JP5000867B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP5000867B2
JP5000867B2 JP2005237238A JP2005237238A JP5000867B2 JP 5000867 B2 JP5000867 B2 JP 5000867B2 JP 2005237238 A JP2005237238 A JP 2005237238A JP 2005237238 A JP2005237238 A JP 2005237238A JP 5000867 B2 JP5000867 B2 JP 5000867B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
power generation
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005237238A
Other languages
Japanese (ja)
Other versions
JP2007053006A (en
Inventor
章 軍司
博見 床井
高橋  心
成嘉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005237238A priority Critical patent/JP5000867B2/en
Publication of JP2007053006A publication Critical patent/JP2007053006A/en
Application granted granted Critical
Publication of JP5000867B2 publication Critical patent/JP5000867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は燃料電池発電システムに係り、特に固体酸化物形燃料電池発電システムに関する。   The present invention relates to a fuel cell power generation system, and more particularly to a solid oxide fuel cell power generation system.

燃料電池は、電解質を挟んで一方の側にアノード(燃料極)を備え、他方の側にカソード(空気極)を備え、アノード側に供給された燃料とカソード側に供給された酸化剤とを電解質を介して電気化学反応(電池反応)させることによって発電する発電装置である。燃料電池の種類の一つである固体酸化物形燃料電池は発電効率が高いだけでなく、700〜1000℃の高温で運転されるため、燃料電池内部で燃料の改質反応が行え、多様な燃料を用いることができる。また、燃料電池の外部で燃料の改質を行うことなく燃料を直接利用することができるため、構造がシンプルとなり、他の燃料電池に比べ、コスト低減の可能性を持つ。加えて、高温の排熱を用いて様々なボトミングサイクルを組み合わせることができ、用途に合わせたシステムを形成しやすい。   The fuel cell has an anode (fuel electrode) on one side with an electrolyte in between, and a cathode (air electrode) on the other side. The fuel supplied to the anode side and the oxidant supplied to the cathode side This is a power generation device that generates electric power through an electrochemical reaction (battery reaction) via an electrolyte. Solid oxide fuel cells, which are one of the types of fuel cells, not only have high power generation efficiency, but also operate at a high temperature of 70 to 1000 ° C., so that a fuel reforming reaction can be performed inside the fuel cell. Fuel can be used. In addition, since the fuel can be directly used without reforming the fuel outside the fuel cell, the structure is simple and the cost can be reduced compared to other fuel cells. In addition, various bottoming cycles can be combined using high-temperature exhaust heat, and it is easy to form a system tailored to the application.

作動温度が高いことは上記の利点がある一方で、発電を行うためには作動可能な温度まで燃料電池を加熱する必要があり、起動に時間がかかるという不利な点もある。起動時間の短縮のためには昇温速度を高める必要があるが、急速に昇温した場合には燃料電池に大きな温度分布がつきやすく、熱応力や過度の温度上昇により燃料電池の破損を招く可能性がある。   While the high operating temperature has the above-mentioned advantages, in order to generate power, it is necessary to heat the fuel cell to an operable temperature, and there is a disadvantage that it takes time to start up. Although it is necessary to increase the rate of temperature increase in order to shorten the start-up time, if the temperature is increased rapidly, the fuel cell tends to have a large temperature distribution, which causes damage to the fuel cell due to thermal stress or excessive temperature rise. there is a possibility.

燃料電池の起動方法としてはアノード流路入口およびカソード流路入口に連通する空間にバーナーやヒータなどの加熱手段を備え、加熱された高温のガスをアノード流路、カソード流路へそれぞれ導入することで燃料電池を昇温させることが知られている(たとえば、特許文献1参照)。   As a method of starting the fuel cell, a heating means such as a burner or a heater is provided in a space communicating with the anode channel inlet and the cathode channel inlet, and heated high-temperature gas is introduced into the anode channel and the cathode channel, respectively. It is known to raise the temperature of the fuel cell (see, for example, Patent Document 1).

特開2001−155754号公報(要約)JP 2001-155754 A (summary)

従来の技術では、起動時に燃料電池は高温のアノードガスおよびカソードガスにより加熱されるが、流路出口付近ではアノードガスおよびカソードガスの温度が低下する。このため、流路入口付近に比べて、出口付近におけるアノードガスとカソードガスから燃料電池への伝熱量は小さくなる。燃料電池を挟んでアノードガスとカソードガスが並行に流れる場合、アノードガスおよびカソードガスの流路入口付近と出口付近では燃料電池に与えられる熱量に差が生じ、その結果、燃料電池に温度差が生じ、燃料電池破損の要因となる。昇温速度を高めるためにアノードガスおよびカソードガスの有する熱量を増加させた場合、流路出入口方向の温度差はさらに拡大する。   In the conventional technique, the fuel cell is heated by the high-temperature anode gas and cathode gas at the time of startup, but the temperatures of the anode gas and cathode gas are reduced near the outlet of the flow path. For this reason, the amount of heat transferred from the anode gas and the cathode gas to the fuel cell in the vicinity of the outlet is smaller than in the vicinity of the flow path inlet. When anode gas and cathode gas flow in parallel across the fuel cell, there is a difference in the amount of heat given to the fuel cell near the inlet and outlet of the anode gas and cathode gas flow path, resulting in a temperature difference in the fuel cell. This causes fuel cell damage. When the amount of heat of the anode gas and the cathode gas is increased in order to increase the rate of temperature increase, the temperature difference in the flow path entrance / exit direction further increases.

