JPS61158148A - Manufacture of plasma cvd film - Google Patents

Manufacture of plasma cvd film

Info

Publication number
JPS61158148A
JPS61158148A JP59279190A JP27919084A JPS61158148A JP S61158148 A JPS61158148 A JP S61158148A JP 59279190 A JP59279190 A JP 59279190A JP 27919084 A JP27919084 A JP 27919084A JP S61158148 A JPS61158148 A JP S61158148A
Authority
JP
Japan
Prior art keywords
gas
plasma
plasma cvd
base material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59279190A
Other languages
Japanese (ja)
Inventor
Yoichi Onishi
陽一 大西
Junichi Nozaki
野崎 順一
Akira Okuda
晃 奥田
Hirozo Shima
島 博三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59279190A priority Critical patent/JPS61158148A/en
Publication of JPS61158148A publication Critical patent/JPS61158148A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Abstract

PURPOSE:To make it feasible to arbitrarily control the distribution of film thickness and film quantity of plasma CVD film by a method wherein gas is fed under control from gas nozzles to control the material gas flow of plasma CVD film within the space including basic material. CONSTITUTION:After vacuumizing a vacuum vessel 101 utilizing a vacuumm pump 105, the mixed gas comprising compound gas containing the component element of thin film to be formed on the surface of base material 102 and nitrogen is fed to the vacuum vessel 101 through a gas feeding nozzle 104 while the pressure in the vacuum vessel 101 is maintained at the specific reduced level by means of manipulating a butterfly valve 107 and feeding nitrogen gas under control through gas nozzles 112. Besides the basic material 102 is heated under control by a sample table 103. Next low temperature plasma is produced in the space including the basic material 102 by an electrode 108. Finally each nozzle 112 may be arranged to control the nitrogen gas to be fed so that the gas jetted from gas nozzle 104 may not be mixed with the low temperature plasma of material gas.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プラズマOV D (Chemical、 
VapourDeposition )法によって、基
材表面にプラズマCVD膜を形成する際、前記プラズマ
CVD膜の膜質および膜厚の分布を制御して、基材表面
に形成するためのプラズマ(]/、D膜の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to plasma OVD (Chemical,
When a plasma CVD film is formed on the surface of a substrate by the VaporDeposition method, the film quality and film thickness distribution of the plasma CVD film are controlled to produce a plasma (]/, D film to be formed on the surface of the substrate. It is about the method.

従来の技術 プラズマOVD法は、真空容器内に基材を加熱状態で保
持し、形成すべき薄膜の組成元素を含む化合物ガスを一
定流量で真空容器内に供給し、かつ、真空容器内の圧力
を大気王以下の所定の真空度に維持した状態で、基材を
含む空間に低温プラズマを発生させろことによって、基
材表面に、所望のプラズマCVD膜を形成する方法であ
る。
In the conventional plasma OVD method, a substrate is held in a heated state in a vacuum container, a compound gas containing the constituent elements of the thin film to be formed is supplied into the vacuum container at a constant flow rate, and the pressure in the vacuum container is In this method, a desired plasma CVD film is formed on the surface of a substrate by generating low-temperature plasma in a space containing the substrate while maintaining the vacuum at a predetermined degree of vacuum below atmospheric pressure.

以下、図面を参照しながら、従来のプラズマCVD膜の
製造方法について説明する。
Hereinafter, a conventional plasma CVD film manufacturing method will be described with reference to the drawings.

第2図に、従来のプラズマCVD装置を示す。FIG. 2 shows a conventional plasma CVD apparatus.

