JPS61158672A - Method for warming up air-cooled fuel cell - Google Patents

Method for warming up air-cooled fuel cell

Info

Publication number
JPS61158672A
JPS61158672A JP59275638A JP27563884A JPS61158672A JP S61158672 A JPS61158672 A JP S61158672A JP 59275638 A JP59275638 A JP 59275638A JP 27563884 A JP27563884 A JP 27563884A JP S61158672 A JPS61158672 A JP S61158672A
Authority
JP
Japan
Prior art keywords
gas
air
fuel cell
cell
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59275638A
Other languages
Japanese (ja)
Inventor
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59275638A priority Critical patent/JPS61158672A/en
Publication of JPS61158672A publication Critical patent/JPS61158672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable a cell to be warmed up fast in a short time, from the temperature under a stopping condition to the assigned starting temperature, by preparing a catalyst on cooling-gas paths and introducing a flammable gas there at the starting time of the cell. CONSTITUTION:Reaction-gas-supplying paths 3 for fuel gas are formed on the upper surface of an upper split plate 2a of separator plates 2, on the other hand, reaction-gas-supplying paths 4 for air are formed under the lower surface of a lower split plate 2b, and tunnel-shaped cooling medium paths 5 are formed on the surface on which both split plates 2a and 2b make contact with each other. In order to warm up the body of a fuel cell 22 from the temperature under a stopping condition to the starting temperature, a part of reformed gas is mixed with air, which is supplied by means of a gas mixer 33, in the assigned concentration, and this mixed gas is introduced to the cooling medium paths 5, which are coated with a catalyst, in the body of the cell. Hence, since the separator plates 2 are directly heated by oxidation heat, which is generated by reaction of platinum, on the catalyst layer 9, which the flammable gas, the body of the cell can be warmed up fast.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、電解質と隔離された冷却ガス通路に反応ガ
スと分離された冷却ガスを供給してなる空冷式燃料電池
に係り、特にこの燃料電池を起動するための昇温方法に
関する。
[Detailed Description of the Invention] [Technical field to which the invention pertains] The present invention relates to an air-cooled fuel cell in which a cooling gas separated from a reaction gas is supplied to a cooling gas passage isolated from an electrolyte. This invention relates to a temperature raising method for starting a battery.

〔従来技術とその問題点〕[Prior art and its problems]

この種の燃料電池として例えば特開昭56−16836
5(対応米国特許4276355 )に記載の構成が知
られている。これは、セルスタ、りの対向する側面に燃
料、酸化剤、冷却ガスのマニホールドをそれぞれ設けて
、反応ガスと冷却ガスの流れを独!して構成したもので
あり、過剰なガスの供給による電解質の飛散を防ぐとと
もに、冷却ガスの圧力降下を減少して冷却ガスの循環動
車を高めようとするものである。
As an example of this type of fuel cell, for example, Japanese Patent Application Laid-Open No. 56-16836
5 (corresponding US Pat. No. 4,276,355) is known. This is achieved by installing manifolds for fuel, oxidizer, and cooling gas on opposite sides of the cell star and controlling the flow of reactant gas and cooling gas independently! This structure is designed to prevent the electrolyte from scattering due to excessive gas supply, and to reduce the pressure drop of the cooling gas to improve the circulation movement of the cooling gas.

これに関連して、本件出願人は、先に実願昭59−14
1909により、冷却ガスと公庫された反応ガスのガス
通路をU凰に形成し、そのガス給排口をセルスタックの
同一側面に設けた構成を提案してい −る。この#4M
、に?いて特に着目すべき点は、冷却ガス通路を各セル
の相互間に介装されたセパレータごとに設けた点であり
、これにより、セルとの熱交換面積が増大し、より効果
的な冷却を行なうことができる。特にUWガス供給方式
で起こりがちなセルの面方向における温度のばらつきン
改善することができる。以下にその構成を図面に基づい
て説明する。
In this regard, the applicant had previously filed a U.S. Pat.
1909, proposed a configuration in which the gas passages for the cooling gas and the stored reaction gas were formed in a U-shaped configuration, and the gas supply and discharge ports were provided on the same side of the cell stack. This #4M
, to? What is particularly noteworthy is that a cooling gas passage is provided for each separator interposed between each cell, which increases the heat exchange area with the cells and achieves more effective cooling. can be done. In particular, it is possible to improve temperature variations in the surface direction of the cell, which tend to occur in the UW gas supply system. The configuration will be explained below based on the drawings.