本発明の目的は、起動時間を短縮でき、しかも、アノードガスおよびカソードガスの流路入口付近と出口付近での温度差を小さくできる燃料電池発電システムを提供することにある。   An object of the present invention is to provide a fuel cell power generation system that can shorten the start-up time and reduce the temperature difference between the anode gas and cathode gas flow channel inlets and outlets.

本発明では、アノードガスおよびカソードガスの片方の流路入口に連通する空間に加熱手段を設け、その熱により燃料電池を加熱するようにした。また、この加熱手段を有しない方は、起動時に発電時のガスの供給方向とは逆方向へガスを流し、その流体の起動時における流路入口(発電時には出口)に加熱手段を設け、その流体を加熱することで、この加熱された流体により燃料電池を加熱することとした。   In the present invention, a heating means is provided in a space communicating with one of the anode gas and cathode gas flow channel inlets, and the fuel cell is heated by the heat. Also, those who do not have this heating means flow gas in the direction opposite to the gas supply direction at the time of power generation at the time of startup, and provide heating means at the flow path inlet (outlet at the time of power generation) at the time of startup of the fluid. By heating the fluid, the fuel cell was heated by the heated fluid.

また、本発明は、アノードガスおよびカソードガスの発電時における流路出口に連通する空間に燃焼室を設け、その燃焼室に加熱手段を設け、燃焼室からの輻射により燃料電池をガス流路の出口方向から加熱し、燃料電池の起動時における温度差を低減することとした。   Further, the present invention provides a combustion chamber in a space communicating with the channel outlet during power generation of the anode gas and the cathode gas, a heating means is provided in the combustion chamber, and the fuel cell is connected to the gas channel by radiation from the combustion chamber. Heating was performed from the outlet direction to reduce the temperature difference when starting the fuel cell.

本発明によれば、燃料電池を発電時の流路入口方向と出口方向の双方から加熱することができ、燃料電池の起動時間を短縮できる。また、起動時におけるアノードガスおよびカソードガスの流路入口付近と出口付近での温度差を低減することができる。   According to the present invention, the fuel cell can be heated from both the channel inlet direction and the outlet direction during power generation, and the startup time of the fuel cell can be shortened. Further, it is possible to reduce the temperature difference between the vicinity of the inlet and the outlet of the anode gas and the cathode gas at the time of startup.

