, the structure would be extremely complicated and there would be a drawback that it would be impossible to quantify the aspirated liquid.

また特開昭58−119086号公報、特開昭58−1
60844号公報、米国特許4258058号公報、特
公昭55−22784号公報記載の発明は、いずれも計
測中にパックシース液と呼ばれる粒子を含まない液r外
部槽から所定圧力で供給し続け、試料流全中心に鞘状に
包んで流動させて目的を達するようにしたものである。
Also, JP-A-58-119086, JP-A-58-1
The inventions described in Japanese Patent Publication No. 60844, US Pat. It is wrapped in a sheath around the entire center and allowed to flow to achieve its purpose.

そのため、試料の濃度を出すための試料定量を、細孔通
過以前に行う必要かめる。
Therefore, it is necessary to quantify the sample to determine the concentration of the sample before it passes through the pores.

すなわち、細孔通過後に定量すると、測定試料量とシー
ス液量とが混合するため、細孔を通過した後の定量液量
と測定試料量とがl:lに対応しない。
That is, when quantification is performed after passing through the pores, the amount of the sample to be measured and the amount of the sheath liquid are mixed, so the amount of quantified liquid after passing through the pores and the amount of the sample to be measured do not correspond to l:l.

一方、定量を細孔通過前に行うことは、定量器内の残液
処理を必要とする不便があり、測定サイ  ′クルタイ
ムに大きな影響を与える。とくに試料を容器に入れ、容
器ごと交換する半自動型のものでは致命的である。
On the other hand, performing quantification before passing through the pores has the inconvenience of requiring disposal of residual liquid in the meter, which greatly affects the measurement cycle time. This is especially fatal for semi-automatic models in which the sample is placed in a container and the entire container is replaced.

米国特許3299854号公報記載の発明は、シース液
槽が冒閉型のため液の流動ができず、このためシース効
果上の欠点がある。また特公昭58−26518号公報
記載の発明は、この欠点を改良するため、ポンプとフィ
ルターを付加して流動を起こさせたものである。なお特
公昭55−22784号記載の発明は、ポンプとフィル
ターを使わずに同じ効果を得るための発明である。
The invention described in US Pat. No. 3,299,854 has a disadvantage in terms of sheath effectiveness because the sheath liquid tank is of an open-closed type, so that liquid cannot flow. The invention described in Japanese Patent Publication No. 58-26518 improves this drawback by adding a pump and a filter to generate flow. The invention described in Japanese Patent Publication No. 55-22784 is an invention for obtaining the same effect without using a pump and a filter.

本発明は上記の諸点に鑑みなされたもので、ポンプによ
る脈流、フィルター交換の心配のない、しかも細孔通過
後の簡単な試料定量を可能とし、粒子の複数回検出誤差
を防止するようにした粒子横出装置を゛提供することを
目的とするものである。
The present invention has been developed in view of the above points, and it is possible to easily quantify a sample after passing through a pore without worrying about pulsating flow caused by a pump or replacing a filter, and to prevent errors in detecting particles multiple times. The object of the present invention is to provide a particle ejecting device.

問題点を解決するだめの手段 本発明の粒子横出装置は、図面に示す番号を用いて説明
すれば、下端に検出用細孔1を有する検出ペレット2を
備えた筒状の検出器3内に、との細孔lを芥して粒子浮
懸液を吸引し、細孔1を粒子が通過する際の液と粒子と
の電気インピーダンスの差に基づいて粒子を検出し、検
出器3の内外に設けられた電極により電気信号に変換す
る粒子横出装置において、検出ペレット2の検出用細孔
lの上側に、下端が僅かな間隔を有して位置するように
吸引管6を設け、検出器内においてこの吸引管6の上部
に連通孔7、隙間30などの連通部を設け、さらに検出
器内に下端が検出ペレット近傍に位置するように洗浄管
11を設け、この洗浄管11の上端を開閉弁lOを介し
て希釈液タンク8に接続したことを特徴としている。
Means for Solving the Problems The particle ejecting device of the present invention will be described using the numbers shown in the drawings. Next, the particle suspension liquid is sucked through the pore 1, and the particles are detected based on the difference in electrical impedance between the liquid and the particles when the particles pass through the pore 1. In a particle extraction device that converts into electrical signals using electrodes provided inside and outside, a suction tube 6 is provided above the detection pore l of the detection pellet 2 so that its lower end is positioned with a slight interval, A communication hole 7, a gap 30, and other communication parts are provided in the upper part of the suction tube 6 in the detector, and a cleaning tube 11 is provided in the detector so that its lower end is located near the detection pellet. It is characterized in that the upper end is connected to the diluent tank 8 via an on-off valve lO.