+l+は真空状態の維持が可能な真空容器、(2)はプ
ラズマown膜が形成される基材、(3)は基材(2)
を保持し、かつ内部に加熱用のヒータを有して、基材(
2)表面を加熱することが可能な試料台、3&は試料台
3の内部に搭載されたヒータ、(4)は形成すべきプラ
ズマCVD膜の組成元素を含む化合物ガスを供給するた
めのガス供給装置のガス供給ノズル、(5)は、真空容
器(1)の圧力を大気圧以下の真空度に真空排気するた
めの真空ポンプ、(6)は、真空容器(1)と真空ポン
プ(5)の間を気密に接続する真空排気用のパイプ、(
刀は、真空容器fil内の正方を管内抵抗を可変に制御
するためのバタフライバルブ、(81は、真空容器(1
)内に原料ガスを導入し、かつ真空容器+11内を所定
の圧力に制御した状態で、基材(2)を含む空間に、低
温プラズマを発生させるための電極、(9)は、出力の
闇波数が13.56 NH2の高周波電源、filは、
電極(8)に高周波電力を効率良く供給するために設け
た整合回路、(19はヒータ3aに電力を供給する交流
電源、を示す。
+l+ is a vacuum container capable of maintaining a vacuum state, (2) is a base material on which a plasma own film is formed, (3) is a base material (2)
and has a heater inside to heat the base material (
2) A sample stage capable of heating the surface, 3& is a heater mounted inside the sample stage 3, and (4) a gas supply for supplying a compound gas containing the constituent elements of the plasma CVD film to be formed. The gas supply nozzle of the device (5) is a vacuum pump for evacuating the pressure of the vacuum container (1) to a degree of vacuum below atmospheric pressure, and (6) is the vacuum container (1) and the vacuum pump (5). A vacuum exhaust pipe that airtightly connects the
The sword is a butterfly valve for variably controlling the internal resistance of the square tube inside the vacuum container fil, (81 is the vacuum container (1)
), and with the inside of the vacuum container +11 controlled at a predetermined pressure, an electrode (9) is used to generate low-temperature plasma in the space containing the base material (2). The dark wave number is 13.56 NH2 high frequency power supply, fil is,
A matching circuit provided to efficiently supply high-frequency power to the electrode (8) (19 indicates an AC power source that supplies power to the heater 3a).

従来のプラズマCVD装置の動作を説明する。The operation of a conventional plasma CVD apparatus will be explained.

まず、真空容器+11内を真空ポンプ(5)により、5
0m Torr以下の真空度まで真空排気した後、基材
(2)の表面に形成すべき薄膜の組成元素を含む化合物
ガスをガス供給装置のガス供給ノズル(4)から真空容
器(1)内に導入し、さらに、バタフライバルブ(7)
を操作し、薄膜形成条件である圧力に真空容器(1)内
を制御する。また基材(2)は、試料台(3)によって
所定の温度に加熱制御される。次に1電極(8)に高周
波電源(9)より高周波電力を供給し、基材(2)を含
む空間に低温プラズマを発生させる。前記結果として、
基材(2)表面に所望のプラズマ(、VD膜が形成され
る。
First, the inside of the vacuum container +11 is pumped by the vacuum pump (5).
After evacuation to a vacuum level of 0 m Torr or less, a compound gas containing the constituent elements of the thin film to be formed on the surface of the substrate (2) is introduced into the vacuum container (1) from the gas supply nozzle (4) of the gas supply device. Introduced and further butterfly valve (7)
The inside of the vacuum container (1) is controlled to the pressure that is the thin film forming condition. Further, the base material (2) is heated and controlled to a predetermined temperature by the sample stage (3). Next, high-frequency power is supplied to one electrode (8) from a high-frequency power source (9) to generate low-temperature plasma in the space including the base material (2). As a result of the above,
A desired plasma (VD film) is formed on the surface of the base material (2).

発明が解決しようとする問題点 しかしながら、従来のプラズマCVD膜の製造方法では
、真空排気系であるパイプ(6)の位置、ガス供給装置
のガス供給ノズル(4)の位置並びにガス供給装置のガ
ス供給ノズル(4)から供給される原料ガスの流量など
に依存して、第2図中のA−A断面の各位置の有効排気
速度が異なり、そのため、基材(2)表面1各位置での
原料ガスの濃度並びにガス流れが異なり、その結果プラ
ズマCVD膜を基材(21表面に形成した際、基材(2
)上の膜厚分布、膜質分布を低下させるという欠点を有
していた。
Problems to be Solved by the Invention However, in the conventional plasma CVD film manufacturing method, the position of the pipe (6) that is the vacuum evacuation system, the position of the gas supply nozzle (4) of the gas supply device, and the gas Depending on the flow rate of the raw material gas supplied from the supply nozzle (4), etc., the effective exhaust speed at each position on the A-A cross section in Fig. 2 differs. As a result, when the plasma CVD film is formed on the surface of the base material (21), the concentration and gas flow of the raw material gas are different.
) had the disadvantage of lowering the film thickness distribution and film quality distribution.