本発明の実施態様としては、たとえば下記のとおりである。
(1)電解質を介してアノードとカソードを有する燃料電池と、前記燃料電池のアノードに燃料ガスを供給する燃料流路およびカソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、前記アノードへ流れる燃料ガスおよびカソードへ流れる酸化剤ガスの一方の流路入口に連通する空間に加熱手段を備え、前記加熱手段を有しない側のガスを燃料電池起動時に発電時とは逆方向に流し、逆方向に流れるガスの流路入口に連通する空間に加熱手段を備えたことを特徴とする燃料電池発電装置。
(2)電解質を介してアノードとカソードを有する燃料電池と、前記燃料電池のアノードに燃料ガスを供給する燃料流路及びカソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、前記アノードへ流れる燃料ガスの流路入口に連通する空間に加熱手段を備え、燃料電池発電時の余剰の燃料ガスと余剰の酸化剤を混合して燃焼させる燃焼室を備え、燃料電池の起動時に前記燃料流路を流れたガスを前記燃焼室へ導入し、前記燃焼室のガスを前記酸化剤流路に発電時の酸化剤ガスの流れ方向とは逆方向から導入することを特徴とする燃料電池発電システム。
(3)電解質を介してアノードとカソードを有する燃料電池と、前記燃料電池のアノードに燃料ガスを供給する燃料流路及びカソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、前記アノードへ流れる燃料ガスの流路入口に連通する空間に加熱手段を備え、燃料電池発電時の余剰の燃料ガスと余剰の酸化剤を混合して燃焼させる燃焼室を備え、前記燃料流路と前記燃焼室の間または前記燃焼室と前記酸化剤流路の間に還元性ガスを酸化する手段を備え、燃料電池の起動時に前記燃料流路を流れたガスを前記燃焼室へ導入し、前記燃焼室のガスを前記酸化剤流路に発電時の酸化剤ガスの流れ方向とは逆方向から導入することを特徴とする燃料電池発電システム。
(4)電解質を介してアノードとカソードを有する燃料電池と、前記燃料電池のアノードに燃料ガスを供給する燃料流路及びカソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、前記カソードへ流れる酸化剤ガスの流路入口に連通する空間に加熱手段を備え、燃料電池発電時の余剰の燃料ガスと余剰の酸化剤を混合して燃焼させる燃焼室を備え、燃料電池の起動時に前記酸化剤流路を流れたガスを前記燃焼室へ導入し、前記燃焼室のガスを前記燃料流路に発電時の燃料ガスの流れ方向とは逆方向から導入することを特徴とする燃料電池発電システム。
(5)電解質を介してアノードとカソードを有する燃料電池と、前記燃料電池のアノードに燃料ガスを供給する燃料流路及びカソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、前記カソードへ流れる酸化剤ガスの流路入口に連通する空間に加熱手段を備え、燃料電池発電時の余剰の燃料ガスと余剰の酸化剤を混合して燃焼させる燃焼室を備え、前記燃料流路と前記燃焼室の間または前記燃焼室と前記酸化剤流路の間に酸化性ガスを還元する手段を備え、燃料電池の起動時に前記酸化剤流路を流れたガスを前記燃焼室へ導入し、前記燃焼室のガスを前記燃料流路に発電時の燃料ガスの流れ方向とは逆方向から導入することを特徴とする燃料電池発電システム。
(6)電解質を介してアノードおよびカソードを有する燃料電池と、前記燃料電池のアノードに燃料ガスを供給する燃料流路およびカソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、前記燃料電池の発電時に燃料ガスの流路出口から連通する空間および発電時に酸化剤ガスの流路出口から連通する空間の一方または両方に加熱手段を備えたことを特徴とする燃料電池発電システム。
(7)電解質を介してアノードおよびカソードを有する燃料電池と、前記燃料電池のアノードに燃料ガスを供給する燃料流路およびカソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、前記燃料電池の発電時に燃料ガスの流路出口から連通する空間および発電時に酸化剤ガスの流路出口から連通する空間の一方または両方に加熱手段を備え、前記燃料電池のカソードに酸化剤ガスを供給する酸化剤流路の入口に連通する空間およびアノードに燃料ガスを供給する燃料流路の入口に連通する空間の一方又は両方に加熱手段を備えたことを特徴とする燃料電池発電システム。
Examples of the embodiment of the present invention are as follows.
(1) In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode of the fuel cell, and an oxidant channel for supplying oxidant gas to the cathode A heating means is provided in a space communicating with one flow path inlet of the fuel gas flowing to the anode and the oxidant gas flowing to the cathode, and the gas on the side not having the heating means is in a direction opposite to that during power generation when the fuel cell is started A fuel cell power generator comprising a heating means in a space communicating with a flow path inlet of gas flowing in the reverse direction.
(2) In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode of the fuel cell, and an oxidant channel for supplying oxidant gas to the cathode The fuel cell is provided with a heating means in a space communicating with the flow path inlet of the fuel gas flowing to the anode, and has a combustion chamber for mixing and burning surplus fuel gas and surplus oxidant at the time of fuel cell power generation. The gas flowing through the fuel flow path is sometimes introduced into the combustion chamber, and the gas in the combustion chamber is introduced into the oxidant flow path from a direction opposite to the flow direction of the oxidant gas during power generation. Fuel cell power generation system.
(3) In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode of the fuel cell, and an oxidant channel for supplying oxidant gas to the cathode The fuel gas flow path to the anode is provided with a heating means in a space communicating with the flow path inlet, and the fuel flow path comprises a combustion chamber for mixing and burning surplus fuel gas and surplus oxidant during fuel cell power generation. And a means for oxidizing a reducing gas between the combustion chamber or between the combustion chamber and the oxidant flow path, introducing the gas flowing through the fuel flow path when the fuel cell is started into the combustion chamber, A fuel cell power generation system, wherein gas in the combustion chamber is introduced into the oxidant flow path from a direction opposite to a flow direction of the oxidant gas during power generation.
(4) In a fuel cell power generation system having a fuel cell having an anode and a cathode through an electrolyte, a fuel channel for supplying fuel gas to the anode of the fuel cell, and an oxidant channel for supplying oxidant gas to the cathode A heating means is provided in a space communicating with the flow path inlet of the oxidant gas flowing to the cathode, and a combustion chamber for mixing and burning surplus fuel gas and surplus oxidant during fuel cell power generation is provided. The gas flowing through the oxidant flow path at start-up is introduced into the combustion chamber, and the gas in the combustion chamber is introduced into the fuel flow path from a direction opposite to the flow direction of the fuel gas during power generation. Fuel cell power generation system.
(5) In a fuel cell power generation system having a fuel cell having an anode and a cathode through an electrolyte, a fuel channel for supplying fuel gas to the anode of the fuel cell, and an oxidant channel for supplying oxidant gas to the cathode A heating chamber in a space communicating with the flow path inlet of the oxidant gas flowing to the cathode, a combustion chamber for mixing and burning surplus fuel gas and surplus oxidant during fuel cell power generation, Means for reducing an oxidizing gas between a passage and the combustion chamber or between the combustion chamber and the oxidant flow path, and introducing the gas flowing through the oxidant flow path into the combustion chamber when the fuel cell is started The fuel cell power generation system is characterized in that the gas in the combustion chamber is introduced into the fuel flow path from a direction opposite to the flow direction of the fuel gas during power generation.
(6) In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode of the fuel cell, and an oxidant channel for supplying oxidant gas to the cathode A fuel cell power generation system comprising heating means in one or both of a space communicating from the fuel gas flow path outlet during power generation and the space communicating from the oxidant gas flow path outlet during power generation .
(7) In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode of the fuel cell, and an oxidant channel for supplying oxidant gas to the cathode One or both of a space communicating from the fuel gas flow path outlet during power generation of the fuel cell and a space communicating from the oxidant gas flow path outlet during power generation are provided with heating means, and the oxidant gas is provided at the cathode of the fuel cell A fuel cell power generation system comprising heating means in one or both of a space communicating with an inlet of an oxidant flow path for supplying fuel and a space communicating with an inlet of a fuel flow path for supplying fuel gas to an anode.

本発明は、固体酸化物形燃料電池を備えた発電システムに適用するのに特に適している。固体酸化物形燃料電池では、電解質にイットリア安定化ジルコニア等の固体のセラミックスが用いられ、その固体電解質の形状により円筒形と平板形に大別されるが、本発明はどちらの形状においても適用可能である。以下、円筒形、特に袋管形の燃料電池を例にとって詳細に説明する。   The present invention is particularly suitable for application to a power generation system including a solid oxide fuel cell. In solid oxide fuel cells, solid ceramics such as yttria-stabilized zirconia are used as the electrolyte. The solid electrolyte is roughly divided into a cylindrical shape and a flat plate shape depending on the shape of the solid electrolyte. The present invention is applicable to both shapes. Is possible. Hereinafter, the fuel cell will be described in detail by taking a cylindrical fuel cell, particularly a bag tube fuel cell as an example.