第3図ないし第6図に8いて、単電池1はマトリ、クス
tgilaと、該マトリ、クス層を挾んでその両側に重
ね合わせたアノード電極1bとカンード1i1cとから
なり、この単電池1の上下にリプ付きセパレート板2が
積層されている。ここで方形状のセパレート板2は、そ
の四辺のうちの互いに対向する二辺A、Bには、その側
面の間にまたがって開口するように板同中層部に複数条
の平行に配列するトンネル状の冷却媒体通#!r5が穿
孔され、鎖纒で示したマニホールド6を通じて外部の冷
却全気送、虱系から冷却媒体としての空気が押込み送風
されるように構成されている(第4図)。
As shown in FIGS. 3 to 6, the unit cell 1 is made up of a matrix, a kusu tgila, an anode electrode 1b and a canard 1i1c stacked on both sides of the matrix and the kusu layer. Separate plates 2 with lips are stacked on top and bottom. Here, the rectangular separate plate 2 has two opposite sides A and B out of its four sides, and a plurality of tunnels arranged in parallel in the middle layer of the plate so as to open between the sides. Cooling medium connoisseur #! R5 is perforated, and the structure is such that air as a cooling medium is forced in from the external cooling air system and the locust system through a manifold 6 shown by a chain link (FIG. 4).

一方、セパレート板2の上下両面には、単電池1のアノ
ード1!&1bに対向する側に燃料ガスの反応ガス供給
路3が、またカンード電極ICに対向する1!11には
空気の反応ガス供給路4が形成されている。ここで各反
応ガス供給路3.4はそれぞれセパレート板2の面上に
並ぶ複数条の凹溝としてなり、その反応ガス供給、排出
口が前記した冷却媒体通路5の開口する辺A、Bと直父
する他の二辺C,Dの側面に開口するように形成されて
いる。
On the other hand, the anode 1 of the cell 1 is placed on both the upper and lower surfaces of the separate plate 2! A reaction gas supply path 3 for fuel gas is formed on the side facing &1b, and a reaction gas supply path 4 for air is formed on the side 1!11 facing the canned electrode IC. Here, each reaction gas supply path 3.4 is a plurality of concave grooves lined up on the surface of the separate plate 2, and the reaction gas supply and discharge ports are connected to the sides A and B where the cooling medium path 5 is opened. It is formed so as to open on the other two sides C and D that are directly opposite to each other.

また図示実施例では、燃料ガスの反応ガス供給路3はそ
の供給、排出口がともに同じ辺Cの側面に(第5図)、
もう一方の空気の反応ガス供給路4の供給、排出口が同
じ辺りの側面に(第6図)それぞれ開口するように反応
ガス供給口と排出口との間を連ねてU字状に形成され、
各反応ガス供給路3,4に対応して燃料電池の1W1面
に配備された鎖線で示すマニホールド7.8を通じて外
部より燃料ガスおよび空気の反応ガスが供給されるよう
に構成されている。
Further, in the illustrated embodiment, the reactant gas supply path 3 for fuel gas has its supply and discharge ports both on the side surface of the same side C (FIG. 5).
The reactant gas supply port and the discharge port of the other air reactant gas supply path 4 are connected in a U-shape so that the supply and discharge ports of the reactant gas supply path 4 open at the same side (Fig. 6). ,
The structure is such that reactant gases such as fuel gas and air are supplied from the outside through manifolds 7.8 shown by chain lines arranged on the 1W1 side of the fuel cell in correspondence with the respective reactant gas supply paths 3 and 4.