また、任意に基材(2)表面上に形成するプラズマCV
D膜の膜厚分布、膜質分布を制御することが非常に困難
である。
Further, a plasma CV formed on the surface of the base material (2) optionally
D It is very difficult to control the film thickness distribution and film quality distribution of the film.

このように、従来のプラズマCVD膜の製造方法では、
膜を基材嘴21表面に形成する際、基材12)表面上の
各位置での原料ガスの濃度並びにガス流れを制御できな
いため、基材(2)表面に形成するプラズマCVD膜の
膜厚分布、膜質分布を制御することが困難であるという
欠点を有していた。
In this way, in the conventional plasma CVD film manufacturing method,
When forming a film on the surface of the base material beak 21, the concentration of the raw material gas and the gas flow at each position on the surface of the base material 12) cannot be controlled, so the film thickness of the plasma CVD film formed on the surface of the base material (2) cannot be controlled. It has the disadvantage that it is difficult to control the distribution and film quality distribution.

発明の構成 本発明は、真空容器内に基材を配設し、前記真空容器内
を所定圧力に減圧し、前記基材表面に形成すべきプラズ
マOVD薄膜の組成元素を含む化合物ガス、例えばモノ
シラン(S1H4)、アンモニア(NH3) 、窒素(
Nりの混合ガスを一定流量で供給し、複数のガスノズル
より窒素ガスを供給して一定田力0.46 ToτrV
c保持しながら、前記基材を所定温度350℃に制御し
、前記真空容器内に配設した電極に40〜500 KH
2,13,56MHMまたは2.45 GHMの高周波
電力を供給し、前記基材を含む空間に低温のプラズマを
発生させ、前記複数のガスノズルよりの窒素ガス導入量
をプラズマCVD膜の原料ガスの流れを制御してガスノ
ズルより噴出したガスが原料ガスの低温プラズマに混入
しないよう噴出させ排気速度を一定になるようにしてプ
ラズマCVD膜を製造するにある。
Structure of the Invention The present invention provides a method for disposing a base material in a vacuum container, reducing the pressure in the vacuum container to a predetermined pressure, and injecting a compound gas containing the constituent elements of a plasma OVD thin film to be formed on the surface of the base material, such as monosilane. (S1H4), ammonia (NH3), nitrogen (
By supplying a nitrogen mixed gas at a constant flow rate and supplying nitrogen gas from multiple gas nozzles, a constant force of 0.46 ToτrV is achieved.
While holding c, the base material was controlled to a predetermined temperature of 350°C, and the electrode placed in the vacuum container was heated at 40 to 500 KH.
High-frequency power of 2, 13, 56 MHM or 2.45 GHM is supplied to generate low-temperature plasma in the space containing the base material, and the amount of nitrogen gas introduced from the plurality of gas nozzles is adjusted to the flow of raw material gas for the plasma CVD film. The purpose is to manufacture a plasma CVD film by controlling the gas nozzle so that the gas ejected from the gas nozzle does not mix with the low-temperature plasma of the raw material gas and keeping the exhaust speed constant.

作用 本発明は、複数のガスノズルを基材の周囲の真空容器に
等間隔に配設し、ガスノズルより噴出したガスが原料ガ
スの低温プラズマに混入しないよう噴出させ、基材表面
上の各位置での原料ガスの濃度並びにガス流れが一定に
なるよう導入量を制御するようにしたので、プラズマ窒
化膜の膜厚分布および膜質分布を任意に制御することが
でき、所望のプラズマSiN膜が形成できる。
Effect of the present invention: A plurality of gas nozzles are arranged at equal intervals in a vacuum container around a base material, and the gas ejected from the gas nozzles is ejected at each position on the surface of the base material so as not to mix with the low-temperature plasma of the raw material gas. Since the amount introduced is controlled so that the concentration and gas flow of the raw material gas are constant, the film thickness distribution and film quality distribution of the plasma nitride film can be controlled arbitrarily, and the desired plasma SiN film can be formed. .