袋管形の固体酸化物形燃料電池を備えた発電システムの概略図を図1および図2により説明する。図1は起動時を示しており、図2は発電時を示している。図1および図2に示す燃料電池4は袋管形をした固体電解質1の内表面にカソード2、外表面にアノード3を備えているが、カソードとアノードの位置が逆転した場合においても本発明は適用可能である。ガスの流れ方向を図中に矢印で示した。また、図中にV1,V2等とあるのはバルブを示している。   A schematic diagram of a power generation system including a bag tube type solid oxide fuel cell will be described with reference to FIGS. FIG. 1 shows the time of startup, and FIG. 2 shows the time of power generation. A fuel cell 4 shown in FIGS. 1 and 2 includes a cathode 2 on the inner surface of a solid electrolyte 1 in the form of a bag tube and an anode 3 on the outer surface, but the present invention can be applied even when the positions of the cathode and anode are reversed. Is applicable. The direction of gas flow is indicated by arrows in the figure. In the figure, V1, V2, etc. indicate valves.

発電時におけるカソードガス、アノードガスの流れ、および、各バルブの状態を図2に示す。発電時にはカソードガスである空気は、空気ヘッダ12に供給され、空気導入管6により燃料電池4の底部に供給され、燃料電池4底部において反転し、燃料電池の内側を上方へ流れ、カソード2における電池反応を起こした後、燃焼室11と呼ばれる空間へ流れる。また、アノードガスは燃料電池下部から供給され、燃料電池の外側を上部へ流れ、アノード3における電池反応を起こした後、仕切り5を通り、燃焼室11へ流れる。燃焼室11では電池反応で未利用の燃料と空気が混合され、燃焼した後、発電時排気口13より排出される。空気導入管6により燃料電池4の底部に供給された後、反転して燃料電池の内側を上方へ流れる流路が酸化剤流路である。また、燃料電池のアノード3の外側を下部から上部へ流れる流路が燃料流路である。   The cathode gas and anode gas flows during power generation and the state of each valve are shown in FIG. At the time of power generation, the cathode gas, air, is supplied to the air header 12, supplied to the bottom of the fuel cell 4 through the air introduction pipe 6, inverted at the bottom of the fuel cell 4, and flows upward inside the fuel cell. After the battery reaction occurs, it flows into a space called the combustion chamber 11. Further, the anode gas is supplied from the lower part of the fuel cell, flows outside the fuel cell to the upper part, causes a cell reaction in the anode 3, and then flows through the partition 5 to the combustion chamber 11. In the combustion chamber 11, unused fuel and air are mixed in the cell reaction, burned, and then discharged from the exhaust port 13 during power generation. After being supplied to the bottom of the fuel cell 4 by the air introduction pipe 6, the flow path that reverses and flows upward inside the fuel cell is the oxidant flow path. Further, a flow path that flows from the lower part to the upper part on the outside of the anode 3 of the fuel cell is a fuel flow path.

起動時におけるカソードガス、アノードガスの流れ、および、各バルブの状態を図1に示す。起動時にはアノードバーナー21により高温の燃焼ガスが燃料電池4下部に供給される。ここではアノードガスの加熱手段としてバーナーを用いたが、電気ヒータや燃焼触媒(燃料と酸素の燃焼反応を促進する触媒)を用いても良い。ただし、アノード材料の劣化を防ぐため、アノードガスは例えば、水素、メタンと水蒸気の混合ガス、水素と一酸化炭素の混合ガス、あるいは一酸化炭素などの還元性ガスとする。高温のアノードガスは燃料電池の下部から上部へ流れながら燃料電池を加熱し、燃焼室11へ流れる。燃焼室11では燃焼室バーナー22により高温の燃焼ガスが発生し、この燃焼ガスは燃料電池外側からのアノードガスと混合し、燃料電池内側へ導入される。ただし、カソード材料の劣化を防ぐため、燃料電池内側を流れるガスは酸化性ガスでなくてはならない。そのため、燃焼室バーナー22では空気比が1を超える状態で燃焼させるだけでなく、アノードガスの酸化に必要な空気を余分に加えた状態で燃焼させる。また、アノードガスが酸化される前にカソードへ導入されることを防ぐために、点火プラグや燃焼触媒などの燃焼反応促進手段23をアノードガス流路出口、または、カソードガス入口に設置する。燃料電池内側へ導入された燃焼室11からのガスは燃料電池内側を上部から下部へ流れながら燃料電池を加熱し、空気導入管6を通り、空気ヘッダ12へ導入される。空気ヘッダ12へ導入されたガスは起動時排気口14から排出される。   FIG. 1 shows the cathode gas and anode gas flows during startup and the state of each valve. At startup, the anode burner 21 supplies high-temperature combustion gas to the lower part of the fuel cell 4. Here, a burner is used as a heating means for the anode gas, but an electric heater or a combustion catalyst (a catalyst that promotes a combustion reaction between fuel and oxygen) may be used. However, in order to prevent deterioration of the anode material, the anode gas is, for example, hydrogen, a mixed gas of methane and water vapor, a mixed gas of hydrogen and carbon monoxide, or a reducing gas such as carbon monoxide. The hot anode gas heats the fuel cell while flowing from the lower part to the upper part of the fuel cell, and flows to the combustion chamber 11. In the combustion chamber 11, high-temperature combustion gas is generated by the combustion chamber burner 22, and this combustion gas is mixed with the anode gas from the outside of the fuel cell and introduced into the inside of the fuel cell. However, in order to prevent the cathode material from deteriorating, the gas flowing inside the fuel cell must be an oxidizing gas. Therefore, the combustion chamber burner 22 not only burns in a state where the air ratio exceeds 1, but also burns in a state where extra air necessary for oxidizing the anode gas is added. Further, in order to prevent the anode gas from being introduced into the cathode before being oxidized, a combustion reaction promoting means 23 such as a spark plug or a combustion catalyst is installed at the anode gas flow path outlet or the cathode gas inlet. The gas from the combustion chamber 11 introduced to the inside of the fuel cell heats the fuel cell while flowing from the top to the bottom inside the fuel cell, passes through the air introduction pipe 6 and is introduced into the air header 12. The gas introduced into the air header 12 is discharged from the exhaust port 14 at startup.