作用 計測時に検出ペレット2の細孔1を通過する試料流は非
常に速< (5m/秒以上)、この勢いによって検出器
内部に、図中矢印の方向にゆっくりとした対流を発生さ
せる。この対流は流速と圧力の関係で細孔出口付近の流
速が速いため圧力が下がり、を極4のある部分の粒子の
ない液が吸引管内に吸い込まれるために起こる。この対
流は検出ペレット2を通過した試料を包み込むようにし
て流れるため、まい戻りは発生しない。計測後は毎回検
出器内部を洗浄し、検出器内部の粒子を取り除いておく
。この操作を行わないと、対流液中の粒子によりまい戻
り信号が発生する。なお1回の測定で試料が対流によっ
て、再び検出ペレット2裏側まで戻ってくることのない
ように、吸引スピード、計数時間、対流容量(検出器の
大きさ)、吸引管の位置および内径勿決める必要がめる
During action measurement, the sample flow passing through the pores 1 of the detection pellet 2 is very fast (5 m/sec or more), and this momentum generates a slow convection inside the detector in the direction of the arrow in the figure. This convection occurs because the pressure decreases because the flow velocity near the pore exit is high due to the relationship between flow velocity and pressure, and the particle-free liquid in the part of the pole 4 is sucked into the suction tube. This convection current flows so as to envelop the sample that has passed through the detection pellet 2, so that no rebound occurs. After each measurement, clean the inside of the detector to remove particles inside the detector. If this operation is not performed, particles in the convective liquid will generate a bounce signal. In addition, the suction speed, counting time, convection capacity (detector size), position and inner diameter of the suction tube must be determined to prevent the sample from returning to the back side of the detection pellet 2 due to convection during a single measurement. I see the need.

実・違例 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の粒子横出装置の一実施例を示し、第2図は
検出ペレット回りの詳細を示している。この粒子横出装
置は、下端に検出用細孔1を有する検出ペレット2を備
えた筒状の検出器(検出管)3内V(、この細孔1を介
して粒子浮懸液(試料)を吸引し、細孔lを粒子が通過
する際の液と粒子との電気インピーダンスの差に基づい
て粒子を検出し、検出器8の内外に設けられた電極4.
5により電気信号に変換するように構成されている。
Actual/Unusual Examples Examples of the present invention will be described below based on the drawings. 1st
The figure shows an embodiment of the particle extraction device of the present invention, and FIG. 2 shows details around the detection pellet. This particle extraction device has a cylindrical detector (detection tube) 3 equipped with a detection pellet 2 having a detection pore 1 at the lower end. The particles are detected based on the difference in electrical impedance between the liquid and the particles when the particles pass through the pores 1, and the electrodes 4.
5 to convert it into an electrical signal.

吹出器3内に、細孔1と中心軸を同じくして細孔通過試
料流が全て吸引される吸引管6を、吸引管6の下端が検
出ペレット2の裏(検出器内側)に適当な間隔だけ離し
て配置する。この間隔および吸引管6の内径は、細孔l
を通過した後の液流が自然対流によって試料を中心とし
た層流を形成するように適当に選択・決定される。
Inside the blower 3, install a suction tube 6 that has the same central axis as the pore 1 and through which all the sample flow passing through the pore is sucked. Place them at a distance apart. This spacing and the inner diameter of the suction tube 6 are determined by the pore l.
The liquid flow after passing through is appropriately selected and determined so that it forms a laminar flow centered on the sample due to natural convection.