実施例 本発明の実施例について、図面を参照しながら説明する
Embodiments An embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例におけるプラズマCVD膜
の製造方法を実施するプラズマCVD装置の断面図を示
す。
FIG. 1 shows a cross-sectional view of a plasma CVD apparatus for carrying out a plasma CVD film manufacturing method according to an embodiment of the present invention.

図において、(101)は、真空状態の維持が可能な真
空容器、(102)は、プラズマSiN膜が形成される
基材、(103)は基材(102)を保持するための試
料台、(103a)は試料台(103)を加熱すること
によって、基材(102)を所定の温度に加熱制御する
ための加熱装置、(104)は形成すべきプラズマCV
D膜の組成元素を含む化合物ガスを供給するためのガス
供給装置のガス供給ノズル、(105)は真空容器(1
01)内の圧力を大気圧以下の真空度に真空排気するた
めの真空ポンプ、(106)は真空容器(101)と真
空ポンプ(105)との間を気密に接続する真空排気用
のパイプ、(107)は真空容器(101)内の子方を
制御するため管内抵抗を可変に制御するバタフライバル
ブ、(tos’)は真空容器(101)内に原料ガスを
導入し、かつ真空容器(lOt)内を所定の圧力に制御
した状態で、基材(102)を含む空間に、低温プラズ
マを発生させるための電極、(109)は出力の周波数
が40〜500 KHz又は13.56 Ml(z又は
2.45 GHzの高周波電源、(110)は電極(t
OS)に高周波電力を効率良く供給するために設けた整
合回路、(111)は加熱装置(103a)に電力を供
給する交流電源、(112)は真空容器(101)に等
間隔に配置し、ガス供給装置のガス供給ノズル(104
)の下方であって、試料台(103)とパイプ(106
)との間に位置し、ノズル先端は加熱装置(103a)
下部に位置するようにし、窒素ガスを制御して供給する
ことが可能なガスノズル、を示す。
In the figure, (101) is a vacuum container capable of maintaining a vacuum state, (102) is a base material on which a plasma SiN film is formed, (103) is a sample stage for holding the base material (102), (103a) is a heating device for heating the base material (102) to a predetermined temperature by heating the sample stage (103); (104) is a plasma CV to be formed;
A gas supply nozzle (105) of a gas supply device for supplying a compound gas containing the constituent elements of the D film is a vacuum vessel (1
01) a vacuum pump for evacuating the internal pressure to a degree of vacuum below atmospheric pressure; (106) a vacuum pump that airtightly connects the vacuum container (101) and the vacuum pump (105); (107) is a butterfly valve that variably controls the internal resistance in the vacuum vessel (101), and (tos') is a butterfly valve that introduces raw material gas into the vacuum vessel (101) and ) is controlled to a predetermined pressure, the electrode (109) is used to generate low-temperature plasma in the space containing the base material (102), and the output frequency is 40 to 500 KHz or 13.56 Ml (z or 2.45 GHz high frequency power source, (110) is the electrode (t
(111) is an AC power source that supplies power to the heating device (103a), (112) is arranged at equal intervals in the vacuum container (101), Gas supply nozzle (104) of the gas supply device
) below the sample stage (103) and the pipe (106).
), and the nozzle tip is a heating device (103a).
A gas nozzle located at the bottom and capable of supplying nitrogen gas in a controlled manner is shown.

本発明のプラズマCVD装置の動作を説明する。The operation of the plasma CVD apparatus of the present invention will be explained.