本発明を適用することによる燃料電池の温度分布を、本発明を適用しない場合と比較して図3に示す。図3の縦軸は燃料電池の上部と下部の位置を示し、横軸は燃料電池温度を示す。上記のように起動時においてカソードガスを発電時と逆方向へ流すことにより、燃料電池を下部からだけでなく上部からも加熱することができ、燃料電池の上下方向の温度差を低減できる。さらに、空気導入管や空気ヘッダよりも先に燃料電池の近傍を高温のガスが流れるため、投入された熱量を有効に燃料電池の昇温のために使用することができる。   The temperature distribution of the fuel cell by applying the present invention is shown in FIG. 3 in comparison with the case where the present invention is not applied. The vertical axis in FIG. 3 indicates the upper and lower positions of the fuel cell, and the horizontal axis indicates the fuel cell temperature. By flowing the cathode gas in the opposite direction to that during power generation as described above, the fuel cell can be heated not only from the bottom but also from the top, and the temperature difference in the vertical direction of the fuel cell can be reduced. Furthermore, since the high-temperature gas flows in the vicinity of the fuel cell prior to the air introduction pipe and the air header, the amount of input heat can be used effectively for increasing the temperature of the fuel cell.

また、アノードガスは燃料電池外側を流れる間に燃料電池に熱量を与え、温度は低下する。このため、燃焼室においてアノードガスが燃焼室バーナーの燃焼ガスと混合することにより、燃焼室バーナーの燃焼ガス温度は抑制され、燃料電池上端が極端に高温のガスにさらされるのを防ぐことができる。ただし、燃料電池温度の上昇にしたがって、燃焼室へ流れ込むアノードガス温度も上昇するため、カソードへは燃料電池温度と十分な温度差を持ったガスが常に導入される。さらに、アノードガスと燃焼室バーナーの燃焼ガスを混合することにより、カソード流路を流れるガスの流速を大きくすることができ、燃料電池への伝熱を促進することができる。   Further, the anode gas gives heat to the fuel cell while flowing outside the fuel cell, and the temperature decreases. For this reason, by mixing the anode gas with the combustion gas of the combustion chamber burner in the combustion chamber, the combustion gas temperature of the combustion chamber burner is suppressed, and the upper end of the fuel cell can be prevented from being exposed to extremely high temperature gas. . However, as the temperature of the fuel cell rises, the temperature of the anode gas flowing into the combustion chamber also rises, so that a gas having a sufficient temperature difference from the fuel cell temperature is always introduced to the cathode. Furthermore, by mixing the anode gas and the combustion gas of the combustion chamber burner, the flow rate of the gas flowing through the cathode channel can be increased, and heat transfer to the fuel cell can be promoted.

図4に実施例1の変形例を示す。本実施例では燃焼室11の加熱手段として電気ヒータ24を設置した。電気ヒータ24は、発電時において900〜1000℃という高温にさらされるため、耐熱温度の高いカンタルヒータなどを用いることが望ましい。また、アノードガスの酸化を行うために燃焼室11に空気を導入した。本実施例において燃焼室11に導入する空気はアノードガスの酸化に必要な流量でよく、空気ブロア容量を抑えることができ、発電システムをコンパクトにすることができる。   FIG. 4 shows a modification of the first embodiment. In this embodiment, an electric heater 24 is installed as a heating means for the combustion chamber 11. Since the electric heater 24 is exposed to a high temperature of 900 to 1000 ° C. during power generation, it is desirable to use a Kanthal heater having a high heat resistance temperature. In addition, air was introduced into the combustion chamber 11 to oxidize the anode gas. In the present embodiment, the air introduced into the combustion chamber 11 may have a flow rate necessary for oxidizing the anode gas, the air blower capacity can be suppressed, and the power generation system can be made compact.

図5に実施例1の変形例を示す。本実施例では燃焼室11の加熱手段として電気式空気ヒータ25を設置し、電気式空気ヒータにより加熱された高温空気を燃焼室11に導入した。本実施例において電気式空気ヒータ25は必要以上に長い時間高温にさらされないため、ヒータの信頼性は高い。   FIG. 5 shows a modification of the first embodiment. In this embodiment, an electric air heater 25 is installed as a heating means for the combustion chamber 11, and high-temperature air heated by the electric air heater is introduced into the combustion chamber 11. In this embodiment, since the electric air heater 25 is not exposed to a high temperature for a longer time than necessary, the reliability of the heater is high.

図6に実施例1の変形例を示す。本実施例では、アノードガスとカソードガスが混じらないように、燃料電池4の内側と外側をシール材7によりガスシールした。アノードガスは燃料排気口15から排気される。本実施例ではアノードガスの酸化を行う必要がなくなり、アノードガス酸化手段23が不要となり、装置が簡略化できる。本実施例において燃焼室バーナー22の代わりに電気ヒータ24、または電気式空気ヒータ25により加熱された高温空気の導入を用いてもよい。   FIG. 6 shows a modification of the first embodiment. In this example, the inside and outside of the fuel cell 4 were gas sealed with the sealing material 7 so that the anode gas and the cathode gas were not mixed. The anode gas is exhausted from the fuel exhaust port 15. In this embodiment, it is not necessary to oxidize the anode gas, the anode gas oxidizing means 23 is not necessary, and the apparatus can be simplified. In this embodiment, instead of the combustion chamber burner 22, introduction of high-temperature air heated by an electric heater 24 or an electric air heater 25 may be used.