検出器8内において、吸引管6の上部に対流用の連通孔
7が複数個穿設される。また吸引管6の外側に、開口部
を検出ペレット2近傍に有し外部の希釈液タンク8に開
閉弁10を介して接続される洗浄管11が組み込まれて
いる。吸引管6は検出器3の上外部で定量管12と枝管
18とに分かれ、定量管12に所定内容積を隔てて2個
の発光器14.15.2個の受光器16.17が、定量
f12内の液の有無を電気信号に変換するよう配設され
ている。18は試料ビー力、20は試料、21は希釈液
(シース液)、22は切換弁、23は廃液管、24は廃
液タンク、25は真空源へ接   ′□続される真空用
管である。
In the detector 8, a plurality of communication holes 7 for convection are bored in the upper part of the suction tube 6. Further, a cleaning pipe 11 having an opening near the detection pellet 2 and connected to an external diluent tank 8 via an on-off valve 10 is installed on the outside of the suction pipe 6 . The suction tube 6 is divided into a quantitative tube 12 and a branch tube 18 above and outside the detector 3, and the quantitative tube 12 has two light emitters 14, 15, and two light receivers 16, 17 separated by a predetermined internal volume. , are arranged so as to convert the presence or absence of liquid in the metered quantity f12 into an electrical signal. 18 is the sample beam force, 20 is the sample, 21 is the diluent (sheath liquid), 22 is the switching valve, 23 is the waste liquid pipe, 24 is the waste liquid tank, and 25 is the vacuum tube connected to the vacuum source. .

第2図は検出ペレット2、吸引管6付近の拡大図である
。細孔1は径が100〜200μm、吸引管6の下端の
開口内径は1〜2朋、検出ペレット面と吸引管6の下端
の開口との間隔は0.5〜2朋程度で、細孔lによる流
速変化で吸引管口付近に低圧部を形成し、吸引f6の外
部の希釈液に吸引管口への流れを起こさせ、その流れを
吸引管上部の連通孔7を経て吸引管6の外側へ対流させ
るように配置している。
FIG. 2 is an enlarged view of the vicinity of the detection pellet 2 and the suction tube 6. The pore 1 has a diameter of 100 to 200 μm, the inner diameter of the opening at the lower end of the suction tube 6 is 1 to 2 μm, and the distance between the detection pellet surface and the opening at the lower end of the suction tube 6 is approximately 0.5 to 2 μm. A low-pressure part is formed near the suction tube mouth due to the change in flow rate caused by l, causing the diluted liquid outside the suction f6 to flow toward the suction tube mouth, and the flow passes through the communication hole 7 at the top of the suction tube and flows into the suction tube 6. It is arranged so that convection flows outward.

計測時は開閉弁10は閉じ、切換弁22は枝管1811
11は閉じ定量管12と廃液管23が連通ずるようにす
る。定量管12は断面円形で、液の有無によるレンズ作
用差を対向する発受光量で光電変換して定量を行うよう
になっている。定量が終ると、開閉弁10が開き、切換
弁22は廃液管23は定食管12と遮断し、枝管13と
連通ずるように作動し、検出器3内が希釈液で満たされ
るとともに、検出ペレット2の細孔IJIF面も洗浄さ
れる。
During measurement, the on-off valve 10 is closed, and the switching valve 22 is connected to the branch pipe 1811.
11 is closed so that the metering tube 12 and the waste liquid tube 23 are communicated with each other. The metering tube 12 has a circular cross section, and performs metering by photoelectrically converting the difference in lens action due to the presence or absence of a liquid using the opposing amounts of emitted and received light. When the quantitative measurement is completed, the on-off valve 10 opens, and the switching valve 22 operates to shut off the waste liquid pipe 23 from the set meal pipe 12 and communicate with the branch pipe 13, filling the inside of the detector 3 with diluent and detecting the liquid. The pore IJIF surface of pellet 2 is also cleaned.

第3図および第4図は本発明の他の実施例を示している
。本例の粒子横出装置は、検出器3内の底部に中心孔2
6を有する十字状、7字状などのスペーサ27全検出ベ
レツト2から僅かな間隔を有するように設け、このスペ
ーサ27の上端の短管部28にチューブなどの吸引管6
aを設けたものであり、検出ペレット2上側の吸引孔の
位置決めが行いやすいという利点を有している。
3 and 4 show other embodiments of the invention. The particle side extraction device of this example has a center hole 2 at the bottom of the detector 3.
A cross-shaped spacer 27, a 7-shaped spacer 27, etc., is provided at a slight distance from the entire detection beret 2, and a suction pipe 6 such as a tube is connected to a short pipe portion 28 at the upper end of this spacer 27.
This has the advantage that the suction hole on the upper side of the detection pellet 2 can be easily positioned.