まず、真空容器(101)内を真空ポンプ(1OS)に
よって、50 ya Torr以下の真空度まで真空排
気した後、基材(102)表面に形成すべき薄膜の組成
元素を含む化合物ガス、すなわちモノシラン(SiF2
)アンモニア(NH3) 、窒素(IJ、 ’)の混合
ガスを各々13 S(ICM、 16500M、 52
500Mのガス流量で、ガス供給装置のガス供給ノズル
(104)より真空容器(1al)内に導入し、かつ真
空容器(101)内の圧力をバタフライバルブ(107
)の操作、並びにガスノズル(112)より窒素ガスを
制御して導入することによって、0.46 Torrに
保持する。また基材(102)は試料台(103) K
よって350℃の温度に加熱制御される。次に、電極(
tOS)に高周波電源(109)より高周波電力を供給
し、基材(102)を含む空間に低温プラズマを発生さ
せる。本実施例では、第1図中のA/  )、/断面の
有効排気速度をほぼ一定となり、ガスの噴出方向および
形状によってガスノズルより噴出したガスが原料ガスの
低温プラズマに混入しないようガスノズル(112) 
全4本配置し、各ガスノズルからの窒素ガス導入量を制
御した。
First, the inside of the vacuum container (101) is evacuated to a vacuum level of 50 ya Torr or less using a vacuum pump (1OS), and then a compound gas containing the constituent elements of the thin film to be formed on the surface of the base material (102), that is, monosilane (SiF2
) Mixed gases of ammonia (NH3) and nitrogen (IJ, ') were each mixed with 13 S (ICM, 16500M, 52
A gas flow rate of 500M is introduced into the vacuum container (1al) from the gas supply nozzle (104) of the gas supply device, and the pressure in the vacuum container (101) is controlled by the butterfly valve (107).
) and controlled introduction of nitrogen gas from the gas nozzle (112) to maintain the pressure at 0.46 Torr. In addition, the base material (102) is a sample stage (103) K
Therefore, the heating is controlled to a temperature of 350°C. Next, the electrode (
tOS) is supplied with high frequency power from a high frequency power source (109) to generate low temperature plasma in a space including the base material (102). In this embodiment, the effective pumping speed of the cross section A/ ) and / in FIG. 1 is kept almost constant, and the gas nozzle (112 )
A total of four gas nozzles were arranged, and the amount of nitrogen gas introduced from each gas nozzle was controlled.

以上の動作によって、基材(102)表面上に屈折率2
.05±0.02、膜厚分布±3%のプラズマ窒化シリ
コン(プラズマSLN )膜を形成することができた。
By the above operation, a refractive index of 2 is formed on the surface of the base material (102).
.. A plasma silicon nitride (plasma SLN) film with a film thickness distribution of ±3% was able to be formed.

以上のように、本実施例によれば、真空状態の維持が可
能な真空容器(101)と基材(102)を保持する試
料台(103)と、加熱装置(103&)と、真空ポン
プ(los)と、パイプ(106)と、バタフライノぐ
ルブ(107)と、電極(108)と、試料台(103
)とパイプ(106)との間に位置したガスノズル(1
12)とを設け、ガスノズル(112)より、窒素ガス
を制御して導入し、基材(102)を含む空間において
、プラズマ窒化膜の原料ガスのガス流れを制御すること
によって、基材(1oz)に形成するプラズマ窒化膜の
膜厚分布および膜質分布を任意に制御することが可能で
あり、その結果、所望のプラズマSiN膜を形成するこ
とができた。
As described above, according to this embodiment, a vacuum container (101) capable of maintaining a vacuum state, a sample stage (103) holding a base material (102), a heating device (103&), a vacuum pump ( los), pipe (106), butterfly nozzle (107), electrode (108), and sample stage (103).
) and the pipe (106).
12), nitrogen gas is controlled and introduced from the gas nozzle (112), and the gas flow of the raw material gas for the plasma nitride film is controlled in the space containing the base material (102). ) It was possible to arbitrarily control the film thickness distribution and film quality distribution of the plasma nitride film formed, and as a result, a desired plasma SiN film could be formed.

発明の効果 本発明は、本発明のプラズマCVD装置において、ガス
ノズルよりガスを制御して導入すること釦よって、基材
を含む空間において、プラズマCVD膜の原料ガスのガ
ス流れを制御することが容易となるため、基材表面に形
成するプラズマCVD膜の膜厚分布および膜質分布を制
御することができる大きな実用的効果を生ずる。
Effects of the Invention In the plasma CVD apparatus of the present invention, the button for controlling and introducing gas from the gas nozzle makes it easy to control the gas flow of the raw material gas for the plasma CVD film in the space containing the base material. Therefore, a great practical effect is produced in that the film thickness distribution and film quality distribution of the plasma CVD film formed on the surface of the base material can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラズマCVD装置の断面図、第2図
は従来のプラズマ(’VD装置の断面図、を示す。 1O15・真空容器  102:基材  103:試料
台  103PL:加熱装置104  ガス供給ノズル
105・真空ポンプ  106:パイプ  108:電
−109:高周波電#t1o:整合回路 111 :交
流電源  112:ガスノズル特許出願人   松下電
器産業株式会社代理人弁理士   阿  部    功
第1図 第2図 手  続  補  正  書 ■、事件の表示  特願昭 59−279190号2、
発明の名称 プラズマCVD膜の製造方法 3 補正をする者 事件との関係 特許出願人 住 所〒185東京都国分寺市南町三丁目12番11号
6 補正の対象 補  正  の  内  容 1 明細書第6頁第7行「0.46 Torrに保持し
ながら」を「0.30 Torrに保持しながら」と2
 同第9頁第6行「13 SccM、 16 SaaM
152500Mのガス流」を 「10 scaM、 3 t saaM、 s O50
0Mのガス流」と、 3、 同第9頁第11行「D、 46 Torrに保持
する。」を「0.30 Torrに保持する。」とそれ
ぞれ補正する。
FIG. 1 is a sectional view of a plasma CVD apparatus of the present invention, and FIG. 2 is a sectional view of a conventional plasma CVD apparatus. Supply nozzle 105/vacuum pump 106: Pipe 108: Electricity - 109: High frequency electricity #t1o: Matching circuit 111: AC power supply 112: Gas nozzle patent applicant Matsushita Electric Industrial Co., Ltd. Representative Patent Attorney Isao Abe Figure 1 Figure 2 Procedural amendment book■, Indication of case Patent application No. 59-279190 2,
Name of the invention Method for manufacturing plasma CVD films 3 Relationship to the case of the person making the amendment Patent applicant address 3-12-11-6 Minamimachi, Kokubunji-shi, Tokyo 185 Target of amendment Contents of amendment 1 Specification No. 6 Line 7 of the page, “while holding at 0.46 Torr” is changed to “while holding at 0.30 Torr”.
Page 9, line 6 “13 SccM, 16 SaaM
152500M gas flow' to '10 scaM, 3 t saaM, s O50
0M gas flow" and 3. Correct "D, Hold at 46 Torr" on page 9, line 11, to "Hold at 0.30 Torr."

Claims (1)

【特許請求の範囲】 1、真空容器内に基材を配設し、前記真空容器内を所定
圧力に減圧し、前記基材表面に形成すべきプラズマCV
D薄膜の組成元素を含む化合物ガスおよび単一ガスの混
合ガスを一定流量で供給し、複数のガスノズルより窒素
ガスを供給して一定圧力に保持しながら、前記基材を所
定温度に制御し、前記真空容器内に配設した電極に高周
波電力を供給し、前記基材を含む空間に低温のプラズマ
を発生させ、前記複数のガスノズルよりのガス導入量を
排気速度を一定になるよう制御してプラズマCVD膜の
原料ガスの流れを制御し、前記基材の表面のプラズマC
VD膜の製造方法。 2、前記ガスノズルより導入するガスの組成が窒素また
は少なくともプラズマCVD膜の原料ガスの成分の1つ
を含むガスとする特許請求の範囲第1項記載のプラズマ
CVD膜の製造方法。 3、前記高周波電力の周波数を40〜500KHz、1
3.56MHzまたは2.45GHzとする特許請求の
範囲第1項又は第2項記載のプラズマCVD膜の製造方
法。 4、前記ガスノズルより噴出したガスが原料ガスの低温
プラズマに混入しないよう噴出させる特許請求の範囲第
1項又は第2項又は第3項記載のプラズマCVD膜の製
造方法。
[Claims] 1. Plasma CV to be formed on the surface of the substrate by arranging a base material in a vacuum container, reducing the pressure in the vacuum container to a predetermined pressure;
D Supplying a mixed gas of a compound gas and a single gas containing the constituent elements of the thin film at a constant flow rate, and controlling the base material to a predetermined temperature while maintaining the pressure at a constant level by supplying nitrogen gas from a plurality of gas nozzles; High-frequency power is supplied to an electrode disposed in the vacuum container to generate low-temperature plasma in a space including the base material, and the amount of gas introduced from the plurality of gas nozzles is controlled so that the exhaust speed is constant. The flow of the raw material gas of the plasma CVD film is controlled, and the plasma C on the surface of the base material is
A method for manufacturing a VD film. 2. The method for producing a plasma CVD film according to claim 1, wherein the composition of the gas introduced through the gas nozzle is a gas containing nitrogen or at least one of the components of the raw material gas for the plasma CVD film. 3. The frequency of the high frequency power is 40 to 500 KHz, 1
The method for manufacturing a plasma CVD film according to claim 1 or 2, wherein the frequency is 3.56 MHz or 2.45 GHz. 4. The method for producing a plasma CVD film according to claim 1, 2, or 3, wherein the gas ejected from the gas nozzle is ejected so as not to mix with the low-temperature plasma of the raw material gas.
JP59279190A 1984-12-28 1984-12-28 Manufacture of plasma cvd film Pending JPS61158148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279190A JPS61158148A (en) 1984-12-28 1984-12-28 Manufacture of plasma cvd film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279190A JPS61158148A (en) 1984-12-28 1984-12-28 Manufacture of plasma cvd film

Publications (1)

Publication Number Publication Date
JPS61158148A true JPS61158148A (en) 1986-07-17

Family

ID=17607686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279190A Pending JPS61158148A (en) 1984-12-28 1984-12-28 Manufacture of plasma cvd film

Country Status (1)

Country Link
JP (1) JPS61158148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818911A (en) * 2016-09-14 2018-03-20 株式会社日立国际电气 Manufacture method, lining processor and the recording medium of semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818911A (en) * 2016-09-14 2018-03-20 株式会社日立国际电气 Manufacture method, lining processor and the recording medium of semiconductor devices

Similar Documents

Publication Publication Date Title
US5628829A (en) Method and apparatus for low temperature deposition of CVD and PECVD films
US4262631A (en) Thin film deposition apparatus using an RF glow discharge
US6444039B1 (en) Three-dimensional showerhead apparatus
JPH03155625A (en) Manufacture of plasma cvd film
JPH06252134A (en) Vapor growth method of silicon dioxide film
TW306937B (en)
JPH07273052A (en) Cvd device
JPS61158148A (en) Manufacture of plasma cvd film
JP2723472B2 (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
JPH038330A (en) Apparatus for vaporizing and supplying liquid material for semiconductor
JP3068372B2 (en) Thin film formation method
JPH0565652A (en) Apparatus for plasma-intensified chemical vapor deposition
JPS61232612A (en) Gaseous phase reaction device
JP3140101B2 (en) CVD reactor
JP3221952B2 (en) Source gas generator for CVD
JP5378631B2 (en) Vapor growth crystal thin film manufacturing method
JPH07335643A (en) Film forming method
JPS5941773B2 (en) Vapor phase growth method and apparatus
JP2508717Y2 (en) Mixing chamber for gas introduction in film forming equipment
JPS61158147A (en) Plasma cvd apparatus
JP3089087B2 (en) Plasma CVD equipment
JPH09181061A (en) Liq. material gasifying method and feeder and semiconductor producing apparatus constituted, using it
JPS58127331A (en) Plasma chemical vapor growth apparatus
JPH058271B2 (en)
JPS54137973A (en) Formation method of plasma nitride