図7に実施例1の変形例を示す。本実施例においては発電時と逆方向へ流すガスをカソードガスではなくアノードガスとした。また、アノードバーナー21の代わりに空気ヘッダ入口にカソードバーナー26を設置し、燃焼室バーナー22ではアノードガスが還元性ガスとなるような条件で燃焼を行った。本実施例においても実施例1と同様に燃料電池の上部と下部の双方向から加熱することができ、燃料電池上下方向の温度差を低減することができる。燃焼室バーナー22の代わりに加熱手段として電気ヒータなどを用いた場合でも同様の効果が得られる。   FIG. 7 shows a modification of the first embodiment. In this embodiment, the gas flowing in the opposite direction to that during power generation is not the cathode gas but the anode gas. In addition, a cathode burner 26 was installed at the air header inlet instead of the anode burner 21, and the combustion chamber burner 22 burned under conditions such that the anode gas became a reducing gas. Also in the present embodiment, similarly to the first embodiment, the fuel cell can be heated from both the upper and lower sides, and the temperature difference in the vertical direction of the fuel cell can be reduced. Even when an electric heater or the like is used as a heating means instead of the combustion chamber burner 22, the same effect can be obtained.

図8に袋管形の固体酸化物形燃料電池を備えた発電システムの概略図を示す。図9に示す比較例では、アノード流路入口、およびカソード流路入口にアノードバーナー21およびカソードバーナー26を燃料電池の加熱手段として有しているが、本実施例では、それに加えて燃焼室11にも加熱手段である燃焼室バーナー22を有している。起動時に、燃焼室バーナー22により燃焼室ガスの加熱を行うことにより、燃焼室11からの輻射が燃料電池上部を加熱するため、燃料電池の上下方向の温度差が低減される。また、燃焼室の加熱手段として、電気ヒータ24或いは電気式空気ヒータ25を設け、高温のガスを導入するようにしても同様の効果が得られる。   FIG. 8 shows a schematic diagram of a power generation system including a bag-tube type solid oxide fuel cell. In the comparative example shown in FIG. 9, the anode burner 21 and the cathode burner 26 are provided as heating means of the fuel cell at the anode channel inlet and the cathode channel inlet. In this embodiment, in addition to this, the combustion chamber 11 In addition, it has a combustion chamber burner 22 as heating means. When the combustion chamber gas is heated by the combustion chamber burner 22 at startup, radiation from the combustion chamber 11 heats the upper portion of the fuel cell, so that the temperature difference in the vertical direction of the fuel cell is reduced. Further, the same effect can be obtained by providing an electric heater 24 or an electric air heater 25 as a heating means for the combustion chamber and introducing a high-temperature gas.

本発明の実施例による燃料電池発電システムの起動時の構成図である。It is a block diagram at the time of starting of the fuel cell power generation system by the Example of this invention. 本発明の実施例による燃料電池発電システムの発電時の構成図である。It is a block diagram at the time of the power generation of the fuel cell power generation system by the Example of this invention. 本発明を適用した際の起動時における燃料電池温度分布を、本発明を適用する前と比較して示したグラフである。It is the graph which showed the fuel cell temperature distribution at the time of starting at the time of applying this invention compared with before applying this invention. 本発明の他の実施例による燃料電池発電システムの起動時の構成図である。It is a block diagram at the time of starting of the fuel cell power generation system by other Examples of this invention. 本発明による燃料電池発電システムの別の実施例を示す起動時の構成図である。It is a block diagram at the time of starting which shows another Example of the fuel cell power generation system by this invention. 本発明の別の実施例を示す燃料電池発電システムの起動時の構成図である。It is a block diagram at the time of starting of the fuel cell power generation system which shows another Example of this invention. 本発明の更に別の実施例を示す燃料電池発電システムの起動時の構成図である。It is a block diagram at the time of starting of the fuel cell power generation system which shows another Example of this invention. 本発明の他の実施例を示す燃料電池発電システムの起動時の構成図である。It is a block diagram at the time of starting of the fuel cell power generation system which shows the other Example of this invention. 比較例に係る燃料電池発電システムの起動時の構成図である。It is a block diagram at the time of starting of the fuel cell power generation system which concerns on a comparative example.

符号の説明Explanation of symbols

1…固体電解質、2…カソード、3…アノード、4…燃料電池、5…仕切り、6…空気導入管、7…シール材、11…燃焼室、12…空気ヘッダ、13…発電時排気口、14…起動時排気口、15…燃料排気口、21…アノードバーナー、22…燃焼室バーナー、23…燃焼反応促進手段、24…電気ヒータ、25…電気式空気ヒータ、26…カソードバーナー。   DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte, 2 ... Cathode, 3 ... Anode, 4 ... Fuel cell, 5 ... Partition, 6 ... Air introduction pipe, 7 ... Sealing material, 11 ... Combustion chamber, 12 ... Air header, 13 ... Exhaust port at the time of electric power generation, 14 ... Start-up exhaust port, 15 ... Fuel exhaust port, 21 ... Anode burner, 22 ... Combustion chamber burner, 23 ... Combustion reaction promoting means, 24 ... Electric heater, 25 ... Electric air heater, 26 ... Cathode burner.