かかる構成により、燃料電池の運転時には反応ガス供給
路3,4を通じて燃料ガス、空気の反応ガスが燃料電池
のセルスタ、りを構成する全ての単電池1へ分配供給さ
れ、また冷却媒体通路5を通じて冷却媒体としての空気
が各セパレート板2の全てに均等に押込み送風される。
With this configuration, during operation of the fuel cell, reactant gases such as fuel gas and air are distributed and supplied to all the cells 1 constituting the cell star of the fuel cell through the reactant gas supply paths 3 and 4, and are also supplied through the cooling medium path 5. Air as a cooling medium is evenly forced into all of the separate plates 2.

冷却媒体通路5への空気送風量は、前記反応ガスの空気
供給量とは別個に設定し、電池の発生熱に対応して電池
の運転温度を適正温度に維持するような流量に制御して
供給される。これにより、燃料電池は所定の発電作用を
行いつつ、一方では冷却媒体通路を通流する空気によっ
て反応熱が除熱される。
The amount of air blown to the cooling medium passage 5 is set separately from the amount of air supplied to the reaction gas, and is controlled to a flow rate that maintains the operating temperature of the battery at an appropriate temperature in response to the heat generated by the battery. Supplied. As a result, while the fuel cell performs a predetermined power generation action, the heat of reaction is removed by the air flowing through the cooling medium passage.

ところで上記した空冷式燃料電池を効藁よく運転するに
は、例えばリン酸型の場合には電池の運転温間を通常1
90°C程度に維持して運転されるが、この電池を停止
状態より起動する場合には、電池の特性に悪影響を及ぼ
さない温度9例えば140℃以上まで電池を加温させね
ばならない。上記した構造を有する空冷式燃料電池を加
温するにあたっては、これまで、二つの方法が知られて
いた。
By the way, in order to operate the above-mentioned air-cooled fuel cell efficiently, for example, in the case of a phosphoric acid type fuel cell, the operating temperature of the cell is usually reduced to 1.
Although the battery is operated at a temperature maintained at about 90° C., when starting the battery from a stopped state, the battery must be heated to a temperature of 9, for example, 140° C. or higher, which does not adversely affect the characteristics of the battery. Up to now, two methods have been known for heating an air-cooled fuel cell having the above structure.

まず第一の方法としては、燃料電池本体と冷却空気導入
ブロアーとの間に冷却空気を加熱するためのヒータ部(
を気ヒータ又はメタン等の天然ガスやメタノール等を燃
料とするバーナにて加熱されるもの)を設置し、このヒ
ータ部で加熱された熱風を冷却媒体通路に導入し所期温
度まで加温する方法であり、第2の方法としては、燃料
電池本体と燃料改質装置からなる燃料電池発電プラント
において、改質器中の改質触媒加熱用バーナの燃焼排出
ガスを電池本体の冷却媒体通路に導入し、所期温度まで
加温する方法である。上記従来技術による電池の加熱方
法では、固体である冷却板と゛気体である冷却媒体との
熱交換により昇温させることになるが、固体と気体との
熱交換では気体の熱伝達藁が液体や固体にくらべて極端
に低いため。
The first method is to use a heater part (
The hot air heated by this heater is introduced into the cooling medium passage and heated to the desired temperature. The second method is a fuel cell power generation plant consisting of a fuel cell main body and a fuel reformer, in which combustion exhaust gas from a burner for heating the reforming catalyst in the reformer is passed into the cooling medium passage of the cell main body. In this method, the sample is introduced and heated to the desired temperature. In the conventional battery heating method described above, the temperature is raised by heat exchange between a solid cooling plate and a gaseous cooling medium, but in heat exchange between a solid and a gas, the gas heat transfer straw is replaced by a liquid This is because it is extremely low compared to solids.