また゛吸引゛管の上部に連通孔7を設ける代りに、第5
図に示すように吸引管を下部吸引f6bと上部吸引管6
Cとに切り離し、両吸引管の間に隙間80を設けて、こ
の隙間30から液を吸引管外部に対流させるように構成
することも可能である。
Also, instead of providing the communication hole 7 at the top of the suction pipe, the fifth
As shown in the figure, connect the suction tubes to the lower suction tube f6b and the upper suction tube 6.
It is also possible to separate the suction tubes into C and provide a gap 80 between both suction tubes, so that the liquid is caused to convect to the outside of the suction tube through this gap 30.

つぎに実験例について説明する。第6図〜第9図に示す
4パターンの配管(検出器形状)について、PLT(血
小板)数でまい戻り量を調べた。第6図はパターンlで
配管変更なしの場合、第7図はパターン2でパックシー
スを止めた場合、第8図はパターン3でパックシースを
止め、回収管を切り取った場合、第9図はパックシース
圧を止め、自然対流用チューブ31を設けた場合である
。各測定は2本のバイアルを用い、各2回(計4回)の
測定を行った。
Next, an experimental example will be explained. Regarding the four patterns of piping (detector shapes) shown in FIGS. 6 to 9, the amount of return was investigated based on the number of PLTs (platelets). Figure 6 shows pattern 1 with no piping changes; Figure 7 shows pattern 2 with the pack sheath stopped; Figure 8 shows pattern 3 with the pack sheath stopped and the collection tube cut; This is a case where the pack sheath pressure is stopped and the natural convection tube 31 is provided. Each measurement was performed twice (total of 4 times) using two vials.

実験の結果、計数時間14秒で約I mlの自然対流が
発生した。これは内径2.41111のチューブで約(
*/)として計算した値である。
As a result of the experiment, approximately 1 ml of natural convection was generated in a counting time of 14 seconds. This is approximately (
This is the value calculated as */).

また各パターンでのPLT数とまい戻り量の測定値を下
表に示す。なおまい戻り量はシースフローを0とした。
In addition, the measured values of the number of PLTs and the amount of return for each pattern are shown in the table below. The amount of return was based on the sheath flow being 0.

第1θ図はディスクリレベル別へまい戻り量を示したグ
ラフである。また各パターンでのRBC(赤血球)およ
びPLT([111小板)の粒度を第11図〜第18図
に示す。第11図および第12図はパターン1(シース
フロー)の場合を示し、第13図才よび第14図はパタ
ーンM<パックシースなし)の場合を示し、第15図お
よび第16図はパターン3(回収管なし)の場合全示し
、第17図および第18図はパターン4(自然対流)の
場合を示している。
FIG. 1.theta. is a graph showing the amount of deflection for each discretization level. Furthermore, the particle sizes of RBC (red blood cells) and PLT ([111 platelets) in each pattern are shown in FIGS. 11 to 18. Figures 11 and 12 show the case of pattern 1 (sheath flow), Figures 13 and 14 show the case of pattern M<no pack sheath), and Figures 15 and 16 show the case of pattern 3. (No recovery pipe) is shown in all cases, and FIGS. 17 and 18 show the case of pattern 4 (natural convection).

吸引管の外側と検出器の内壁とで作られる容量は8 m
1以上であり、シース液中に粒子が拡散することなく、
連通孔のない場合(パターン2)と連通孔のある場合と
で、第1θ図のグラフのように差が認められ、本発明の
目的に対する効果が確認された。
The volume created by the outside of the suction tube and the inside wall of the detector is 8 m
1 or more, and particles do not diffuse into the sheath liquid,
A difference was observed between the case without communicating holes (pattern 2) and the case with communicating holes, as shown in the graph of FIG. 1θ, confirming the effect of the present invention on the object.

発明の効果 本発明は上記のように構成されているので、つぎのよう
な効果を奏する。
Effects of the Invention Since the present invention is configured as described above, it has the following effects.

(1)  構造がきわめて簡単である。(1) The structure is extremely simple.

(2)  まい戻りを完全に防ぐことができ、血球測定
の場合は、血小板計数精度が向上し、かつ血小板の粒度
測定精度が向上する。
(2) Relapse can be completely prevented, and in the case of blood cell measurements, the accuracy of platelet counting and platelet particle size measurement is improved.

(3)  試料ビー力ごとの試料交換を容易にし、血小
板、全血測定などの大きさの異なる粒子浮懸液の粒子測
定を正確に行うことができる。
(3) It is possible to easily exchange samples for each sample bead, and to accurately measure particles in suspensions containing particles of different sizes, such as in platelet and whole blood measurements.

(4)検出器内部で対流を発生させるため、試料の定量
を従来法と同様に簡単に行うことができる。
(4) Since convection is generated inside the detector, sample quantification can be easily performed in the same way as conventional methods.

(5)  l&流動ポンプ、フィルターを設けないので
、ポンプ脈流、フィルター目詰まシ、フィルター交換な
どのトラブルが発生しない。
(5) Since no flow pump or filter is provided, troubles such as pump pulsation, filter clogging, and filter replacement do not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の粒子横出装置の一実桶例を示す断面説
明図、第2図は第1図における検出ペレット回りの拡大
図、第3図は本発明の池の9j!施例を示す断面説明図
、第4図は第3図におけるA−A線断面図、第5図は本
発明のさらに他の実施例を示す断面説明図、第6図〜第
9図は実峻例に用いたパターンを示す説明図、410図
は実験結果を示すグラフ、第11図〜第18図は各パタ
ーンにおけるRBC(赤面#)およびPLT (血小板
)の粒度分布図である。 l・・検出用細孔、2・・・検出ペレット、3・・・検
出器、4.5−”l[葎、6.6a、6b、6C−’3
U引管、7・・・連通孔、8・・・希沢液タンク、1o
・・・開閉弁、11・・・洗浄管、12・・・定量管、
13・・・枝管、14.15・・・発光器、16.17
・・・受光器、18・・・試料ビー力、20・・・試料
、21・・・希釈液(シース液)、22・・・切換弁、
23・・・廃液管、24・・・廃液タンク、25・・・
真空用管、26・・・中心孔、27・・・スペーサ、2
8・・・短管部、80・・・隙間、31・・・自然対流
用チューブ 出 願 人  東亜医用電子株式会社 第う図 Z 第4図 方 第グ図 第す図 第6図 第7図 第q図 第11図 第12図 第14−図 第1グ図
FIG. 1 is a cross-sectional explanatory diagram showing an example of a bucket of the particle extraction device of the present invention, FIG. 2 is an enlarged view of the area around the detection pellet in FIG. 1, and FIG. 3 is a 9j! of the pond of the present invention! 4 is a sectional view taken along the line A-A in FIG. 3, FIG. 5 is a sectional view showing still another embodiment of the present invention, and FIGS. FIG. 410 is a graph showing the experimental results, and FIGS. 11 to 18 are particle size distribution charts of RBC (blush #) and PLT (platelets) in each pattern. l...Detection pore, 2...Detection pellet, 3...Detector, 4.5-"l [Apricot, 6.6a, 6b, 6C-'3
U lead pipe, 7... Communication hole, 8... Dilute solution tank, 1o
... Opening/closing valve, 11... Washing pipe, 12... Metering pipe,
13...Branch pipe, 14.15...Light emitter, 16.17
... Light receiver, 18 ... Sample beam force, 20 ... Sample, 21 ... Dilution liquid (sheath liquid), 22 ... Switching valve,
23... Waste liquid pipe, 24... Waste liquid tank, 25...
Vacuum tube, 26...center hole, 27...spacer, 2
8...Short tube part, 80...Gap, 31...Natural convection tube Application Person Toa Medical Electronics Co., Ltd. Figure Z Figure 4 Figure Figure 6 Figure 7 Figure q Figure 11 Figure 12 Figure 14-Figure 1 Figure

Claims (1)

【特許請求の範囲】[Claims] 1 下端に検出用細孔を有する検出ペレットを備えた筒
状の検出器内に、この細孔を介して粒子浮懸液を吸引し
、細孔を粒子が通過する際の液と粒子との電気インピー
ダンスの差に基づいて粒子を検出し、検出器の内外に設
けられた電極により電気信号に変換する粒子横出装置に
おいて、検出ペレットの検出用細孔の上側に、下端が僅
かな間隔を有して位置するように吸引管を設け、検出器
内においてこの吸引管の上部に連通部を設け、さらに検
出器内に下端が検出ペレット近傍に位置するように洗浄
管を設け、この洗浄管の上端を開閉弁を介して希釈液タ
ンクに接続したことを特徴とする粒子検出装置。
1 A particle-suspended liquid is sucked into a cylindrical detector equipped with a detection pellet having a detection pore at the lower end through the pore, and the interaction between the liquid and the particles is observed as the particles pass through the pore. In a particle extraction device that detects particles based on the difference in electrical impedance and converts it into an electrical signal using electrodes installed inside and outside the detector, the lower end of the detection pellet has a small gap above the detection pore of the detection pellet. A suction tube is provided so that the suction tube is located in the vicinity of the detection pellet, a communication part is provided in the upper part of the suction tube in the detector, and a cleaning tube is provided in the detector so that the lower end is located near the detection pellet, and this cleaning tube A particle detection device characterized in that the upper end of the device is connected to a diluent tank via an on-off valve.
JP59278663A 1984-12-29 1984-12-29 Particle detecting device Pending JPS61159134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278663A JPS61159134A (en) 1984-12-29 1984-12-29 Particle detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278663A JPS61159134A (en) 1984-12-29 1984-12-29 Particle detecting device

Publications (1)

Publication Number Publication Date
JPS61159134A true JPS61159134A (en) 1986-07-18

Family

ID=17600419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278663A Pending JPS61159134A (en) 1984-12-29 1984-12-29 Particle detecting device

Country Status (1)

Country Link
JP (1) JPS61159134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271252U (en) * 1988-11-18 1990-05-30
EP0405729A2 (en) * 1989-05-04 1991-01-02 Abbott Laboratories Self-filling anti-siphon fluid flow system for particle analysis methods and instruments
EP2463655A2 (en) 2010-12-13 2012-06-13 Nihon Kohden Corporation Blood measuring apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476292A (en) * 1977-11-11 1979-06-18 Max Planck Gesellschaft Device for measuring specific property of particles of suspension
JPS5773654A (en) * 1980-08-26 1982-05-08 Coulter Electronics Particle analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476292A (en) * 1977-11-11 1979-06-18 Max Planck Gesellschaft Device for measuring specific property of particles of suspension
JPS5773654A (en) * 1980-08-26 1982-05-08 Coulter Electronics Particle analyzer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271252U (en) * 1988-11-18 1990-05-30
JPH0622204Y2 (en) * 1988-11-18 1994-06-08 東亜医用電子株式会社 Particle detector
EP0405729A2 (en) * 1989-05-04 1991-01-02 Abbott Laboratories Self-filling anti-siphon fluid flow system for particle analysis methods and instruments
EP2463655A2 (en) 2010-12-13 2012-06-13 Nihon Kohden Corporation Blood measuring apparatus
JP2012127680A (en) * 2010-12-13 2012-07-05 Nippon Koden Corp Blood measuring apparatus
CN102564926A (en) * 2010-12-13 2012-07-11 日本光电工业株式会社 Blood measuring apparatus
EP2463655A3 (en) * 2010-12-13 2013-01-23 Nihon Kohden Corporation Blood measuring apparatus
US9279757B2 (en) 2010-12-13 2016-03-08 Nihon Kohden Corporation Blood measuring apparatus

Similar Documents

Publication Publication Date Title
US3810010A (en) Particle analysis method and apparatus wherein liquid containing particles is sucked into a constricted flow path
JPS58160844A (en) Counter for grain
US8616048B2 (en) Reusable thin film particle sensor
CA1042511B (en) Self-cleaning aperture tube for coulter study apparatus
CN103471980B (en) A kind of chip type blood cell analyzer and method
JP2008530539A (en) Dual sample cartridge and method for characterizing particles in a liquid
CN204008405U (en) Two particle analyzer of sheath-flow impedance method
CN212780382U (en) Blood cell analyzer
US20150355157A1 (en) Electrode configuration for limca
CN106769805B (en) Cell count sorter
US3979669A (en) Particle analyzing system
US4157499A (en) Blood cell counter having dual testing heads
US4103229A (en) Continuous-flow, resistive-particle counting apparatus
JPH07318477A (en) Electric-mobility spectrometer for aerosol particle contained in atmosphere to be tested
JPS61159134A (en) Particle detecting device
JP3115641B2 (en) Particle counting method
CN202119698U (en) Particle measurement device
CN209911384U (en) Blood detection device
CN104990848A (en) Device and method for detecting micro-particles compatible with process
US4491786A (en) Transducer for measuring particles suspended in a fluid
JP6688089B2 (en) Flow cell and particle analyzer
CN204789248U (en) With compatible microparticle detection device of process
CN207457028U (en) The specimen cup that a kind of cellanalyzer uses
CN2890917Y (en) Blood cell analyzer sensing device
CN201269876Y (en) Volume metering apparatus