Claims (9)

電解質を介してアノードとカソードを有する燃料電池と、前記アノードに燃料ガスを供給する燃料流路及び前記カソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、
前記アノードへ流れる燃料ガス及び前記カソードへ流れる酸化剤ガスのうち、いずれか一方のガスの流路の入口に連通する空間に第1の加熱手段を備え、
他方のガスの流路には、前記他方のガスを前記燃料電池の起動時に発電時とは逆方向に流し、この逆方向の流れにより、燃料電池を挟んで、前記一方のガスの流路に流れるガスと前記他方のガスの流路に流れるガスとが対向して流れるように構成し、
前記他方のガスを発電時とは逆方向に流すときの前記他方のガスの流路の入口に連通する空間に、第2の加熱手段を備えたことを特徴とする燃料電池発電システム。
In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode, and an oxidant channel for supplying oxidant gas to the cathode,
Among the oxidizing gas flowing to the fuel gas and the cathode flows into the anode, it comprises a first heating means in a space which communicates with the inlet of the channel of one of the gas,
In the other gas flow path, the other gas flows in the direction opposite to that during power generation when the fuel cell is started, and the flow in the reverse direction sandwiches the fuel cell to the one gas flow path. The flowing gas and the gas flowing in the flow path of the other gas are configured to flow in opposition,
A fuel cell power generation system comprising a second heating means in a space communicating with the inlet of the flow path of the other gas when the other gas flows in a direction opposite to that during power generation.
電解質を介してアノードとカソードを有する燃料電池と、前記アノードに燃料ガスを供給する燃料流路及び前記カソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、
前記アノードへ流れる燃料ガスの流路入口に連通する空間に加熱手段と、前記燃料電池の発電時の余剰の燃料ガスと余剰の酸化剤ガスを混合して燃焼させる燃焼室とを備え、
前記燃料電池の起動時に前記燃料流路を流れたガスを前記燃焼室へ導入し、前記燃焼室のガスを前記酸化剤流路に発電時の酸化剤ガスの流れ方向とは逆方向から導入することを特徴とする燃料電池発電システム。
In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode, and an oxidant channel for supplying oxidant gas to the cathode,
A heating means in a space communicating with the flow path inlet of the fuel gas flowing to the anode, and a combustion chamber for mixing and burning surplus fuel gas and surplus oxidant gas at the time of power generation of the fuel cell,
When the fuel cell is started, the gas flowing through the fuel flow path is introduced into the combustion chamber, and the gas in the combustion chamber is introduced into the oxidant flow path from a direction opposite to the flow direction of the oxidant gas during power generation. A fuel cell power generation system.
電解質を介してアノードとカソードを有する燃料電池と、前記アノードに燃料ガスを供給する燃料流路及び前記カソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、
前記アノードへ流れる燃料ガスの流路入口に連通する空間に加熱手段と、前記燃料電池の発電時の余剰の燃料ガスと余剰の酸化剤ガスを混合して燃焼させる燃焼室と、前記燃料流路と前記燃焼室の間または前記燃焼室と前記酸化剤流路の間に還元性ガスを酸化する手段とを備え、
前記燃料電池の起動時に前記燃料流路を流れたガスを前記燃焼室へ導入し、前記燃焼室のガスを前記酸化剤流路に発電時の酸化剤ガスの流れ方向とは逆方向から導入することを特徴とする燃料電池発電システム。
In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode, and an oxidant channel for supplying oxidant gas to the cathode,
Heating means in a space communicating with the flow path inlet of the fuel gas flowing to the anode, a combustion chamber for mixing and burning surplus fuel gas and surplus oxidant gas during power generation of the fuel cell, and the fuel flow path And means for oxidizing a reducing gas between the combustion chamber or between the combustion chamber and the oxidant flow path,
When the fuel cell is started, the gas flowing through the fuel flow path is introduced into the combustion chamber, and the gas in the combustion chamber is introduced into the oxidant flow path from a direction opposite to the flow direction of the oxidant gas during power generation. A fuel cell power generation system.
電解質を介してアノードとカソードを有する燃料電池と、前記アノードに燃料ガスを供給する燃料流路及び前記カソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、
前記カソードへ流れる酸化剤ガスの流路入口に連通する空間に加熱手段と、前記燃料電池の発電時の余剰の燃料ガスと余剰の酸化剤ガスを混合して燃焼させる燃焼室とを備え、
前記燃料電池の起動時に前記酸化剤流路を流れたガスを前記燃焼室へ導入し、前記燃焼室のガスを前記燃料流路に発電時の燃料ガスの流れ方向とは逆方向から導入することを特徴とする燃料電池発電システム。
In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode, and an oxidant channel for supplying oxidant gas to the cathode,
A heating means in a space communicating with the flow path inlet of the oxidant gas flowing to the cathode, and a combustion chamber for mixing and burning surplus fuel gas and surplus oxidant gas at the time of power generation of the fuel cell,
The gas flowing through the oxidant flow path when the fuel cell is started is introduced into the combustion chamber, and the gas in the combustion chamber is introduced into the fuel flow path from a direction opposite to the flow direction of the fuel gas during power generation. A fuel cell power generation system.
電解質を介してアノードとカソードを有する燃料電池と、前記アノードに燃料ガスを供給する燃料流路及び前記カソードに酸化剤ガスを供給する酸化剤流路を有する燃料電池発電システムにおいて、
前記カソードへ流れる酸化剤ガスの流路入口に連通する空間に加熱手段と、前記燃料電池の発電時の余剰の燃料ガスと余剰の酸化剤ガスを混合して燃焼させる燃焼室と、前記燃料流路と前記燃焼室の間または前記燃焼室と前記酸化剤流路の間に酸化性のガスを還元する手段とを備え、
前記燃料電池の起動時に前記酸化剤流路を流れたガスを前記燃焼室へ導入し、前記燃焼室のガスを前記燃料流路に発電時の燃料ガスの流れ方向とは逆方向から導入することを特徴とする燃料電池発電システム。
In a fuel cell power generation system having a fuel cell having an anode and a cathode via an electrolyte, a fuel channel for supplying fuel gas to the anode, and an oxidant channel for supplying oxidant gas to the cathode,
Heating means in a space communicating with the flow path inlet of the oxidant gas flowing to the cathode, a combustion chamber for mixing and burning surplus fuel gas and surplus oxidant gas during power generation of the fuel cell, and the fuel flow Means for reducing oxidizing gas between a passage and the combustion chamber or between the combustion chamber and the oxidant flow path;
The gas flowing through the oxidant flow path when the fuel cell is started is introduced into the combustion chamber, and the gas in the combustion chamber is introduced into the fuel flow path from a direction opposite to the flow direction of the fuel gas during power generation. A fuel cell power generation system.
請求項2〜5のいずれか1項に記載の燃料電池発電システムにおいて、前記燃焼室に加熱手段を備えたことを特徴とする燃料電池発電システム。   The fuel cell power generation system according to any one of claims 2 to 5, wherein the combustion chamber is provided with heating means. 請求項6に記載の燃料電池発電システムにおいて、前記燃焼室の加熱手段としてバーナーを備えたことを特徴とする燃料電池発電システム。   7. The fuel cell power generation system according to claim 6, further comprising a burner as heating means for the combustion chamber. 請求項6に記載の燃料電池発電システムにおいて、前記燃焼室の加熱手段として電気ヒータを備えたことを特徴とする燃料電池発電システム。   7. The fuel cell power generation system according to claim 6, wherein an electric heater is provided as heating means for the combustion chamber. 請求項6に記載の燃料電池発電システムにおいて、前記燃焼室の加熱手段として、加熱された高温ガスを燃焼室の外部から導入する手段を備えたことを特徴とする燃料電池発電システム。   7. The fuel cell power generation system according to claim 6, further comprising means for introducing a heated high temperature gas from outside the combustion chamber as the heating means for the combustion chamber.
JP2005237238A 2005-08-18 2005-08-18 Fuel cell power generation system Expired - Fee Related JP5000867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237238A JP5000867B2 (en) 2005-08-18 2005-08-18 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237238A JP5000867B2 (en) 2005-08-18 2005-08-18 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JP2007053006A JP2007053006A (en) 2007-03-01
JP5000867B2 true JP5000867B2 (en) 2012-08-15