短時間(例えば数分〜士数分)で所期温度に電池を昇温
させるには、大出力容量のフロア−にて数百℃の高温の
空気を多量に冷却媒体通路に導入し、なければならず、
実用に際しては、電池構成材料の耐熱性や発電プラント
効惠等を考慮して、加熱空気の温度や使用ブロアーの容
量に制約を受けるため、所期温度にまで電池を昇温する
ためには長時間(2〜3時間)を要していた。
In order to raise the temperature of the battery to the desired temperature in a short period of time (for example, a few minutes to several minutes), a large amount of high-temperature air of several hundred degrees Celsius must be introduced into the cooling medium passage on a floor with a large output capacity. Not necessarily,
In practical use, there are restrictions on the temperature of the heated air and the capacity of the blower used, taking into consideration the heat resistance of the battery constituent materials and the efficiency of the power generation plant, so it takes a long time to raise the temperature of the battery to the desired temperature. It took a long time (2 to 3 hours).

〔発明の目的〕[Purpose of the invention]

この発明は上記に鑑みてなされたものであり、空冷式燃
料電池を停止状態より短時間で所期起動温度まですみや
かに昇温させる方法を提供することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a method for quickly raising the temperature of an air-cooled fuel cell from a stopped state to a desired starting temperature in a short time.

〔発明の要点〕[Key points of the invention]

この目的は本発明によれば、電解質とlI4離された冷
却ガス通路に反応ガスと独又した冷却ガスを供給してな
る空冷式燃料電池において、冷却ガス通路に触媒を設け
、電池起動時にこの冷却ガス通路に可燃性ガスを導入す
ることによって、触媒と可燃性ガスとの反応による酸化
熱により直接電池を加熱することにより達成される。
According to the present invention, in an air-cooled fuel cell in which a cooling gas separate from a reaction gas is supplied to a cooling gas passage separated from an electrolyte, a catalyst is provided in the cooling gas passage, and the This is achieved by introducing flammable gas into the cooling gas passage and directly heating the battery using the heat of oxidation caused by the reaction between the catalyst and the flammable gas.

本発明が通用される燃料電池に、冷却ガスが反応ガスと
独ユしており、その冷却ガス通路が電解質と隔離されて
いることが肝要である。すなわち、電極には通常白金を
主体とする触媒が用いられているため、電池の起動時、
まだ十分に電池が温まっていない状態で反応ガス室に可
燃性ガスを含む冷却ガスを導入したのでは、可燃性ガス
が電極の白金と反応してその触媒活性を喪失する虞れが
ある。したがって単にガス室を波状のプレートで分離し
たダイギャス方式の電池では不十分である。
In a fuel cell to which the present invention is applied, it is important that the cooling gas is separated from the reaction gas and that the cooling gas passage is isolated from the electrolyte. In other words, since the electrodes usually use a catalyst mainly composed of platinum, when the battery starts up,
If a cooling gas containing a flammable gas is introduced into the reaction gas chamber before the battery is sufficiently warmed up, there is a risk that the flammable gas will react with the platinum of the electrode and lose its catalytic activity. Therefore, a digas type battery in which the gas chamber is simply separated by a corrugated plate is insufficient.

更に反応ガスとしての空気を冷却ガスとして兼用する型
の空冷式燃料電池では、酸化反応により生成する水が電
解液と接触し、電池内の電解液濃度平谷積を変化させた
り、電極の局部加熱−こより触媒の劣化を招く虞れがあ
る。
Furthermore, in air-cooled fuel cells that use air as a reactant gas also as a cooling gas, water produced by the oxidation reaction comes into contact with the electrolyte, causing changes in the electrolyte concentration Hiratani product within the cell and local heating of the electrodes. -This may lead to deterioration of the catalyst.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の実施例を示すものであり、先に説明
した第3図の燃料電池に本発明を適用したものである。
FIG. 2 shows an embodiment of the present invention, in which the present invention is applied to the fuel cell shown in FIG. 3 described above.

同図において、セパレート板2は符号2a、2bで示す
上下二分割板を重ね合わせた結合体としてなり、各分割
板2a、2bのうち上部の分割板2aにはその上面に第
5図と同様な燃料ガスの反応ガス供給路3が、下部の分
割板2bの下面には第6図と同様な空気の反応ガス供給
路4が形成されており、かつ両分副板2 a * 2 
b相互の接合面には互いに合体してトンネル状の冷却媒
体通路5を形成するような凹溝5a、5bが対応して形
成されている。これに本発明の熱媒体通路が形成される
。そして、この凹溝5a、5bのP’[i面に、白金か
らなる触媒層9が一様に形成されている。
In the figure, the separate plate 2 is a combination of upper and lower divided plates 2a and 2b superimposed, and the upper divided plate 2a of each divided plate 2a and 2b has an upper surface similar to that shown in FIG. A reactive gas supply passage 3 for fuel gas is formed on the lower surface of the lower dividing plate 2b, and a reactive gas supply passage 4 for air similar to that shown in FIG. 6 is formed on the lower surface of the lower dividing plate 2b.
(b) Concave grooves 5a and 5b are formed correspondingly on the mutual joint surfaces so as to merge with each other to form a tunnel-shaped cooling medium passage 5. The heat medium passage of the present invention is formed in this. A catalyst layer 9 made of platinum is uniformly formed on the P'[i-plane of the grooves 5a and 5b.

この凹溝5a、5bの内a面に形成した触媒層9は、各
分割板2 a + 2 bに別々に反応ガス供給路3と
冷却媒体通路5の凹tit 5 a、および反応ガス供
給通路4と凹溝5bを切削加工あるいは成形加工法によ
って形成した後、凹溝5a、5bの内壁面に酸化触媒量
が同壁面単位面積当り0.05〜0.1〜担持されるよ
うに濃度調整した白金塩水溶液を塗布含浸させ、乾燥さ
せたのち、水素雰囲気中200〜300°Cで2〜4時
間還元することにより作製した。
The catalyst layer 9 formed on the inner surface a of the grooves 5a and 5b is formed in the grooves tit 5a of the reaction gas supply passage 3 and the cooling medium passage 5, and the reaction gas supply passage separately on each dividing plate 2a + 2b. After forming the grooves 4 and 5b by cutting or molding, the concentration is adjusted so that the amount of oxidation catalyst is supported on the inner wall surfaces of the grooves 5a and 5b from 0.05 to 0.1 per unit area of the wall surface. The platinum salt aqueous solution was coated and impregnated, dried, and then reduced in a hydrogen atmosphere at 200 to 300°C for 2 to 4 hours.

かかるセパレート板を単電池に組み込んで多数個積層し
てなる燃料電池を起動にあたって昇温するための本発明
の実施例を第1図に示す。同図において、燃料電池発電
プラント21は、燃料電池本体nと燃料改質器n、改質
器にメタン等の天然ガスやメタノール等の燃料を供給す
るための配管ス。
FIG. 1 shows an embodiment of the present invention for raising the temperature at the time of starting up a fuel cell in which a large number of such separate plates are assembled and stacked. In the figure, a fuel cell power generation plant 21 includes a fuel cell body n, a fuel reformer n, and piping for supplying natural gas such as methane or fuel such as methanol to the reformer.

燃料の一部を改質バーナへ導く配管δ、及び改質ガスを
燃料電池へ供給するための配管加等からなる燃料改質系
40と、燃料電池へ空気を供給するブロアーn、冷却空
気を供給するためのブロアー公及びそれぞれの空気を燃
料電池へ導く配管四、30等を含む空気供給系間と、電
池で発電した直流電流を交流ti流に変換する直交変換
装置t31と、反応流量、圧力、温度2等をコントロー
ルする制(illD装置32から構成されている。
A fuel reforming system 40 consisting of a pipe δ that guides a part of the fuel to the reforming burner, a pipe addition for supplying reformed gas to the fuel cell, a blower n that supplies air to the fuel cell, and a blower n that supplies cooling air. Between the air supply system including a blower for supplying air and piping 4, 30 for guiding each air to the fuel cell, an orthogonal conversion device t31 that converts the DC current generated by the battery into an AC current, and the reaction flow rate, It consists of an illD device 32 that controls pressure, temperature 2, etc.

かかる構成を有する燃料電池発電プラントにおいて、燃
料電池本体を停止状態より起動温度まで昇温するために
は、燃料改質器nにて改質された改質ガスの一部をガス
混合器おにて冷却空気ブロアーより供給されるg!気と
所定濃度に混合し、この混合ガスを触媒にて被覆された
燃料電池本体の冷却媒体通路に導く、これにより触媒層
9の白金は可燃性ガスと反応してその酸化熱により、セ
パレート板2を直接加熱するため、すみやかにta本本
体管昇温することができる。また、過度の加熱を防ぐに
は、電池の昇温中、常時セパレート板2の温度を監視し
ておき、ガス混合器おにおける改質ガスと空気との混合
割合をi&通な値に制御すればよい。
In a fuel cell power generation plant having such a configuration, in order to raise the temperature of the fuel cell main body from a stopped state to the starting temperature, a part of the reformed gas reformed in the fuel reformer n is transferred to the gas mixer. g! is supplied from the cooling air blower. This mixed gas is introduced into the cooling medium passage of the fuel cell body covered with a catalyst, and the platinum in the catalyst layer 9 reacts with the flammable gas and the heat of oxidation causes the separation plate to 2, the temperature of the main body tube can be raised quickly. In addition, to prevent excessive heating, the temperature of the separate plate 2 should be constantly monitored while the temperature of the battery is rising, and the mixing ratio of reformed gas and air in the gas mixer should be controlled to a constant value. Bye.

なお上記実施例では、改質器nにて改質された改質ガス
を空気と混合して冷却媒体通路へ導き、改質ガスの酸化
熱により電池本体を昇温する方法について説明したが、
冷却媒体通路の内壁ml乞メタン、エタン、プロパン等
の天然ガスやメタノール等を直接酸化でき得る触媒にて
′4i覆した場合には、これらの可燃性ガスと空気との
混合ガスを直接冷却媒体通路へ導き、燃料電池本体を昇
温させることも可能である。また、可燃性酸化触媒とし
て白金の他に、パラジウムあるいは白金とパラジウムの
複合体を用いることができる。
In the above embodiment, a method was described in which the reformed gas reformed in the reformer n is mixed with air and guided to the cooling medium passage, and the temperature of the battery body is raised by the oxidation heat of the reformed gas.
If the inner wall of the cooling medium passage is covered with a catalyst that can directly oxidize natural gas such as methane, ethane, propane, or methanol, the mixed gas of these flammable gases and air can be directly oxidized as a cooling medium. It is also possible to raise the temperature of the fuel cell body by guiding it to the passage. In addition to platinum, palladium or a complex of platinum and palladium can be used as the combustible oxidation catalyst.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、電池
の電解質と隔離された熱媒体通路に触媒を設け、電池の
起動時にこの熱媒体通路に可燃性ガスを導入して、触媒
と可燃性ガスとの反応による酸化熱により、電池本体乞
直接加熱1−るようにしたため、電池の起動時に電池本
体をすみやかに昇温することができる。
As is clear from the above description, according to the present invention, a catalyst is provided in a heating medium passage isolated from the electrolyte of a battery, and a flammable gas is introduced into this heating medium passage when the battery is started up, and the catalyst and combustible gas are introduced into the heating medium passage. Since the battery body is directly heated by the heat of oxidation caused by the reaction with the oxidizing gas, the temperature of the battery body can be quickly raised when the battery is started.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す燃料電池発電プラントの
システム構成図、第2図は本発明に係る熱媒体通路の実
施例を示すセパレート板の部分的な分解斜視図、第3図
は燃料電池の1セル分の構成を示す一部断面側視図、第
4図は第3図における矢視■−■断面図、第5図および
第6図は第1図におけるセパレート板の上面および下面
の平面図である。 2:セパレート板、3.4:反応ガス供給路、5:冷却
媒体通路%9:触媒膚、21:燃料電池発電プラント、
22:燃料電池本体、23:改質器、冴、25,26,
29,30 :配管、27,28 ニブロアー、31:
直交変換装置、32:制御装置、あ:ガス混合器、40
:燃料改質系、父二空気供給系。 才2回 才 4 図
Fig. 1 is a system configuration diagram of a fuel cell power generation plant showing an embodiment of the present invention, Fig. 2 is a partially exploded perspective view of a separate plate showing an embodiment of a heat medium passage according to the invention, and Fig. 3 is a system configuration diagram of a fuel cell power generation plant showing an embodiment of the present invention. FIG. 4 is a partially cross-sectional side view showing the configuration of one cell of a fuel cell. FIG. 4 is a cross-sectional view taken along the arrow ■-■ in FIG. It is a top view of a lower surface. 2: Separate plate, 3.4: Reaction gas supply path, 5: Cooling medium passage %9: Catalyst skin, 21: Fuel cell power generation plant,
22: Fuel cell body, 23: Reformer, Sae, 25, 26,
29, 30: Piping, 27, 28 Niblower, 31:
Orthogonal transformation device, 32: Control device, A: Gas mixer, 40
:Fuel reforming system, two-way air supply system. 2 years old 4 figures

Claims (1)

【特許請求の範囲】 1)電解質と隔離された熱媒体通路に反応ガスと独立し
た熱媒体を供給してなる空冷式燃料電池において、前記
熱媒体通路に触媒を設け、電池の起動時にこの熱媒体通
路に可燃性ガスを導入することを特徴とする空冷式燃料
電池の昇温方法。 2)特許請求の範囲第1項記載の方法において、可燃性
ガスとして燃料ガスの一部を用いることを特徴とする空
冷式燃料電池の起動方法。 3)特許請求の範囲第1項記載の方法において、熱媒体
通路に触媒層を一様に形成することを特徴とする空冷式
燃料電池の昇温方法。
[Claims] 1) In an air-cooled fuel cell in which a heat medium independent of the reactant gas is supplied to a heat medium path isolated from the electrolyte, a catalyst is provided in the heat medium path, and this heat is removed when the cell is started. A method for increasing the temperature of an air-cooled fuel cell, characterized by introducing flammable gas into a medium passage. 2) A method for starting an air-cooled fuel cell according to claim 1, characterized in that part of the fuel gas is used as the combustible gas. 3) A method for increasing the temperature of an air-cooled fuel cell according to claim 1, characterized in that a catalyst layer is uniformly formed in the heat medium passage.
JP59275638A 1984-12-28 1984-12-28 Method for warming up air-cooled fuel cell Pending JPS61158672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275638A JPS61158672A (en) 1984-12-28 1984-12-28 Method for warming up air-cooled fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275638A JPS61158672A (en) 1984-12-28 1984-12-28 Method for warming up air-cooled fuel cell

Publications (1)

Publication Number Publication Date
JPS61158672A true JPS61158672A (en) 1986-07-18

Family

ID=17558247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275638A Pending JPS61158672A (en) 1984-12-28 1984-12-28 Method for warming up air-cooled fuel cell

Country Status (1)

Country Link
JP (1) JPS61158672A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054356A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with improved cold-start performance and method of cold-starting a fuel cell battery
WO2000054355A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with heating and improved cold start performance and method for cold starting a fuel cell battery
EP1113516A1 (en) * 1999-12-22 2001-07-04 General Motors Corporation Method of cold start-up of a PEM fuel cell
WO2001048846A1 (en) * 1999-12-28 2001-07-05 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell stack
WO2001086745A2 (en) * 2000-05-11 2001-11-15 Siemens Aktiengesellschaft Method for cold starting fuel cells of a fuel cell facility and corresponding fuel cell facility
WO2001048848A3 (en) * 1999-12-23 2002-04-25 Emitec Emissionstechnologie Fuel cell system for use as a drive unit for a vehicle
KR100658289B1 (en) 2005-11-29 2006-12-14 삼성에스디아이 주식회사 Separator having heating gas inlet portion and fuel cell system having the same
US7157169B2 (en) * 2001-10-30 2007-01-02 Nissan Motor Co., Ltd. Fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054356A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with improved cold-start performance and method of cold-starting a fuel cell battery
WO2000054355A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with heating and improved cold start performance and method for cold starting a fuel cell battery
EP1113516A1 (en) * 1999-12-22 2001-07-04 General Motors Corporation Method of cold start-up of a PEM fuel cell
US6358638B1 (en) 1999-12-22 2002-03-19 General Motors Corporation Cold start-up of a PEM fuel cell
WO2001048848A3 (en) * 1999-12-23 2002-04-25 Emitec Emissionstechnologie Fuel cell system for use as a drive unit for a vehicle
WO2001048846A1 (en) * 1999-12-28 2001-07-05 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell stack
WO2001086745A2 (en) * 2000-05-11 2001-11-15 Siemens Aktiengesellschaft Method for cold starting fuel cells of a fuel cell facility and corresponding fuel cell facility
WO2001086745A3 (en) * 2000-05-11 2003-02-13 Siemens Ag Method for cold starting fuel cells of a fuel cell facility and corresponding fuel cell facility
US7157169B2 (en) * 2001-10-30 2007-01-02 Nissan Motor Co., Ltd. Fuel cell
KR100658289B1 (en) 2005-11-29 2006-12-14 삼성에스디아이 주식회사 Separator having heating gas inlet portion and fuel cell system having the same

Similar Documents

Publication Publication Date Title
KR100723371B1 (en) Modifying device
JP2919588B2 (en) Electrochemical battery
JP2965273B2 (en) Electrochemical cell device with a valve for controlling the composition of the reformable fuel gas
JP2965275B2 (en) Fuel cell generator
JP3930045B2 (en) Fuel cell module having a multi-fuel cell stack
EP1620909B1 (en) Thermally integrated fuel cell system
US7410713B2 (en) Integrated fuel cell hybrid power plant with re-circulated air and fuel flow
US4812373A (en) Fuel feed arrangement for a fuel cell generator
US20020071972A1 (en) Fuel cell battery with heating and an improved cold-start performance, and method for cold-starting of a fuel cell battery
JPS5924504B2 (en) Fuel cell operation method and fuel cell device
JPH0316752B2 (en)
US7338727B2 (en) Method of operating a fuel cell to provide a heated and humidified oxidant
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JP2004204849A (en) Cooled turbine integrated fuel cell hybrid power plant
JP2008521184A (en) Equipment for carrying out chemical reactions
JPS6014768A (en) Solid electrolyte fuel battery generating apparatus
JPH06310158A (en) Internally reformed fuel cell device and fuel cell power generating system
JPS61158672A (en) Method for warming up air-cooled fuel cell
JP2000164233A (en) Power generating system for solid high molecular fuel cell
JP5000867B2 (en) Fuel cell power generation system
JPS63205058A (en) Fuel cell device
JP2002208427A (en) Reforming device for fuel cell
JPH1167258A (en) Fuel cell
JPS6134865A (en) Fuel cell power generating system
JP4136955B2 (en) Fuel cell system