Family

ID=37917303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237238A Expired - Fee Related JP5000867B2 (en) 2005-08-18 2005-08-18 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP5000867B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114086B2 (en) * 2007-04-06 2013-01-09 株式会社日立製作所 Solid oxide fuel cell module and starting method thereof
JP5225604B2 (en) * 2007-04-09 2013-07-03 株式会社日立製作所 Solid oxide fuel cell and power generation method thereof
JP5381342B2 (en) * 2009-05-28 2014-01-08 株式会社ノーリツ Air supply method for solid oxide fuel cell and solid oxide fuel cell for implementing the method
JP5471068B2 (en) * 2009-06-26 2014-04-16 Toto株式会社 Fuel cell system
JP6090419B1 (en) * 2015-12-22 2017-03-08 富士電機株式会社 Fuel cell device
CN114824351B (en) * 2020-03-24 2024-01-26 苏州国绿新材料科技有限公司 Solid oxide fuel cell unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155754A (en) * 1999-12-01 2001-06-08 Tokyo Gas Co Ltd Solid electrolyte fuel cell, and its start up method
JP4991059B2 (en) * 2001-07-26 2012-08-01 京セラ株式会社 Fuel cell and power generation method thereof
JP4438315B2 (en) * 2002-07-17 2010-03-24 三菱マテリアル株式会社 Preheating method at the start of operation of solid oxide fuel cell
JP2004119299A (en) * 2002-09-27 2004-04-15 Toto Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2007053006A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP5779371B2 (en) Fuel cell and operation method thereof
JP4926529B2 (en) Fuel cell
JP4969284B2 (en) Solid oxide fuel cell
KR20110044771A (en) Improved fuel cell stack flow hood air flow using an air distribution device
US10396377B2 (en) Fuel cell device
JP4854037B2 (en) Fuel reformer, driving method thereof, and fuel cell system
JP5000867B2 (en) Fuel cell power generation system
JP6072111B2 (en) Fuel cell module
JP5244292B2 (en) Fuel cell module and fuel cell system
JP2004335163A (en) Solid oxide type fuel cell and its operation method
JP6635851B2 (en) Fuel cell module and control method for fuel cell module
US8057945B2 (en) Solid oxide fuel cell with recycled core outlet products
JP3704299B2 (en) Combined system of solid oxide fuel cell and industrial process using combustion and its operation method
JP2007080761A (en) Fuel cell and its starting method
JP4456879B2 (en) Fuel cell system and operation method thereof
JPH07220745A (en) Fuel cell system
WO2014112378A1 (en) Fuel cell device
JP2007005180A (en) Solid oxide fuel cell power generation system
US20080160364A1 (en) Solid oxide fuel cell module
JP2010267394A (en) Generation device
JP2007018966A (en) Fuel cell
JP2003132903A (en) Combined system of industrial furnace and solid oxide fuel cell
JP7033016B2 (en) Fuel cell module
JP6943904B2 (en) How to operate the fuel cell module, power generation system and fuel cell module
JP2002208427A (en) Reforming device for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees