JPS6115691A - Beta-urogastrone gene, corresponding plasmid recombinant, corresponding transformat, and preparation of beta-urogastrone - Google Patents

Beta-urogastrone gene, corresponding plasmid recombinant, corresponding transformat, and preparation of beta-urogastrone

Info

Publication number
JPS6115691A
JPS6115691A JP59137691A JP13769184A JPS6115691A JP S6115691 A JPS6115691 A JP S6115691A JP 59137691 A JP59137691 A JP 59137691A JP 13769184 A JP13769184 A JP 13769184A JP S6115691 A JPS6115691 A JP S6115691A
Authority
JP
Japan
Prior art keywords
gene
urogastrone
plasmid
reaction
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59137691A
Other languages
Japanese (ja)
Other versions
JP2554459B2 (en
Inventor
Shigemasa Aoki
青木 重正
Hideo Okai
大貝 秀雄
Akio Horinaka
堀中 章男
Hiroshi Hiramatsu
平松 博志
Shoichi Kawamoto
尚一 河本
Akira Nishimura
昭 西村
Aizo Matsushiro
松代 愛三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earth Corp
Original Assignee
Earth Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earth Chemical Co Ltd filed Critical Earth Chemical Co Ltd
Priority to JP59137691A priority Critical patent/JP2554459B2/en
Priority to AU44111/85A priority patent/AU599003B2/en
Priority to CA000485007A priority patent/CA1304023C/en
Priority to DK291885A priority patent/DK291885A/en
Priority to NL8501880A priority patent/NL192116C/en
Priority to SE8503228A priority patent/SE8503228L/en
Priority to IT8505195A priority patent/IT1210142B/en
Priority to GB8516591A priority patent/GB2162851B/en
Priority to KR1019850004708A priority patent/KR920009543B1/en
Priority to CH2812/85A priority patent/CH670654A5/de
Priority to DE19853523634 priority patent/DE3523634A1/en
Priority to FR858510072A priority patent/FR2566799B1/en
Publication of JPS6115691A publication Critical patent/JPS6115691A/en
Application granted granted Critical
Publication of JP2554459B2 publication Critical patent/JP2554459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • C12N15/73Expression systems using phage (lambda) regulatory sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/485Epidermal growth factor [EGF], i.e. urogastrone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/61Fusion polypeptide containing an enzyme fusion for detection (lacZ, luciferase)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • C07K2319/75Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To design and to synthesize a gene of beta-urogastrone having physiological activities such as inhibition of secretion of acid in the stomach, cell growth promotion, etc., and to obtain a large amount of the gene in high purity by a genetic engineering method. CONSTITUTION:A promotor, SD sequence, restricted enzyme recognition site, etc. necessary for developing beta-urogstrone gene sequence shown by the formula are connected. lambdaPL or lacUV5 is cited as the promotor, and pBR322 as a plasmid vector is used. A fused protein with a different protein such as beta-lactomase, etc. may be developed as method of development of peptide. Since the fused protein is transferred and accumulated in a periplasmic layer of Escherichia coil and it exists partially, it is easily separated and purified. Oligonucleotide of beta- urogastrone can be synthesized by a well-known method using polystyrene resin, etc.

Description

【発明の詳細な説明】 り皇ユgじυ艷 本発明は、β−ウロガストロン遺伝子、対応プラスミド
組換体、対応形質転換体及びβ−ウロガストロンの製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a β-urogastrone gene, a corresponding plasmid recombinant, a corresponding transformant, and a method for producing β-urogastrone.

β−ウロガストロンは、ヒトの唾液線等で合成されるポ
リペプチドホルモンであり(例えばHe1tz  et
  al、 Gut、±9.408〜413(1978
)参照)、その−次構造は下記配列のアミノ酸53個か
らなり、分子内に3個のジスルフィド結合を有する(H
,Gregory  et  at。
β-Urogastrone is a polypeptide hormone synthesized in human salivary glands (e.g., Heltz et al.
al, Gut, ±9.408-413 (1978
), its secondary structure consists of 53 amino acids in the sequence shown below, and has three disulfide bonds within the molecule (H
, Gregory et at.

Int、 J、pept+ae  protein  
Res、 、 9゜107〜118(1977)参照)
Int, J, pept+ae protein
(Res., 9°107-118 (1977))
.

Asn  3er  ASCI  Ser  Glu 
 Cys  Pr。
Asn 3er ASCI Ser Glu
Cys Pr.

leu  Ser  His  Asp  aly  
Tyr  cysLeu  His  Asp  Gl
y  Vat  Cys  MetTyr  lie 
 Glu  Ala  leu  ASD  LysT
yr  Ala  Cys  Asn  Cys  V
at  VatGly  Tyr  Ile  Gly
  Glu  Ara  CysGln  Tyr  
Aro  AsE)  Leu  LYS  Trl)
Trp  Glu  Leu  Arg尚、本明細書に
おいて、アミノ酸の略号は、下記のものを示す。
leu Ser His Asp aly
Tyr cysLeu His Asp Gl
y Vat Cys MetTyr lie
Glu Ala leu ASD LysT
yr Ala Cys Asn Cys V
at VatGly Tyr Ile Gly
Glu Ara CysGln Tyr
Aro AsE) Leu LYS Trl)
Trp Glu Leu Arg In this specification, the abbreviations of amino acids are as follows.

A an :アスパラギン、 Ser:セリンA SD
 :アスパラギン酸、Qlu:グルタミン酸cysニジ
スティン、  P「0ニブロリンl eu :ロイシン
、   )lis:ヒスチジンGIVニゲリシン、  
 TVr:チロシンVal:バリン、    Met:
メチオニン11e:イソロイシン、 Ala:アラニン
L YS :リジン、    Gln:グルタミンA 
rQ :アルギニン、TrpニトリブトファンP he
 :フェニルアラニン β−ウロガストロンは、胃酸分泌抑制、細胞生長促進等
の生理活性を有する( E Ider  et  al
A an: Asparagine, Ser: Serine A SD
: aspartic acid, Qlu: glutamate cys nigistein, P'0 nibroline leu : leucine, )lis: histidine GIV nigericin,
TVr: Tyrosine Val: Valine, Met:
Methionine 11e: Isoleucine, Ala: Alanine L YS: Lysine, Gln: Glutamine A
rQ: Arginine, Trp nitributophane P he
: Phenylalanine β-urogastrone has physiological activities such as suppressing gastric acid secretion and promoting cell growth (E Ider et al.
.

Gut、16.887〜893 (1975)参照)。Gut, 16.887-893 (1975)).

従って、β−ウロガストロンは、潰瘍及び創傷の治療薬
として有用である。
Therefore, β-urogastrone is useful as a treatment for ulcers and wounds.

LJL−弦一」L 現在、β−ウロガストロンの製造は、これがヒト尿中に
少量排泄されるこ、とから、尿から抽出、分離、精製す
ることにより行なわれている。しかしながら、この方法
では量的に多べのものを得るのが困難であること、多種
成分からの精製であるため高純度のものを得るのが困難
であること等の問題点がある。従って、β−ウロガスト
ロンを大量にしかも高純度で製造することが要望されて
いる。
Currently, β-urogastrone is produced by extracting, separating, and purifying it from urine, since it is excreted in small amounts in human urine. However, there are problems with this method, such as that it is difficult to obtain a large amount of the product in quantity, and that it is difficult to obtain a product of high purity because it involves purification from a wide variety of components. Therefore, it is desired to produce β-urogastrone in large quantities and with high purity.

罠−1−」L」【 本発明者は、上記現状に鑑み、鋭意研究した結果、β−
ウロガストロン遺伝子を設計、合成し、ベクターに組み
込み、形質転換し、発現させるという一連の遺伝子工学
的手法を用いることにより、上記要望に充分対処できる
ことを見出し、本発明を完成するに至った。
Trap-1-'L'
The present inventors have discovered that the above needs can be satisfactorily met by using a series of genetic engineering techniques in which the urogastrone gene is designed, synthesized, incorporated into a vector, transformed, and expressed, leading to the completion of the present invention.

明の   び 果 本発明は、β−ウロガストロンの発現暗号の一部又は全
部を含む遺伝子、 β−ウロガストロン遺伝子の上流に、該遺伝子の発現を
制御するプロモーター及びSD配列を連結したものをプ
ラスミドベクターに挿入したプラスミド組換体、 β−ウロガストロン遺伝子を発現し得るプラスミド組換
体を、宿主細胞に形質転換させた形質転換体、並びに β−ウロガストロン遺伝子を発現し得るプラスミド組換
体を宿主細胞に形質転換させ、次いでその形質転換体を
培養し発現されたβ−ウロガストロンを回収することを
特徴とするβ−ウロガストロンの製造法に係る。
The present invention provides a plasmid vector containing a gene containing part or all of the expression code for β-urogastrone, a promoter that controls the expression of the gene, and an SD sequence linked upstream of the β-urogastrone gene. A transformant in which a host cell is transformed with the inserted plasmid recombinant, a plasmid recombinant capable of expressing the β-urogastrone gene, and a plasmid recombinant capable of expressing the β-urogastrone gene is transformed into a host cell, The present invention relates to a method for producing β-urogastrone, which comprises culturing the transformant and collecting the expressed β-urogastrone.

本発明における宿主細胞としては、特に限定されないが
、例えば大引り枯草菌、シュードモナス、酵母等を挙げ
ることができ、之等の内特に大腸菌が好ましい。
Host cells in the present invention are not particularly limited, but include, for example, Bacillus subtilis, Pseudomonas, and yeast, among which Escherichia coli is particularly preferred.

前記β−ウロガストロンのアミノ酸配列に従い形質転換
体内で発現されるに適切な遺伝子の塩基配列の設計は、
下記基準により行なった。
Designing a base sequence of a gene suitable for expression in a transformant according to the amino acid sequence of β-urogastrone is as follows:
The test was conducted according to the following criteria.

(1)宿主細胞、特に大腸菌により用いられる頻度が高
いトリヌクレオチドコドンを選択使用する。 5 (2)遺伝子内及びその両端に特定の制限酵素認−識部
位を持たせ、任意にその部位を操作し、他の遺伝子との
連結、プラスミドベクターへの挿入が行なわれ易い様に
する。
(1) Select and use trinucleotide codons that are frequently used by host cells, especially E. coli. 5 (2) A specific restriction enzyme recognition site is provided within the gene and at both ends thereof, and the site is arbitrarily manipulated to facilitate ligation with other genes and insertion into a plasmid vector.

(3)合成した遺伝子を集合、連結させる場合に、目的
とする連結状態とは異なる遺伝子の連結がないか又は最
小限度にできる様にする。
(3) When assembling and linking synthesized genes, ensure that there is no linkage of genes that differ from the desired linkage state, or that the linkage is minimized.

(4)β−ウロガストロンが融合蛋白質として発現する
場合、不要な融合物を容易に切り離せる手段がある様に
する。
(4) When β-urogastrone is expressed as a fusion protein, there should be a means to easily separate the unnecessary fusion protein.

上記基準を青線してβ−ウロガストロン遺伝子の構成部
分として選択された好ましい塩基配列の具体例(遺伝チ
ェとする)を下記に示す。
A specific example of a preferable base sequence (hereinafter referred to as a genetic check) selected as a component of the β-urogastrone gene is shown below using the above criteria as a blue line.

遺伝子I: 5’  AAT AGOGAT TCT GAG TG
CCCA CTG3’  TTA TCG CTA A
GA CTCACG GGT GACTCT  CAC
GAT  GGCTAT  TGT  CTG  CA
CAGA  GTG  CTA  CCG  ATA 
 ACA  GACGTGGAG  GGT  GTT
  TGCATG  TACATCGAACTG  C
CA  CAA  ACG  TACATG  TAG
  CTTGOT  TTG  GAT  AAA  
TACGCG  TGT  AACCGA  AACC
TA  TTT  ATG  CGCACA  TTG
TGT  GTA  GTG  GGT  TAT  
ATCGGT  GAAACA  CAT  CACC
CA  ATA  TAG  CCA  CTTCGC
TGT  CAA  TACCGT  GAT  CT
G  AAAGCG  ACA  GTT  ATG 
 GCA  CTA  GACTTTTGG  TGG
  GAA  TTG  CGT  3’ACCACC
CTT  AACGCA  5’尚、本明細書において
、塩基の略号は、Aがアデニン、Gがグアニン、Cがシ
トシン1、■がチミンをそれぞれ示す。
Gene I: 5' AAT AGOGAT TCT GAG TG
CCCA CTG3' TTA TCG CTA A
GA CTCACG GGT GACTCT CAC
GAT GGCTAT TGT CTG CA
CAGA GTG CTA CCG ATA
ACA GACGTGGAG GGT GTT
TGCATG TACATCGAACTG C
CA CAA ACG TACATG TAG
CTTGOT TTG GAT AAA
TACGCG TGT AACCGA AACC
TA TTT ATG CGCACA TTG
TGT GTA GTG GGT TAT
ATCGGT GAAACA CAT CACC
CA ATA TAG CCA CTTCGC
TGT CAA TACCGT GAT CT
G AAAGCG ACA GTT ATG
GCA CTA GACTTTTTGG TGG
GAA TTG CGT 3'ACCACC
CTT AACGCA 5' In the present specification, the abbreviations of bases are as follows: A represents adenine, G represents guanine, C represents cytosine 1, and ■ represents thymine.

上記遺伝チェは、β−ウロガストロンのアミノ酸配列に
対応するβ−ウロガストロン遺伝子の−態様であり、本
発明はこれに限定されるものではなく、これと塩基配列
が若干異なる遺伝子も本発明に包含される。
The above genetic check is an embodiment of the β-urogastrone gene corresponding to the amino acid sequence of β-urogastrone, and the present invention is not limited to this, and genes whose base sequences are slightly different from this are also included in the present invention. Ru.

上記遺伝子■を用いて実際にβ−ウロガストロンを発現
させる場合には、発現に必要なプロモーター、SD配列
、ベクター等との連結を考慮して、上記遺伝子の前後に
制限酵素認識部位を付加する必要がある。制限酵素11
部位としては、特に限定されず、任意のもので良い。
When actually expressing β-urogastrone using the above gene ■, it is necessary to add restriction enzyme recognition sites before and after the above gene, taking into consideration the connection with the promoter, SD sequence, vector, etc. necessary for expression. There is. restriction enzyme 11
The part is not particularly limited and may be any part.

上記遺伝子■の前後に開始コドン、終止コドン及び制限
酵素認識部位を付加したものの具体例(遺伝子■とする
)を該認識部位と共に下記に示す。
A specific example (referred to as gene (2)) in which a start codon, a stop codon, and a restriction enzyme recognition site are added before and after the above gene (2) is shown below together with the recognition sites.

遺伝子 ■ニ ー15           −1.1CTA  CC
G  ATA  ACA  GACGTG  CTG 
 CCACACCCA  ATA  TAG  CCA
  CTT  GCG  ACAa 尚、上記において制限酵素の略号は、下記のものを示す
Gene ■ Knee 15 -1.1CTA CC
G ATA ACA GACGTG CTG
CCACACCCA ATA TAG CCA
CTT GCG ACAa In the above, the abbreviations for restriction enzymes are as follows.

E:EcoRI、   Ta:TaqIBG:B(ll
I[、S  :Sau3AIMb:MbO工、   H
f:l−1inflBa:Bam)(:I、  Hd:
Hindl[MI:MluI、   Th:ThaI上
記遺伝子■を構築するに当っては、遺伝子■を前半部と
後半部に分けて行なうのが有利である。
E: EcoRI, Ta: TaqIBG: B(ll
I[, S: Sau3AIMb: MbO Eng, H
f:l-1inflBa:Bam) (:I, Hd:
Hindl [MI: MluI, Th: ThaI When constructing the above gene (2), it is advantageous to divide the gene (2) into the first half and the second half.

その具体例について脱刷する。A specific example will be published below.

まず、遺伝子■の塩基配列に従い、且つ前半部の最後に
制限酵素認識部位を付加することを考慮して、塩基数が
11個、13個又は15個のオリゴヌクレオチド(A−
1〜A−16及びB−1〜B−16の合計32個)を合
成する。次に、これを4〜6個集合、連結させてブロッ
ク(ブロック1iブロツク7の合計7個)とする。各オ
リゴヌクレオチド及び各ブロックを下記に示す。
First, in accordance with the nucleotide sequence of gene ① and considering the addition of a restriction enzyme recognition site at the end of the first half, oligonucleotides with 11, 13, or 15 bases (A-
1 to A-16 and B-1 to B-16 (32 in total) are synthesized. Next, 4 to 6 of these blocks are assembled and connected to form a block (block 1i block 7, a total of 7 blocks). Each oligonucleotide and each block are shown below.

ブロック1: (A−1)          (A−2)5’  A
ATTCGAAGAT  CTGCATGAATAGC
3’       GCTTCTAGACGTA  C
TTATCGCTAA(A−16)         
(A−15>(A−3) GATTCTGAGTG        3’GACT
CACGGGTGA  5’ (A−14) ブロック2: (A−4)           (A−5)5’  
CCCACTGTCTCACGATGGCTATTG3
’         CAGAGTGCTACCGAT
AACAGACGT(A−13)      (A−1
2)(A−6) TCTGCACGACGGT      3’GCTG
CCACAAA  5’ (A−11) ブロック3: (A−7)         (A−8)5’  GT
TTGCATGTA  CATCGAAGCTTCG 
     3’3’       CGTACATGT
AGCT  TCGAAGCCTAG  5’(A−1
0)          (A−9)ブロック4: (B−1)         (B−2)5’  AG
CTTTGGATA  AATACGCGTGTA八C
T      3’へ’       AACCTAT
TTATGCGCACATTGACACA  5’(B
−16>          (B−15)ブロック5
: (B−3)         (B−4)5’  GT
GTAGTGGGT  TATATCGGTGAACG
C3’3’       TCACCCAATATAG
  CCACTTGCGACAG  5’(B−14)
          (B−13)ブロック6: (B−5)         (B−6)5’  TG
TCAATACCG  TGATCTGAAATGGT
G      3’3’       TTATGGC
ACTAGA  CTTTACCAGCCTT  5’
(B−12)          (B−11’)ブロ
ック7: (B−7)         (B−8>5’  GG
AATTGCGTT  AATAGTGAAGATCT
G      3’3’      AACGCAAT
TATCA  CTTCTAGACCTAG  5’(
B−10)          (B−9)次に、ブロ
ック1〜3を連結してサブユニットAを、ブロック4〜
7を連結してサブユニットBを構築する。各サブユニッ
トを下記に示す。
Block 1: (A-1) (A-2) 5' A
ATTCGAAGATCTGCATGAATAGC
3' GCTTCTAGACGTA C
TTATCGCTAA (A-16)
(A-15>(A-3) GATTCTGAGTG 3'GACT
CACGGGTGA 5' (A-14) Block 2: (A-4) (A-5) 5'
CCCACTGTCTCACGATGGCTATTG3
'CAGAGTGCTACCGAT
AACAGACGT (A-13) (A-1
2) (A-6) TCTGCACGACGGT 3'GCTG
CCACAAA 5' (A-11) Block 3: (A-7) (A-8) 5' GT
TTGCATGTA CATCGAAGCTTCG
3'3' CGTACATGT
AGCT TCGAAGCCTAG 5' (A-1
0) (A-9) Block 4: (B-1) (B-2) 5' AG
CTTTGGATA AATACGCGTGTA8C
T 3'to' AACCTAT
TTATGCGCACATTGACACA 5'(B
-16> (B-15) Block 5
: (B-3) (B-4) 5' GT
GTAGTGGGGT TATATCGGTGAACG
C3'3' TCACCCAATATAG
CCACTTGCGACAG 5' (B-14)
(B-13) Block 6: (B-5) (B-6) 5' TG
TCAATACCG TGATCTGAAATGGT
G 3'3' TTATGGC
ACTAGA CTTTACCAGCCTT 5'
(B-12) (B-11') Block 7: (B-7) (B-8>5' GG
AATTGCGTT AATAGTGAAGATCT
G 3'3' AACGCAAT
TATCA CTTCTAGACCTAG 5'(
B-10) (B-9) Next, blocks 1 to 3 are connected to form subunit A, and blocks 4 to 3 are connected to form subunit A.
7 to construct subunit B. Each subunit is shown below.

サブユニットA: 3′ CTA  G  5’ サブユニットB: サブユニットAは、遺伝子■の前半部の最後に制限酵素
BanHI認識部位を付加したものであり、サブユニッ
トBは、遺伝子■の制限酵素Hindl[iaX部位以
降の後半部である。
Subunit A: 3' CTA G 5' Subunit B: Subunit A has the restriction enzyme BanHI recognition site added to the end of the first half of gene ■, and subunit B has the restriction enzyme Hindl of gene ■ added to the end. [This is the second half after the iaX site.

前記各オリゴヌクレオチドは、公知の方法により合成す
ることができる。−例として、固相法による合成の概略
を以下に述べる(例えばH,It。
Each of the aforementioned oligonucleotides can be synthesized by a known method. - As an example, the outline of the synthesis by solid phase method is described below (for example, H, It.

等、NU(jleic  Ac1ds  Re5ear
ch 、 1Q。
etc., NU(jleic Ac1ds Re5ear
ch, 1Q.

1755〜1769 (1982>参照)。1755-1769 (see 1982).

即ち、固相法によるオリゴヌクレオチドの合成は、ポリ
スチレン樹脂に担持されたヌクレオシドに順次モノヌク
レオチド又はジヌクレオチドをカップリングさせて所定
の塩基配列とすることにより行なわれる。
That is, oligonucleotide synthesis by the solid phase method is performed by sequentially coupling mononucleotides or dinucleotides to nucleosides supported on polystyrene resin to form a predetermined base sequence.

ヌクレオシド担持樹脂の作製には、例えばバイオラドラ
ボラトリーズ社製の1%架橋ポリスチレン樹脂rs−X
IJ (200〜400メツシユ)を使い、N−(クロ
ロメチル)フタルイミドをトリフルオロメタンスルホン
酸触媒上反応させ、次にヒドラジンと反応させてアミノ
メチル化ポリスチレン樹脂を得る。これのアミノ基にコ
ハク酸をスペーサーとして5′水酸基とアミノ基を保護
したヌクレオシドをつなぐことによりヌクレオシド担持
樹脂を得る。
To prepare the nucleoside-supporting resin, for example, 1% cross-linked polystyrene resin rs-X manufactured by Bio-Ra Laboratories, Inc.
N-(chloromethyl)phthalimide is reacted over trifluoromethanesulfonic acid catalyst using IJ (200-400 mesh) and then reacted with hydrazine to obtain aminomethylated polystyrene resin. A nucleoside-supporting resin is obtained by connecting a nucleoside with a 5' hydroxyl group and an amino group protected to the amino group using succinic acid as a spacer.

一方モノヌクレオチド、ジヌクレオチドの合成は種々の
方法が知られている(例えばC9Br0ka等、Nuc
leic  Ac1ds  Re5earch 、 8
゜5461〜5471 (1980)参照)。例えば、
モノヌクレオチドは、0−クロロフェニルリン酸ジクO
リゾート、トリアゾール及び 5’−OH基をジメトキシトリチル基(DMTr)で保
護したヌクレオシドをトリエチルアミン存在下に反応さ
せて得られるモノトリアシライドに、1−メチルイミダ
ゾールを触媒としてβ−シアノエタノールを反応させ、
反応物をシリカゲルのカラムクロマトグラフィーにかけ
て2〜5%のメタノールを含んだクロロホルムで溶出し
て完全に保護されたモノヌクレオチドを収率70〜80
%で得ることができる。
On the other hand, various methods are known for synthesizing mononucleotides and dinucleotides (for example, C9Br0ka, Nuc
leic Ac1ds Research, 8
5461-5471 (1980)). for example,
The mononucleotide is 0-chlorophenyl phosphate di(O)
A monotriacylide obtained by reacting resort, triazole, and a nucleoside whose 5'-OH group is protected with a dimethoxytrityl group (DMTr) in the presence of triethylamine is reacted with β-cyanoethanol using 1-methylimidazole as a catalyst. ,
The reaction product was subjected to column chromatography on silica gel and eluted with chloroform containing 2-5% methanol to obtain the fully protected mononucleotide in a yield of 70-80%.
It can be obtained in %.

次に、ジヌクレオチドは、上記で得られる完全に保護さ
れたモノヌクレオチドをベンゼンスルホン酸等の酸で処
理して5’−OH基をフリーにし、これを先はど得たモ
ノトリアシライドと反応させた後、反応物をシリカゲル
カラムクロマドグラフイーにかけ、2〜5%のメタノー
ルを含んだクロロホルムで溶出して完全に保護されたジ
ヌクレオチドを60〜80%の収率で得ることができる
Next, the dinucleotide is prepared by treating the fully protected mononucleotide obtained above with an acid such as benzenesulfonic acid to free the 5'-OH group, and combining it with the previously obtained monotriacylide. After the reaction, the reaction product is subjected to silica gel column chromatography and eluted with chloroform containing 2-5% methanol to obtain a fully protected dinucleotide with a yield of 60-80%. .

オリゴヌクレオチドの同相合成は、例えばB ache
s社製DNA合成機を用いて行なうのが有利である。先
に得たヌクレオシド担持樹脂を反応管に入れ、ジクロロ
メタン−イソプロパツール(85:15)で洗浄後、臭
化亜鉛(1M)のジクロロメタン−イソプロパツール溶
液を加えて。
In-phase synthesis of oligonucleotides can be performed, for example, by Bache
Advantageously, this is carried out using a DNA synthesizer manufactured by Company S. The previously obtained nucleoside-supporting resin was placed in a reaction tube, washed with dichloromethane-isopropanol (85:15), and then a dichloromethane-isopropanol solution of zinc bromide (1M) was added.

5′位のジメトキシトリチル基をはずす。溶液の着色が
なくなるまで数回行なう。ジクロロメタン−イソプロパ
ツール(85:15)で洗浄後更に残ってい°るzn2
÷を除去するために酢酸トリエチルアンモニウム(0,
5M)のジメチルホルムアミド溶液で洗浄し、更にテト
ラヒドロフランで洗浄後窒素ガスを数分通して樹脂を乾
燥させる。
The dimethoxytrityl group at the 5' position is removed. Repeat several times until the solution is no longer colored. Zn2 remaining after washing with dichloromethane-isopropanol (85:15)
Triethylammonium acetate (0,
After washing with a 5M dimethylformamide solution and further washing with tetrahydrofuran, the resin is dried by passing nitrogen gas through it for several minutes.

別途、完全に保護されたジヌクレオチド又はモノヌクレ
オチドをピリジンに溶かしトリエチルアミンを加えて、
振りまぜて室温で数時間放置した後、溶液を減圧留去し
、内容物をとリジンで数回共沸させてトリエチルアンモ
ニウム塩にしておく。これをメシチレン−スルホニル−
5−ニトロトリアゾール(0,3M)(MSNT、縮合
剤)のピリジン溶液に溶かし、先はど乾燥させた樹脂に
加え、60分間室温で反応させる。反応終了後反応液を
除き、ピリジンで洗浄後ジメチルアミノピリジン(0,
1M)のテトラヒドロフラン−ピリジン溶液と無水酢酸
の混合液中で5分間放置し、未反応の水酸基をマスクす
る。最後に樹脂をピリジンで洗浄し固相合成法の1サイ
クルが終了する。1サイクルで1個又は2個鎮長を伸ば
すことが出来る。
Separately, dissolve a fully protected dinucleotide or mononucleotide in pyridine and add triethylamine.
After shaking and standing at room temperature for several hours, the solution was distilled off under reduced pressure, and the contents were azeotroped several times with lysine to form a triethylammonium salt. This is mesitylene-sulfonyl-
5-Nitrotriazole (0.3M) (MSNT, condensing agent) is dissolved in a pyridine solution, added to the previously dried resin, and reacted for 60 minutes at room temperature. After the reaction was completed, the reaction solution was removed, washed with pyridine, and dimethylaminopyridine (0,
The mixture is left for 5 minutes in a mixture of 1M) tetrahydrofuran-pyridine solution and acetic anhydride to mask unreacted hydroxyl groups. Finally, the resin is washed with pyridine to complete one cycle of the solid phase synthesis method. You can extend Chinchō by 1 or 2 in one cycle.

同様の操作を繰り返し所定の長さになるまでモノヌクレ
オチド又はジヌクレオチドを順次縮合させることにより
完全に保護されたオリゴヌクレオチドを樹脂に担持され
た状態で得ることができる。
A completely protected oligonucleotide supported on a resin can be obtained by repeating the same operation and successively condensing mononucleotides or dinucleotides until a predetermined length is reached.

得られた樹脂にテトラメチルグアニジニウム−2−ピリ
ジンアルドキシメート(0,5M)のピリジン−水(9
0:10)溶液を加えて40℃で1時間放置する。そし
てパスツールピペットに綿プラグをつめたものを通して
樹脂を分別し樹脂をピリジンとエタノールで交互に洗浄
し、洗浄液を炉液と合わせて減圧下40℃で濃縮する。
The resulting resin was added with tetramethylguanidinium-2-pyridinealdoximate (0.5M) in pyridine-water (9
0:10) solution and leave at 40°C for 1 hour. Then, the resin is separated through a Pasteur pipette filled with a cotton plug, the resin is washed alternately with pyridine and ethanol, and the washing liquid is combined with the furnace solution and concentrated at 40° C. under reduced pressure.

残留物を101101lリエチルアンモニウム・2炭酸
塩水溶液(TEAB)に溶かしエーテルで洗浄する。
The residue was dissolved in 101,101 liters of ethyl ammonium dicarbonate aqueous solution (TEAB) and washed with ether.

水層をセファデックスG−50カラムクロマトグラフイ
ーにかけ10w+M  TEAB溶液で溶出する。各フ
ラクションの吸光度を260 nw+で測定し、一番最
初に溶出してきたピークを含むフラクションを濃縮する
。残渣を例えば高速液体クロマトグラフィーを用いて単
一ピークになるまで分取精製する。このようにして精製
されたオリゴヌクレオチドは、5′−末端がまだジメト
キシトリチル基で保護されているので、80%酢酸水溶
液で15分間処理して脱ジメトキシトリチル化後、再度
高速液体クロマトグラフィー等を用いて単一ピークにな
るまで精製する。
The aqueous layer is subjected to Sephadex G-50 column chromatography and eluted with 10w+M TEAB solution. The absorbance of each fraction is measured at 260 nw+, and the fraction containing the first eluted peak is concentrated. The residue is fractionated and purified using, for example, high performance liquid chromatography until a single peak is obtained. Since the 5'-end of the oligonucleotide purified in this way is still protected with a dimethoxytrityl group, it is treated with an 80% acetic acid aqueous solution for 15 minutes to remove dimethoxytritylation, and then subjected to high-performance liquid chromatography, etc. Purify until a single peak is obtained.

上記固相法によるオリゴヌクレオチドの合成の概略を下
記@追行程式に示す。
An outline of the synthesis of oligonucleotides by the above-mentioned solid phase method is shown in the following equation.

〈製造行程式〉 L かくして精製されたオリゴヌクレオチドは、ホモクロマ
トグラフィーによる2次展開法及びマキサム・ギルバー
ト法により各々の塩基配列を確認した後、ブロック、サ
ブユニットの作成に用いる。
<Production process> L The thus purified oligonucleotides are used for producing blocks and subunits after their base sequences are confirmed by the secondary development method using homochromatography and the Maxam-Gilbert method.

2次展開法による塩基配列の確認は、Wu等の方法(E
、 Jay、 R,A、 Ba1bara、 R。
Confirmation of the base sequence by the secondary expansion method is performed using the method of Wu et al. (E
, Jay, R.A., Balbara, R.

Padmanabhan  and  R,Wu 、 
NucleicAcids  Res、、上、331 
(1974))により行なうことができる。
Padmanabhan and R.Wu,
Nucleic Acids Res, supra, 331
(1974)).

この方法は、まずオリゴヌクレオチドを凍結乾燥したも
のに、蒸留水を加えて溶かし約0.1μg/μQとなる
ようにする。この一部をとりγ−52P−ATPとTt
ポリヌクレオチドキナーゼにより5′端を32pでラベ
ルし、次いで蛇毒フォスフオシエステラーゼによる部分
分解を行なう。これを酢酸セルロース躾にスポットし、
一次元目として電気泳動を行なうことによって塩基の違
いによる分離を行なった後、ジエチルアミノエチルセル
ロース(DEAEセルロースプレート″)に移行させ、
ホモミックスチャ−と呼ばれるRNAの限定分解物で二
次丸目の層間を行なう(この操作をホモクロマトグラフ
ィーと称する)ことによってオリゴヌクレオチドの鎖長
による分離を行なうものである。さらにオートラジオグ
ラフィーによってオリゴヌクレオチドの塩基配列を5′
端から読みとるものである。このような方法で確認しに
くい場合には、必要に応じて、マキサム・ギルバート法
を用いて解析する(A、M。
In this method, first, distilled water is added to a freeze-dried oligonucleotide to dissolve it to a concentration of about 0.1 μg/μQ. Take a part of this and add γ-52P-ATP and Tt
The 5' end is labeled with 32p using polynucleotide kinase, followed by partial degradation using snake venom phosphoosiesterase. Spot this on cellulose acetate,
After performing separation based on base differences by electrophoresis as the first dimension, transfer to diethylaminoethyl cellulose (DEAE cellulose plate''),
Oligonucleotides are separated by chain length by performing secondary round interlayer separation using a limited degradation product of RNA called homomixture (this operation is called homochromatography). Furthermore, the nucleotide sequence of the oligonucleotide was determined by autoradiography.
It is something to be read from the beginning. If it is difficult to confirm using this method, analyze using the Maxam-Gilbert method as necessary (A, M).

MaxaIIand  W、 G11bert、 Pr
oc 、 Natl 。
Maxa II and W, G11bert, Pr
oc, Natl.

Acad 、Sci、、USA、74.560(197
7)、A、M、Maxam  and  W。
Acad, Sci, USA, 74.560 (197
7), A., M., Maxam and W.

(3Nbert、 1vlethods  in  E
nzyw+o1. 、 Vo165゜p 499. 、
Academic  Press  1980)。
(3Nbert, 1vlethods in E
nzyw+o1. , Vo165゜p 499. ,
Academic Press 1980).

これは化学的分解法とも呼ばれるもので、塩基に特異的
な反応を用いてその塩基の位置で切断されるようにし、
電気泳動によって現われたバンドにより順次5′あるい
は3′側から配列を読むものである。塩基に特異的な反
応としては、グアニンが硫酸ジメチルにより特異的にメ
チル化され、グアニンとアデニンが共に酸により脱プリ
ン反応すること、及びチミンとシトシンがヒドラジンに
よる反応において低塩条件では両者共反応するが、高塩
条件ではヒドラジンはシトシンとのみ反応することを利
用する。以上の4種の塩基に対する反応終了後、ピペリ
ジンと反応させて分解、置換、β−説離等の皮応により
その塩基の位置でのDNA鎖の切断が起こる。ポリアク
リルアミドゲルによる電気泳動を上記4種の反応物につ
いて行ない生じたバンドがどの反応において生じるかに
よって塩基組成を読みとることができる。
This is also called a chemical decomposition method, and uses a reaction specific to the base to cleave it at the position of the base.
The sequence is read sequentially from the 5' or 3' side based on the bands that appear by electrophoresis. As for base-specific reactions, guanine is specifically methylated by dimethyl sulfate, guanine and adenine are both depurinated by acid, and thymine and cytosine co-react with hydrazine under low salt conditions. However, it takes advantage of the fact that hydrazine reacts only with cytosine under high salt conditions. After the reaction with the above four types of bases is completed, the DNA strand is cleaved at the position of the base by reaction with piperidine, such as decomposition, substitution, β-dissociation, etc. The base composition can be determined by performing electrophoresis using polyacrylamide gel on the four types of reactants mentioned above, and depending on which reaction a band is generated.

次に各オリゴヌクレオチドを連結する。即ち、オリゴヌ
クレオチドを正しく連結させるためにサブユニットAに
対応する前記A−1〜A−16の16種のオリゴヌクレ
オチドを第1図に示すようにA−1、A−2、A−3、
A−14、A−15及びA−16からなるブロック1と
A−4、A−5、A−6、A−11、A−12及びA−
13からなるブロック2並びにA−7、A−8、A−9
及びA−10からなるブロック3の3組に分けて連結し
、正しく結合したと思われる大きさのものを分離して後
、これらをさらに連結して、サブユニットAを得る。詳
細に述べるとA−1〜A−16の16種のオリゴヌクレ
オチドの5′端の一部をγ−52P−ATPとTtポリ
ヌクレオチドキナーゼを用いて32Pラベル後ATP′
で残りの5′端のOHをリン酸化する。次いで上記3組
のブロックごとにTaDNAリガーゼとATPを用いて
4℃で一装置くことによって連結したものを得、これを
8%ポリアクリルアミドゲル電気泳動を行なうことによ
って分離し、これらをさらに4℃にて一部TaDNAリ
ガーゼとATPを用いて連結する。A−1及びA−9の
5′末端は制限酵素の認識部位のため回転対称体となっ
ておりダイマー構造をとりうる。従って、最終的に得ら
れたA−1〜A−16の連結物を制限酵素の1:coR
IとBa1llHIを用いて切断し、サブユニットAを
得る。これは一部32pが入っており、又量的にも少な
いため、第1図に示す様に、ベクターとしてpBR32
2をEOORIとB alHI r切断しこれにサブユ
ニットAを組込む形でD LJGIというプラスミド組
換体を作成する。サブユニットBでもサブユニットAと
同様に前記B−1〜B−16の16個のオリゴヌクレオ
チドを第2図のように4組のブロックに分けて連結し、
これらをさらに連結する。これを制御酵素のHindl
[[とBa1lHIを用いて切断し、サブユニットBを
得る。
Next, each oligonucleotide is ligated. That is, in order to properly link the oligonucleotides, the 16 types of oligonucleotides A-1 to A-16 corresponding to subunit A were added to A-1, A-2, A-3, A-1, A-2, A-3, and A-1 as shown in FIG.
Block 1 consisting of A-14, A-15 and A-16 and A-4, A-5, A-6, A-11, A-12 and A-
Block 2 consisting of 13 and A-7, A-8, A-9
and A-10 are divided into three sets and connected, and after separating those of a size that are considered to be correctly combined, these are further connected to obtain subunit A. Specifically, a part of the 5' end of 16 types of oligonucleotides A-1 to A-16 was labeled with 32P using γ-52P-ATP and Tt polynucleotide kinase, and then ATP'
phosphorylates the remaining OH at the 5' end. Next, each of the three sets of blocks was ligated using TaDNA ligase and ATP at 4°C in one apparatus, separated by 8% polyacrylamide gel electrophoresis, and further incubated at 4°C. Part of the DNA is ligated using Ta DNA ligase and ATP. The 5' ends of A-1 and A-9 are rotationally symmetrical because they are recognition sites for restriction enzymes, and can form a dimeric structure. Therefore, the finally obtained ligation product of A-1 to A-16 was extracted with restriction enzyme 1:coR.
Subunit A is obtained by cleavage using I and BalllHI. This contains a portion of 32p and is also small in quantity, so as shown in Figure 1, pBR32 is used as a vector.
A recombinant plasmid called DLJGI was created by cutting 2 with EOORI and BalHI r and incorporating subunit A into it. In subunit B, similarly to subunit A, the 16 oligonucleotides B-1 to B-16 are divided into four blocks as shown in FIG. 2 and linked.
These are further connected. This is the regulatory enzyme Hindl.
Cleavage with [[ and Ba1lHI yields subunit B.

この場合もサブユニットAと同じ理由で、第2図の通り
、p BR322をHindl[[とBaI!lH工テ
切断し、これにサブユニットBを組込む形で9LJG2
というものを作成する。
In this case as well, for the same reason as subunit A, as shown in Figure 2, p BR322 is converted to Hindl [[ and BaI! 9LJG2 was created by cutting the lH construction and incorporating subunit B into it.
Create something called

さらに第3図のように、pUGlをHindll[と3
al工で切断し、これにp UO3から同じ制限酵素で
取り出したものを組込んでβ−ウロガストロンの構造遺
伝子をもつpLIG3を作成する。
Furthermore, as shown in Figure 3, pUGl was combined with Hindll [and 3
The pLIG3 containing the structural gene for β-urogastrone is created by cutting it with Al and inserting what was extracted from pUO3 using the same restriction enzyme.

1)UGl、1)UO3及びp UO3はそれぞれベク
ターであるEIBR322にβ−ウロガストロンの構造
遺伝子の前半部であるサブユニットA1後半部であるサ
ブユニットB及び全構造遺伝子を組込んだものである。
1) UGl, 1) UO3 and p UO3 are obtained by integrating subunit A1, which is the first half of the structural gene of β-urogastrone, subunit B, which is the second half, and the entire structural gene into the vector EIBR322.

これらのプラスミドはカルシウム法による形質転換法(
E 、 L ederberg、 3 。
These plasmids were transformed using the calcium method (
E., Lederberg, 3.

Cohen、  J、  Bacteriol、  、
  119. 1072(1974))によって大腸菌
88101株に入れて大量に増やすことが出来る。
Cohen, J., Bacteriol.
119. 1072 (1974)), it can be added to Escherichia coli 88101 strain and multiplied in large quantities.

D LIGl、I)UO3及びp UO3が宿主中に存
在するかどうかの確認は、さらにアルカリ抽出法によっ
てプラスミドを分取したあとp UGlとp UO3に
ついてはベクターpBR322上には存在しないBa1
I[の認識部位があるかどうかで判断出来る。又o U
O3とp LIG3は同じ<pBR322上にないMI
LIIで切断されるかどうかによっても判断出来る。ア
ルカリ抽出法について説明すると、大腸菌を37℃で培
養後集菌し、リゾチームを働かせて外膜を溶かし、0.
2N水酸化ナトリウム、1%ラウリル硫酸ナトリウム混
液でDNAを変性させ、3Mの酢酸ナトリウムpH4,
8で中和したときに、染色体由来のDNAは変性したま
まであるが核外プラスミドはもとに戻るという性質を利
用してプラスミドをとる方法である。大量に高純度のプ
ラスミドを得る場合には、これをさらに塩化セシウムと
臭化エチジウムによる密度勾配超遠心分離及びバイオゲ
ル (B iogel ) A 501カラムを通すことに
よりRNAと分離出来る。
D LIGl, I) To confirm whether UO3 and pUO3 exist in the host, after separating the plasmids by alkaline extraction, pUGl and pUO3 are extracted from Ba1, which is not present on vector pBR322.
It can be determined by whether there is a recognition site for I[. Again o U
O3 and pLIG3 are the same <MI not on pBR322
It can also be determined by whether or not it is disconnected by LII. To explain the alkaline extraction method, E. coli is cultured at 37°C, collected, and lysozyme is activated to dissolve the outer membrane.
Denature the DNA with a mixture of 2N sodium hydroxide and 1% sodium lauryl sulfate, and add 3M sodium acetate pH 4,
This method takes advantage of the property that when neutralized in step 8, DNA derived from chromosomes remains denatured, but extranuclear plasmids return to their original state. When obtaining a large amount of highly pure plasmid, it can be further separated from RNA by density gradient ultracentrifugation using cesium chloride and ethidium bromide and passing through a Biogel A 501 column.

かくして、β−ウロガストロン遺伝子が得られる。Thus, the β-urogastrone gene is obtained.

次に、β−ウロガストロン遺伝子を宿主細胞に形質転換
して発現させる方法について述べる。宿主細胞としては
、公知のものをいずれも使用できるが、大腸菌を用いる
のが好ましい。
Next, a method for transforming and expressing the β-urogastrone gene in host cells will be described. Although any known host cell can be used, E. coli is preferably used.

β−ウロガストロン遺伝子を、大腸菌を用いて発現させ
る様式としては、β−ウロガストロンを直接発現させる
系、β−ラクタマーゼ等の異種タンパクとの融合タンパ
クとして発現させる系等を挙げることができる。
Examples of methods for expressing the β-urogastrone gene using E. coli include a system in which β-urogastrone is directly expressed, a system in which it is expressed as a fusion protein with a heterologous protein such as β-lactamase, and the like.

β−ウロガストロン遺伝子を直接発現させるためには、
該遺伝子を働かせるためのプロモーター及びSD配列を
該遺伝子の上流に導入する必要がある。プロモーターと
しては、特に限定されないが、発現性の高いタイプのも
の例えばλファージの左向きのプロモーターであるλP
L%大腸菌β。
In order to directly express the β-urogastrone gene,
It is necessary to introduce a promoter and an SD sequence upstream of the gene in order to make the gene work. Promoters are not particularly limited, but include promoters of high expressivity, such as λP, which is the leftward promoter of λ phage.
L% Escherichia coli β.

−ガラクトシダーゼ遺伝子の上流にある1acUV5等
が好ましい、。プロモーターとしてAPLを用いた場合
には、SD配列としては、特に限定されないが、AGG
Aの4塩基配列を使用するのが好ましい。又、プロモー
ターとしてIacUV5を用いた場合は、SD配列とし
ては1acUV5とセットとなって存在しているものを
そのまま利用するか、それを化学合成したものを用いる
のが好ましい。
- 1acUV5 and the like located upstream of the galactosidase gene are preferred. When APL is used as a promoter, the SD sequence is not particularly limited, but AGG
It is preferable to use the 4 base sequence of A. Furthermore, when IacUV5 is used as a promoter, it is preferable to use the SD sequence that exists as a set with IacUV5 as it is, or to use one that is chemically synthesized.

本発明におけるβ−ウロガストロン遺伝子直接発現系と
して、APL −8D配列−β−ウロガストロン遺伝子
を用いる場合について述べる。
A case will be described in which the APL-8D sequence-β-urogastrone gene is used as the β-urogastrone gene direct expression system in the present invention.

この場合には、APLは強力なプロモーターではあるが
(J 、 Hed!l1l)eith等、 Mo1ec
ular  andQeneral  Genetic
s 、 163.197〜203(1978))、λP
Lプロモーターを組み込んだプラスミド単独では宿主の
大腸菌に対して致死作用を示すため致死作用を示さない
条件で大腸菌を増殖させた後に、APLを働かせる必要
がある。一方、λフアージ中の遺伝子であるCl857
は、APLのオペレーターに作用するCIリプレッサー
の温度感受性突然変異であり、低温(30℃前後以下)
においては、CIリプレッサーがAPLのオペレーター
に結合してプロモーターとしての活性を完全に抑制する
ため大腸菌の増殖が可能となる。従って、この状態下で
培養し、増殖させた後、高温(37℃以上)にすること
により(ヒートインダクションという)、CIリプレッ
サーを変性失活させ、λPLプロモーターがはじめて働
く状態とすることができる。また、psclol等のs
tringentな複製機m’rr:モツーyラスミド
とp BR322等のrelaxedな複製機構をもつ
プラスミドは不和合性を示すことなく、同一大腸菌体内
に共存し得る。
In this case, although APL is a strong promoter (J, Hed!l1l), both et al.
ular and Qeneral Genetic
s, 163.197-203 (1978)), λP
Since the plasmid incorporating the L promoter alone exhibits a lethal effect on host E. coli, it is necessary to allow APL to act after E. coli has been grown under conditions that do not exhibit a lethal effect. On the other hand, Cl857, a gene in λ phage
is a temperature-sensitive mutation of the CI repressor that acts on the operator of APL, and is a temperature-sensitive mutation of the CI repressor that acts on the APL operator.
In this case, the CI repressor binds to the APL operator and completely suppresses its promoter activity, allowing E. coli to grow. Therefore, by culturing and propagating under these conditions and then raising the temperature to a high temperature (37°C or higher) (referred to as heat induction), the CI repressor can be denatured and inactivated, and the λPL promoter can be activated for the first time. . Also, s of pscroll etc.
Tringent replication machine m'rr: Plasmids with a relaxed replication mechanism such as Motsuy lasmid and pBR322 can coexist within the same E. coli cell without showing any incompatibility.

以上の点を考慮して、テトラサイクリン耐性を示すブン
スミドベクター+)SC101にCl857遺伝子を組
み込んだ(その上流にlac UV5プロモーターを配
してCl857が効率的に発現するようにした)プラス
ミドpGH37を構築し、それを大腸菌(H810’i
株)に入れて形質転換させたもの(ECI−2株)を、
β−ウロガストロン発現ベクターの宿主として用いるこ
とが適切であると考えられた。
Taking the above points into consideration, we constructed plasmid pGH37 in which the Cl857 gene was integrated into the tetracycline-resistant Bunsmid vector+SC101 (lac UV5 promoter was placed upstream of it to ensure efficient expression of Cl857). and then incubate it with E. coli (H810'i
strain) and transformed it (ECI-2 strain),
It was considered appropriate to use it as a host for the β-urogastrone expression vector.

本発明によれば、APL −3D配列−β−ウロガスト
ロン遺伝子を、例えばE)BR322に組み込んで得ら
れるβ−ウロガストロン発現ベクターを用いてECl−
2株を形質転換することにより、大腸菌中に有用な2種
のプラスミドを保持させた所11Two  Plarv
id  5yste11が完成される。
According to the present invention, ECl-
Two useful plasmids were retained in E. coli by transforming the two strains. 11 Two Plarv
id 5yste11 is completed.

これにより、例えば30℃で培養した時点ではpGH3
7からのCIリプレッサーが第2のプラスミドに挿入し
ているAPLのオペレーターに結合することにより大腸
菌自身の増殖は可能となる。
As a result, for example, at the time of culturing at 30°C, pGH3
The CI repressor from 7 binds to the APL operator inserted into the second plasmid, allowing E. coli to proliferate itself.

この状態で十分に増殖させた後、例えば40℃に昇温さ
せ培養すると、CIリプレッサーが失活しオペレーター
から解離するためλPLプロモーターが働きだしてβ−
ウロガストロンが発現されるようになる。
After sufficient growth in this state, when the temperature is raised to 40°C and cultured, the CI repressor is inactivated and dissociated from the operator, so the λPL promoter becomes active and β-
Urogastrone becomes expressed.

類似の考え方がフィブロブラストインターフェロン、5
V−40スモールを抗原等の発現に適用されたことはあ
るが、これらの例ではCl857遺伝子をになうのは宿
主染色体中に組み込まれたλファージのDNAであり、
換言すれば、所謂λ溶原菌を宿主として用いたものであ
る。(R。
A similar idea is fibroblast interferon, 5
V-40 small has been used to express antigens, etc., but in these cases, the Cl857 gene is the DNA of the λ phage integrated into the host chromosome,
In other words, a so-called λ lysogen was used as a host. (R.

Derynck  et  al、 Nature 、
 287.193〜197 (1980) 、C,De
rom  et  at。
Deryck et al., Nature;
287.193-197 (1980), C, De
rom et at.

Gene、17.45〜54(1982)、K。Gene, 17.45-54 (1982), K.

Kljpper  et  at、 Nature 、
 289.555〜それに対して、本発明の系では、テ
トラサイクリン耐性を示す別のプラスミドに、Cl85
7遺伝子をになわせているので、宿主染色体中に組み込
まれたλファージが誘発されて増殖するという危険性も
なく、また菌株の管理も容易であるという利点がある。
Kljpper et at, Nature,
289.555 ~ In contrast, in the system of the present invention, another plasmid exhibiting tetracycline resistance contains Cl85
Since the 7 genes are combined, there is no risk that the λ phage integrated into the host chromosome will be induced to proliferate, and the strain can be easily managed.

勿論β−ウロガストロン発現系に応用されたのは、はじ
めてである。
Of course, this is the first time that this has been applied to a β-urogastrone expression system.

次に、β−ラクタマーゼ遺伝子の一部とβ−ウロガスト
ロン遺伝子を連結し、β−ウロガストロン遺伝子を融合
タンパクとして発現させる場合について述べる。この方
法の利点としては、大mm内のプロテアーゼにより融合
タンパクが分解されにくいため結果的にβ−ウロガスト
ロンが保護されること、融合タンパクが大島菌内のペリ
プラズム層に移行蓄積しくS、 J、 Chan  e
t  at。
Next, a case will be described in which a part of the β-lactamase gene and the β-urogastrone gene are linked and the β-urogastrone gene is expressed as a fusion protein. The advantages of this method are that β-urogastrone is protected as the fusion protein is difficult to be degraded by proteases within the large mm, and that the fusion protein migrates and accumulates in the periplasmic layer of the Oshima bacterium. e
t at.

Proc 、 Natl 、Acad 、 Sci、 
USA、 78゜5401〜5405 (1981))
且つ局在するために分離精製が容易になること等が挙げ
られる。
Proc, Natl, Acad, Sci,
USA, 78°5401-5405 (1981))
In addition, the localization facilitates separation and purification.

具体的には、β−ラクタマーゼ遺伝子中にある適当な制
限酵素切断部位に、融合タンパクからβ−ウロガストロ
ンを酵素で切り出して取り出すことができる様な酵素切
断部位となり得る塩基性アミノ酸2個をコードする遺伝
子を挿入した後、β−ウロガストロン遺伝子を連結すれ
ば良い。
Specifically, an appropriate restriction enzyme cleavage site in the β-lactamase gene encodes two basic amino acids that can serve as enzyme cleavage sites that allow β-urogastrone to be excised and removed from the fusion protein. After inserting the gene, the β-urogastrone gene may be linked.

上記において、塩基性アミノ酸2個の配列としては、−
L ys−A ra−又は−A rg −L V8−が
好ましい。また、このアミノ酸配列を認識してβ−ウロ
ガストロンを融合タンパクから切り出すための酵素とし
ては、例えばカリクレイン、トリプシン等が挙げられる
。更に、β−ラクタマーゼ遺伝子を切断する制限酵素と
しては、例えばX*FI、HinclI、3caJ、P
vuI、PstI、BolI、BaO工等が挙げられる
In the above, the sequence of two basic amino acids is -
Lys-Ara- or -Arg-LV8- is preferred. Examples of enzymes that recognize this amino acid sequence and cut out β-urogastrone from the fusion protein include kallikrein and trypsin. Furthermore, restriction enzymes that cut the β-lactamase gene include, for example, X*FI, HinclI, 3caJ, P
Examples include vuI, PstI, BolI, and BaO.

本発明により、上記の様に組み合わされたβ−ラクタマ
ーゼーβ−ウロガストロン組換えプラスミドは、大腸菌
内で大量の融合タンパクを発現することができる。
According to the present invention, the β-lactamase β-urogastrone recombinant plasmid combined as described above can express a large amount of the fusion protein in E. coli.

上記発現系の確認は、遺伝子の塩基配列を直接マキサム
・ギルバート法で分析する方法、ミニプレバレージョン
やマツピング法による遺伝子挿入やその方向の確認()
1.CC031rnboi+等、Nucleic  A
c1ds  Re5earch 、 7.1513〜1
523 (1979))、β−ウロガストロンに対する
ラジオイムノアッセイ等によって行なうことができる。
The above expression system can be confirmed by directly analyzing the gene base sequence using the Maxam-Gilbert method, or by confirming gene insertion and its direction by mini-prevalence or mapping methods ().
1. CC031rnboi+ etc., Nucleic A
c1ds Research, 7.1513~1
523 (1979)), radioimmunoassay for β-urogastrone, etc.

かくして得られる本発明の形質転換体からは、これを常
法に従い培養することにより、所望のβ−ウロガストロ
ンを大量にしかも高純度で採取することができる。
By culturing the thus obtained transformant of the present invention according to a conventional method, the desired β-urogastrone can be collected in large quantities and with high purity.

以下、実施例を挙げて、本発明を更に具体的に説明する
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 1%架橋ポリスチレン樹脂〔バイオラドラボラトリーズ
社製rs−XIJ  (200〜400メツシユ)〕を
N−(クロロメチル)フタルイミド(2,41g)、ト
リフルオロメタンスルホン酸(0,22mG>及びジク
ロロメタン(50II112)と共に室温で2時間かき
まぜる。反応終了後、樹脂を炉別し、ジクロロメタン、
エタノール、メタノールで順次洗浄し、減圧乾燥した後
、5%のとドラジンのエタノール溶液(50!IQ)と
−晩加熱還流を行なった。炉別した樹脂をエタノール、
ジクロロメタン、メタノールで順次洗浄した後減圧乾燥
した。以上の操作により得られたアミノメチル化ポリス
チレン樹脂(2,5a )、5’−o−ジメトキシトリ
チルヌクレオシドのモノコハク酸エステル(0,75−
M)、ジシクロヘキシルカルボジイミド ピリジン(1aM)をジクロロメタン(301G)に加
え室温で一晩放置した。枦別した樹脂をジクロロメタン
、メタノール、ピリジンで順次洗浄した後、ピリジン−
無水酢1!(90:10)に浸し、室温で30分間放置
した。得られたヌクレオシド担持樹脂を枦別し、ピリジ
ン、ジクロロメタンで洗浄後減圧乾燥し、固相合成反応
に使用した。
Example 1 1% cross-linked polystyrene resin [RS-XIJ (200-400 mesh) manufactured by Bio-Ra Laboratories] was mixed with N-(chloromethyl)phthalimide (2.41 g), trifluoromethanesulfonic acid (0.22 mG) and dichloromethane ( 50II112) at room temperature for 2 hours. After the reaction, the resin was separated from the furnace and dichloromethane,
After sequentially washing with ethanol and methanol and drying under reduced pressure, a 5% solution of drazine in ethanol (50!IQ) was heated and refluxed overnight. The furnace-separated resin is converted into ethanol,
After sequentially washing with dichloromethane and methanol, it was dried under reduced pressure. Aminomethylated polystyrene resin (2,5a) obtained by the above operations, monosuccinic acid ester of 5'-o-dimethoxytrityl nucleoside (0,75-
M), dicyclohexylcarbodiimidopyridine (1aM) was added to dichloromethane (301G) and left overnight at room temperature. After washing the separated resin sequentially with dichloromethane, methanol, and pyridine,
Anhydrous vinegar 1! (90:10) and left at room temperature for 30 minutes. The obtained nucleoside-supporting resin was separated, washed with pyridine and dichloromethane, dried under reduced pressure, and used for solid phase synthesis reaction.

0ジヌクレオチドの合 完全に保護されたTAの塩基配列のジヌクレオチドの合
成を例に具体的な操作を述べる。5′水酸基をジメトキ
シトリチル(DMTr )基で、アミノ基をベンゾイル
基で保護したアデノシン(13,14g)とトリアゾー
ル(6,34o )を無水ジオキサンに溶かし、水冷下
8.35−のトリエチルアミンを加えた後0−クロルフ
ェニルリン酸ジクロリゾート(6,86!J )を10
分間で滴下し、その後室温で2.5時間かきまぜた。
Synthesis of 0 dinucleotide A specific operation will be described using the synthesis of a dinucleotide having a completely protected TA base sequence as an example. Adenosine (13,14 g) whose 5' hydroxyl group was protected with a dimethoxytrityl (DMTr) group and the amino group with a benzoyl group and triazole (6,34o) were dissolved in anhydrous dioxane, and 8.35-triethylamine was added under water cooling. 0-Chlorphenyl phosphate dichlororesort (6,86!J) after 10
The mixture was added dropwise over a period of minutes, and then stirred at room temperature for 2.5 hours.

生じたトリエチルアミン塩酸塩を枦遇して除き、炉液を
約2/3に濃縮し、β−シアノエタノール(3,6a 
)と1−メチル−イミダゾール(4,8111)を加え
て室温で3時間かきまぜた後、反応液を減圧濃縮した。
The generated triethylamine hydrochloride was removed by chance, the furnace liquid was concentrated to about 2/3, and β-cyanoethanol (3,6a
) and 1-methyl-imidazole (4,8111) were added and stirred at room temperature for 3 hours, and the reaction solution was concentrated under reduced pressure.

残渣を酢酸エチルに溶かし0.1Mリン酸−ナトリウム
水m’aで3回、水で2回洗った後、減圧濃縮し、粗生
成物19.960を得た。それをシリカゲルカラムクロ
マトグラフィーにかけ、クロロホルム−メタノール(9
8:2)で溶出することにより精製した。
The residue was dissolved in ethyl acetate, washed three times with 0.1M sodium phosphate water m'a and twice with water, and then concentrated under reduced pressure to obtain a crude product 19.960. It was subjected to silica gel column chromatography and chloroform-methanol (9
8:2).

この精製操作を繰り返すことにより完全に保護されたア
デノシンモノヌクレオチド15.12Gを得た。このよ
うにして得られたアデノシンモノヌクレオチド7.81
りを2%ベンゼンスルホン哉のクロロホルム−メタノー
ル(70:30)溶液に加えて水冷下20分間かきまぜ
た。炭酸水素ナトリウム水溶液で中和後分離したクロロ
ホルム層を水で洗い、減圧濃縮して7.110の粗生成
物を得た。このものをシリカゲルカラムクロマトグラフ
ィーにかけクロロホルム−メタノール(97:3)で溶
出して4.31(lの5′水酸基がフリーとなったアデ
ノシンモノヌクレオチドを得た。
By repeating this purification operation, completely protected adenosine mononucleotide 15.12G was obtained. Adenosine mononucleotide 7.81 thus obtained
The mixture was added to a 2% solution of benzenesulfone in chloroform-methanol (70:30) and stirred for 20 minutes under water cooling. After neutralization with an aqueous sodium bicarbonate solution, the separated chloroform layer was washed with water and concentrated under reduced pressure to obtain a crude product of 7.110. This product was subjected to silica gel column chromatography and eluted with chloroform-methanol (97:3) to obtain 4.31 (l) adenosine mononucleotide with the 5' hydroxyl group free.

5′水酸基をジメトキシトリチル基で保護したチミジン
(1,6413)とトリアゾール(0,95o )を2
11Qの無水ジオキサンに溶かし、トリエチルアミン(
1,251119)を加えて後、水冷下かきまぜながら
O−クロルフェニルリン酸ジクロリゾート(0,69m
G)を5分間で滴下し、その後室温で1時間かきまぜた
。反応終了後、生じたトリエチルアミン塩酸塩を枦別し
、炉液に1Mピリジン水溶液1.111112を加えて
10分撹拌後、上記で得た5′水WI基フリーのアデノ
シンモノヌクレオチド(1,170)のジオキサン溶液
(101G)と1−メチルイミダゾール(0,72−)
を加えて室温で3時間かきまぜた。反応終了後、減圧濃
縮して得られた残漬を酢酸エチルに溶かし0.1Mリン
酸−ナトリウム水溶液、次いで水で洗った後、減圧濃縮
し2.39oの粗生成物を得た。これをシリカゲルカラ
ムクロマトグラフィーにかけクロロホルム−メタノール
(98: 2)で溶出し、2.39aの完全に保護され
たダイマーTAを得た。
Thymidine (1,6413) whose 5' hydroxyl group was protected with dimethoxytrityl group and triazole (0,95o) were
Dissolve 11Q in anhydrous dioxane and add triethylamine (
1,251119), and then add O-chlorphenyl phosphate dichlororesort (0.69 m
G) was added dropwise over 5 minutes, and then stirred at room temperature for 1 hour. After the reaction was completed, the triethylamine hydrochloride formed was separated off, 1M pyridine aqueous solution 1.111112 was added to the furnace solution, and after stirring for 10 minutes, the 5'water WI group-free adenosine mononucleotide (1,170) obtained above was obtained. dioxane solution (101G) and 1-methylimidazole (0,72-)
was added and stirred at room temperature for 3 hours. After the reaction was completed, the residue obtained by concentration under reduced pressure was dissolved in ethyl acetate, washed with a 0.1M aqueous sodium phosphate solution and then with water, and concentrated under reduced pressure to obtain a crude product of 2.39°. This was subjected to silica gel column chromatography and eluted with chloroform-methanol (98:2) to obtain the completely protected dimer TA of 2.39a.

01y」コし乞yt+tシ1皇1エ オリゴヌクレオチドA−1、即ちウンデカヌクレオチド
AATTCGAAGATの固相合成に関して述べる。
We describe the solid phase synthesis of the undecanucleotide AATTCGAAGAT, the oligonucleotide A-1, the undecanucleotide AATTCGAAGAT.

別途調製したヌクレオシドTを担持した樹脂4011(
+を反応管に入れ、ジクロロメタン−イソプロパツール
(85:15)で3回洗浄後、臭化亜鉛(1M)のジク
ロロメタン−イソプロパツール溶液で5′位のジメトキ
シトリチル基をはずした。
Separately prepared nucleoside T-supported resin 4011 (
+ was placed in a reaction tube, and after washing three times with dichloromethane-isopropanol (85:15), the dimethoxytrityl group at the 5' position was removed with a dichloromethane-isopropanol solution of zinc bromide (1M).

この操作を溶液に着色がなくなるまで数回行なった。ジ
クロロメタンで洗浄後更に残っているZnQ+を除去す
るために酢酸トリエチルアンモニウム(0,5M)のジ
メチルホルムアミド溶液で洗浄し、テトラヒドロフラン
で洗って後、窒素ガスを数分通して樹脂を乾燥させた。
This operation was repeated several times until the solution was no longer colored. After washing with dichloromethane, the resin was further washed with a dimethylformamide solution of triethylammonium acetate (0.5M) to remove remaining ZnQ+, and after washing with tetrahydrofuran, nitrogen gas was passed for several minutes to dry the resin.

別途調製した完全に保護されたジヌクレオチドGA50
1!Jをピリジン(1−)に溶かしトリエチルアミン(
11111)を加えて、振りまぜて室温で数時間放置し
た後、溶液を減圧留去し、内容物をとリジンで数回共沸
させてトリエチルアンモニウム塩にしておく。これをメ
シチレン−スルホニル−5−ニトロトリアゾール(0,
3M)のピリジン溶液0.3112に溶かし、先はど乾
燥させた樹脂に加え、60分間室温で反応させた。反応
終了後、反応液を除き、ピリジンで洗浄後、ジメチルア
ミノピリジン(0,1M)のテトラヒドロ7ランービリ
ジン溶液(0,812)と無水酢酸(0,2111りの
混合液中で5分間放置し、未反応の水酸基をマスクした
。最後に樹脂をピリジンで洗浄し固相合成法の1サイク
ルが終了した。1サイクルで2個鎮長を伸ばすことが出
来る。同様の操作を繰り返しジヌクレオチドAA、CG
、TT、AAを順次縮合させることによりすべて保護さ
れたウンデカヌクレオチドAATTCGAAGATを樹
脂に担持された状態で得た。
Separately prepared fully protected dinucleotide GA50
1! Dissolve J in pyridine (1-) and dissolve triethylamine (
11111) was added, shaken and left at room temperature for several hours, the solution was distilled off under reduced pressure, and the contents were azeotroped several times with lysine to form a triethylammonium salt. This was mesitylene-sulfonyl-5-nitrotriazole (0,
3M) in pyridine solution, added to the previously dried resin, and reacted for 60 minutes at room temperature. After the reaction was completed, the reaction solution was removed, washed with pyridine, and left for 5 minutes in a mixture of dimethylaminopyridine (0.1 M) in a tetrahydro7-pyridine solution (0.812) and acetic anhydride (0.2111). Unreacted hydroxyl groups were masked.Finally, the resin was washed with pyridine to complete one cycle of the solid phase synthesis method.Two chains can be extended in one cycle.Similar operations were repeated to obtain dinucleotides AA and CG.
, TT, and AA were sequentially condensed to obtain a protected undecanucleotide AATTCGAAGAT supported on a resin.

得られた樹脂20uにテトラメチルグアニジウム−2−
ピリジンアルドキシメート(0,5M>のピリジン−水
(90:10)溶液0.6−を加えて40℃で1時間放
置した。これをパスツールピペットに綿プラグをつめた
ものに通して樹脂を分別し、樹脂をピリジンとエタノー
ルで交互に洗浄し、洗浄液をか液と合わせて減圧下40
℃で濃縮した。残留物を11011Iトリエチルアンモ
ニウム・2炭WI塩水溶l (TEAB)2mGに溶か
しエーテルで3回洗浄した。水層をセファデックスG−
50カラム(2xlOOcm)にかけ、101MTEA
B溶液で溶出した。各フラクションの吸光度を26On
IIlで測定し、一番最初に溶出してきたピークを含む
フラクションを濃縮した。残渣を高速液体クロマトグラ
フィー(ボンブ:ウォーターズ社製6000A型、検出
器=440型ディテクター)により単一ピークになるま
で分取精製した。高速液体クロマトグラフィーのカラム
はμ−BOndapak  C+ a  (ウォーター
ズ社製)を用い、溶出溶媒は(5→40%)アセトニト
リル−0,1Mm¥酸トリニトリエチルアンモニウム水
溶液溶出した。このようにして精製されたウンデカヌク
レオチドは、5′末端がまだジメトキシトリチル基で保
護されているので、80%酢酸水溶液で15分間処理し
て脱ジメトキシトリチル化後再度高速液体りOマドグラ
フィーにより単一ピークになるまで精製した。高速液体
クロマトグラフィー(Dカラムハu  BOndaDa
k  C+ a  (ウォーターズ社製)で(5→25
%)アセトニトリル−0,1M酢酸トリエチルアンモニ
ウム水溶液で勾配溶出した。
Tetramethylguanidium-2- was added to 20 u of the obtained resin.
Add 0.6 of a solution of pyridine aldoximate (0.5 M) in pyridine-water (90:10) and leave at 40°C for 1 hour. The resin was washed alternately with pyridine and ethanol, and the washing liquid was combined with the liquid and heated under reduced pressure for 40 minutes.
Concentrate at °C. The residue was dissolved in 2 mg of 11011I triethylammonium dicarbon WI salt aqueous solution (TEAB) and washed three times with ether. Sephadex G-
50 columns (2xlOOcm) and 101MTEA.
It was eluted with B solution. The absorbance of each fraction was set to 26 On.
The fraction containing the first eluting peak was concentrated. The residue was fractionated and purified by high performance liquid chromatography (bomb: Model 6000A manufactured by Waters, detector: Model 440 detector) until a single peak was obtained. The column for high performance liquid chromatography was μ-BOndapak C+ a (manufactured by Waters), and the elution solvent was (5→40%) acetonitrile-0.1 Mmtrinitriethylammonium acetate aqueous solution. Since the undecanucleotide purified in this manner is still protected at the 5' end with a dimethoxytrityl group, it is treated with an 80% aqueous acetic acid solution for 15 minutes to remove dimethoxytritylation, and then subjected to high-performance liquid chromatography again. Purified to a single peak. High performance liquid chromatography (D column)
k C+ a (manufactured by Waters) (5 → 25
%) acetonitrile-0.1 M aqueous triethylammonium acetate solution.

以下同様にしてA−2〜16及びB−1〜16のオリゴ
ヌクレオチドを合成した。
Thereafter, oligonucleotides A-2 to 16 and B-1 to 16 were synthesized in the same manner.

上記で得たA−1〜16及びB−1〜16の収率及び収
量を第1表及び第2表に示す。
The yields and yields of A-1 to 16 and B-1 to 16 obtained above are shown in Tables 1 and 2.

オリゴヌクレオチドの固相合成における綜合反応の収率
は、各サイクルで脱離させたジメトキシトリタノールの
量より換算した。ジメトキシトリタノールの壷は、60
%過塩素酸−エタノール(60: 40)溶液中での5
000■における吸光度を測定することにより求めた。
The yield of the synthesis reaction in the solid-phase synthesis of oligonucleotides was calculated from the amount of dimethoxytritanol eliminated in each cycle. A jar of dimethoxytritanol is 60
5% perchloric acid-ethanol (60:40) solution
It was determined by measuring the absorbance at 000 cm.

固相合成は40ragの樹脂(ヌクレオシド含有10.
10+ M/。
Solid phase synthesis was carried out using 40 rag resin (nucleoside containing 10.
10+M/.

樹脂)を使った。最終段階の一段階前までの収率は下記
第1表の通りであった。
resin) was used. The yields up to one stage before the final stage are shown in Table 1 below.

尚、最後のサイクル終了後、目的のオリゴヌクレオチド
を樹脂よりはずしてから脱保護を行なってジメトキシト
リタノールが反応混合物に含まれた状態で得られるので
、ジメトキシトリタノールだけの吸光度の測定が不可能
で最終段階を含んだ縮合反応の全収率を求めることは困
難である。
Furthermore, after the final cycle, the oligonucleotide of interest is removed from the resin and then deprotected to obtain dimethoxytritanol contained in the reaction mixture, making it impossible to measure the absorbance of only dimethoxytritanol. It is difficult to determine the total yield of the condensation reaction including the final step.

第  1  表 また、固相合成完了後の樹脂20Il1gを用いて、オ
リゴヌクレオチドを樹脂より切断し、脱保護、精製を行
なったときの各オリゴヌクレオチドの収量を下記第2表
に示した。
Table 1 Furthermore, the yield of each oligonucleotide is shown in Table 2 below when the oligonucleotide was cleaved from the resin, deprotected and purified using 20Il1g of the resin after solid phase synthesis was completed.

収量は、最終精製物の吸光度を260niで測定しヌク
レオチドの塩基の吸光度の和より換算して求めた。尚、
オリゴヌクレオチドの合成においては、収率は実際上問
題とされず、純度が問題となる。従って、精製の各段階
でピークの中央部のみ分取を行なうので、収率としては
低くなり最終生成物の全収率は1〜2%であった。
The yield was determined by measuring the absorbance of the final purified product at 260 ni and converting it from the sum of the absorbances of the nucleotide bases. still,
In the synthesis of oligonucleotides, yield is not really an issue, but purity is. Therefore, since only the central portion of the peak was collected at each stage of purification, the yield was low and the total yield of the final product was 1 to 2%.

0オリゴヌクレオチ゛塩基  の確 WU等によるホモクロマトグラフィーを使った二次展開
法により分析を行なった。以下、オリゴヌクレオチドA
−3を例として述べる。
0 oligonucleotide base was analyzed by a secondary development method using homochromatography using WU or the like. Below, oligonucleotide A
-3 will be described as an example.

オリゴヌクレオチドA−35μQを蒸留水50μQに溶
かし、この溶液7μQに、250ffiMトリス・塩酸
(ll H7,6>、50圃M塩化マグネシウム、10
1Mスペルミン、50mMジチオスレイトール(DTT
)の混合液を6μ91次いでγ−52P−ATP水溶液
(アマルシャム社製rPB10168J )を0.5μ
Q及びTtポリヌクレオチドキナーゼ(宝酒造■製No
Oligonucleotide A-35μQ was dissolved in 50μQ of distilled water, and 7μQ of this solution was added with 250ffiM Tris-HCl (11H7,6>, 50M magnesium chloride, 10μQ of distilled water).
1M spermine, 50mM dithiothreitol (DTT)
) and then 0.5μ of a γ-52P-ATP aqueous solution (rPB10168J manufactured by Amersham).
Q and Tt polynucleotide kinase (Takara Shuzo No.
.

2020A) を0.5μQ、 さらGcil水16μ
Qを加えて合わせて30μQとした。これを37℃の水
浴中に60分放置し、オリゴヌクレオチドの5′末端を
32pでラベルした。100℃の湯浴に2分間浸漬して
反応を停止し、全一を5μQ程度まで濃縮した後、20
cmx 20cmに切ったDEAEセルロースプレート
(マチエレー−ナーゲル社製)にスポットし、ホモミッ
クスチャ−■(シグマ社製rYeast  RNA  
TVI)e VIJ ヲ100とり、5M水酸化カリウ
ム水溶液8μQ1水42m1と共に37℃で24時間振
りまぜて分解後、1N塩酸で中和し、210gの尿素を
溶かした後全量を500111111とし一20℃に保
存する。使用時に溶かし、濾過して用いる)を用いて7
0℃で展開したくこれをホモクロマトグラフィーと称す
る)。展開は、キシレンシアツールFF、オレンジG及
び酸性ツクシンの各0.1%水溶液をマーカーとしてス
ポットし、キシレンシアツールFFの青色マーカーが約
10cm程度上がるまで行なった。乾燥後、プレートを
ポリ塩化ビニリデンフィルムで包みオートラジオグラム
をとった。感光時間は室温で約15分で充分であった。
2020A) 0.5μQ, further Gcil water 16μ
Q was added to make a total of 30 μQ. This was left in a water bath at 37°C for 60 minutes, and the 5' end of the oligonucleotide was labeled with 32p. The reaction was stopped by immersing it in a 100°C water bath for 2 minutes, and after concentrating the total amount to about 5μQ,
Spotted on a DEAE cellulose plate (manufactured by Machier-Nagel) cut into 20 cm x 20 cm pieces, homomixture ■ (rYeast RNA manufactured by Sigma) was spotted.
Take 100 pieces of TVI) e VIJ, shake with 5M potassium hydroxide aqueous solution 8μQ1 water 42mL for 24 hours at 37℃ to decompose, neutralize with 1N hydrochloric acid, dissolve 210g of urea, and then adjust the total amount to 500111111 and heat to -20℃. save. Dissolve and filter before use)
(This is called homochromatography because it is developed at 0°C.) The development was carried out by spotting 0.1% aqueous solutions of each of Xylene Sea Tool FF, Orange G, and Acid Tsukusin as markers, and continued until the blue marker of the Xylene Sea Tool FF rose about 10 cm. After drying, the plate was wrapped in polyvinylidene chloride film and an autoradiogram was taken. Approximately 15 minutes of exposure time at room temperature was sufficient.

X線フィルムを現像し32pラベルされたオリゴヌクレ
オチドのスポットの位置をトレーシングベーパーに移し
とり、これをもとにしてざらにDEAEセルロースプレ
ート上に印をつけた。スポット位置のDEAEセルO−
スをかきとり、エタノール洗浄後TEAEII衡液(ト
リエチルアミンジカーボネートの1M水溶液、トリエチ
ルアミンを水中に炭酸ガスを通じながら少しずつ滴下し
て溶かしたもの)で溶出した。濃縮器で乾燥し、TEA
E緩衝液を除いた後、カウントを測定し、1000cp
l/μQとなるように蒸留水に溶かした。これを7μQ
ずつ0.4II!2容の反応チューブ3本にとり、25
01Mトリス・塩酸(1)H8,0)、50111Mの
塩化マグネシウムを2μQずつと蛇毒フォスフオシエス
テラーゼ(ベーリンガーマンハイム山之内■製N0.1
08260)を水に溶かして0.1μg/μQ、0.2
μg/μQ及び0.5μg/μQとしたもの1μQずつ
をそれぞれ反応チューブ1本ずつに加えて37℃にて3
0分間反応させた。反応停止は51 M  EDTA二
ナトサナトリウム水溶液’7.0)を5μQ加えた後に
100℃の湯浴に2分間浸漬することにより行ない、こ
の一部をとってDEAEセルロースプレートにスポット
しホモミックスチャ−V又は■(シグマ社製rYeas
t  RNA  Type VIJ 10Qを5M水酸
化カリウム水溶液10−と水4〇−と共に24時間振り
まぜて分解したものがVで、48時間振りまぜて分解し
たものが■であり、どちらも分解後1N塩酸で中和し、
210gの尿素を溶かした後、全!@500m12とし
一20℃に保存する。使用時に溶かし、濾過して用いる
。)を用いてホモクロマトグラフィーを行ないオートラ
ジオグラフィーにより部分分解が完全に行なわれている
かどうかを確認した。
The X-ray film was developed, and the spot position of the 32p-labeled oligonucleotide was transferred to tracing vapor, and based on this, a rough mark was made on the DEAE cellulose plate. DEAE cell O- at spot position
After washing with ethanol, the solution was eluted with a TEAE II equilibrated solution (a 1M aqueous solution of triethylamine dicarbonate, in which triethylamine was dissolved in water by dropping it little by little while passing carbon dioxide gas through it). Dry in a concentrator, TEA
After removing the E buffer, the counts were determined and 1000 cp
It was dissolved in distilled water so that the ratio was 1/μQ. This is 7μQ
0.4 II each! Transfer to three 2-volume reaction tubes and add 25
01M Tris-hydrochloric acid (1)H8,0), 2μQ each of 50111M magnesium chloride and snake venom phosphoosyesterase (N0.1 manufactured by Boehringer Mannheim Yamanouchi)
08260) in water to give 0.1μg/μQ, 0.2
Add 1 μQ each of μg/μQ and 0.5 μg/μQ to one reaction tube and store at 37°C for 3 hours.
The reaction was allowed to proceed for 0 minutes. The reaction was stopped by adding 5 μQ of 51 M EDTA dinatosanodium aqueous solution '7.0) and immersing it in a 100°C water bath for 2 minutes. A portion of this was spotted on a DEAE cellulose plate and homomixtured. V or ■ (rYeas manufactured by Sigma)
tRNA Type VIJ 10Q is decomposed by shaking it with 5M potassium hydroxide aqueous solution 10- and water 40- for 24 hours and is V, and the one decomposed by shaking for 48 hours is ■.Both were dissolved in 1N hydrochloric acid after decomposition. Neutralize with
After dissolving 210g of urea, all! @500m12 and store at -20℃. Dissolve and filter before use. ) was used to perform homochromatography, and autoradiography was used to confirm whether partial decomposition was complete.

オリゴヌクレオチドA−3の場合、11個のスポットが
見られ、部分分解がうまくいったことが確認された。1
1N後その1μQをとり、7M尿素水溶液95−に酢酸
5鵬とピリジン0.5鵬を加えたものでしめらせた酢酸
セルロースH(マチエレー−ナーゲル社製、50cmx
35co+のちのを二つに切り25C11X36(Il
lとし、一端より10cmの位置に鉛筆で線を引いてお
く)の鉛筆で線を引いた中央にスポットした。その両端
に、キシレンシアツールFF、オレンジG及び酸性ツク
シンの各0.1%の水溶液をマーカーとして0,5μQ
程度スポットした。こ−れを酢酸、ピリジン水溶液中で
電気泳動し、キシレンシアツールFFの青色マーカーと
オレンジGの黄色マーカーのスポットが約10C11程
度移動距離の差を生じた時点で止めた(1800Vで約
45分)。ドライヤーで乾燥し、DEAEセルロースプ
レート(20c*X 20cm)の一端から1.5CI
!lの位置に線を引いたものに、酢酸セルロース膜の下
端を合わせてのせた。上から蒸留水で湿らせたワットマ
ン3MMペーパー(2,5c*x20cmに切ったもの
)5〜6枚をのせさらにガラス板と約2kgの重しを果
せて約40分放置してオリゴマーの部分分解物をDEA
Eセルロースプレート上に移行させた。酢酸セルロース
膜及びワットマン3MMペーパーをとり除き、DEAE
プレートを蒸留水で約10cm程度展開後、ホモミック
スチャ−■を入れた展Il?l槽に移して70℃で約2
時間展開した。展開後、乾燥させ、一次元目の原点、青
色マーカー、黄色マーカーの位置及び二次丸目の青色マ
ーカー、黄色マーカーの位置に32pラベル水溶液をス
ポットして乾燥した。ポリ塩化ビニリデンフィルムで包
みオートラジオグラフィーを行ない、xmフィルムを現
像して解析した。
In the case of oligonucleotide A-3, 11 spots were observed, confirming that the partial decomposition was successful. 1
After 1N, 1μQ of it was taken and added to cellulose acetate H (manufactured by Mathier-Nagel, 50cm x
Cut 35co+later into two 25C11X36(Il
A spot was placed in the center of the line drawn with a pencil. At both ends, 0.5μQ of each 0.1% aqueous solution of Xylene Cyrtool FF, Orange G and Acid Tsukusin was used as a marker.
It was spot on. This was electrophoresed in an acetic acid and pyridine aqueous solution, and stopped when the blue marker spot of the xylene cyan tool FF and the yellow marker spot of the orange G had a difference in travel distance of about 10C11 (approximately 45 minutes at 1800V). ). Dry with a hair dryer and remove 1.5 CI from one end of DEAE cellulose plate (20c*X 20cm)
! The lower end of the cellulose acetate membrane was aligned with the line drawn at the 1 position and placed on the membrane. Place 5 to 6 sheets of Whatman 3MM paper (cut into 2.5cm x 20cm pieces) moistened with distilled water on top, add a glass plate and a weight of about 2kg, and leave it for about 40 minutes to form the oligomer part. DEA the decomposed product
Transferred onto E-cellulose plates. Remove cellulose acetate membrane and Whatman 3MM paper and apply DEAE
After expanding the plate to about 10 cm with distilled water, expand it with homomixture ■. Transfer to a tank and heat at 70℃ for about 2 hours.
Time unfolded. After development, it was dried, and a 32p label aqueous solution was spotted and dried at the origin, blue marker, and yellow marker positions of the first dimension, and at the positions of the secondary round blue marker and yellow marker. Autoradiography was performed by wrapping in polyvinylidene chloride film, and the xm film was developed and analyzed.

A−3については第4図のようになり5′側よりGAT
TCTGAGTGと確認した。
As for A-3, as shown in Figure 4, the GAT is connected from the 5' side.
Confirmed as TCTGAGTG.

A−1、A−2、A−4〜A−16及びB−1〜B−1
6についても同様に解析して所定の塩基配列になってい
ることを確認した。
A-1, A-2, A-4 to A-16 and B-1 to B-1
6 was similarly analyzed and confirmed to have the predetermined base sequence.

更に、各オリゴヌクレオチドの塩基配列を、マキサム・
ギルバート法によっても解析した。以下、オリゴヌクレ
オチドA−6を例として述べる。
Furthermore, the base sequence of each oligonucleotide was
It was also analyzed using the Gilbert method. Hereinafter, oligonucleotide A-6 will be described as an example.

オリゴヌクレオチドA−610μgを蒸留水100μQ
に溶かし、その7μQをとってA−3の場合と同様にし
て5′321ラベルしたものを得た。これを30μQの
蒸留水に溶かし、4本の1.51111容のエツベンド
ルフチューブに5μQX2本、10μ9X2本と分けて
入れた。5μQとったうちの1本はグアニンの反応を行
なうもので、DMSII衝液(50mMカコジル酸ナト
リウム(+)H8,O)、1iM  EDTAニナトリ
ウム)を200μQ加えII!ジメチルを1μQ加えて
20℃で30分反応させた。次いで、DMS反応停止液
(1,5M酢酸ナトリウム(p H7,0)、1Mメル
カプトエタノール、100μo/wltRNA)50u
Qと冷エタノール750ttQを加えて水浴中に5分置
き、DNAを沈澱させた。遠心分離して上清を捨て、た
だちに0.3M酢酸ナトリウム水溶液250μQを加え
て溶かした後、再び冷エタノール750μQを加えて0
℃で5分放置してDNAを沈澱させた。遠心分離して上
清を捨て、沈澱を70%エタノールで2回洗浄した。
Add 610 μg of oligonucleotide A to 100 μQ of distilled water.
7 μQ was taken and the same procedure as in the case of A-3 was carried out to obtain a product labeled with 5'321. This was dissolved in 30μQ of distilled water and divided into four 1.51111 volume Etzbendorf tubes: 2 5μQX and 2 10μ9X. One of the 5μQ was used for guanine reaction, and 200μQ of DMSII solution (50mM sodium cacodylate (+) H8,O), 1iM disodium EDTA) was added II! 1 μQ of dimethyl was added and reacted at 20° C. for 30 minutes. Next, 50 u of DMS reaction stop solution (1.5 M sodium acetate (pH 7.0), 1 M mercaptoethanol, 100 μo/wltRNA)
Q and 750ttQ of cold ethanol were added and placed in a water bath for 5 minutes to precipitate the DNA. After centrifuging and discarding the supernatant, immediately add 250 μQ of 0.3M sodium acetate aqueous solution to dissolve it, then add 750 μQ of cold ethanol again to remove the
The DNA was precipitated by standing at ℃ for 5 minutes. After centrifugation, the supernatant was discarded, and the precipitate was washed twice with 70% ethanol.

グアニンとアデニンの反応は、10μQ入れたチューブ
に蒸留水30μQを入れ、1M酢W10μQを加えて、
45℃にて90分間反応させた。
For the reaction between guanine and adenine, add 30μQ of distilled water to a tube containing 10μQ, add 10μQ of 1M vinegar,
The reaction was carried out at 45°C for 90 minutes.

次いでHz反応停止液(0,3M酢酸ナトリウム、0.
1−M  EDTAニナトリウム、50μg/ml  
t RNA)200μQと冷エタノール750μQを加
えて水浴中に5分間置き、DNAを沈澱させた。遠心分
離し上清を捨て、ただちに0.3M酢酸ナトリウム水溶
液250μQを加えて溶かした後、再び冷エタノール7
50μQを加えて0℃に5分間置くことによりDNAを
沈澱させた。
Then Hz reaction stop solution (0.3M sodium acetate, 0.3M sodium acetate, 0.3M sodium acetate,
1-M EDTA disodium, 50 μg/ml
t RNA) and 750 μQ of cold ethanol were added and placed in a water bath for 5 minutes to precipitate the DNA. After centrifugation and discarding the supernatant, immediately add 250μQ of 0.3M sodium acetate aqueous solution to dissolve, and then add 7 mL of cold ethanol again.
DNA was precipitated by adding 50 μQ and placing at 0° C. for 5 minutes.

遠心分離して上清を捨て沈澱を70%エタノールにて2
回洗浄した。
Centrifuge, discard the supernatant, and dissolve the precipitate in 70% ethanol.
Washed twice.

チミンとシトシンの反応は、10μQ入れたチューブに
蒸留水10μQを加え、またシトシンのみの反応は5μ
Q入れたチューブに5M塩化ナトリウム水溶液15μQ
を加え、どちらも30μQのヒドラジンを加えた後、4
5℃で40分間反応させた。反応終了後は、グアニンと
アデニンの反応の場合と同様の操作を行なった。
For the reaction of thymine and cytosine, add 10μQ of distilled water to a tube containing 10μQ, and for the reaction of only cytosine, add 5μQ of distilled water.
Add 15 μQ of 5M sodium chloride aqueous solution to the tube containing Q.
and after adding 30 μQ of hydrazine in both cases,
The reaction was carried out at 5°C for 40 minutes. After the reaction was completed, the same operation as in the case of the reaction between guanine and adenine was performed.

以上のようにして、塩基の修飾を行なった後、1Mピペ
リジン水溶液100゛μQを加えて、90℃で30分間
反応させた。水中にて急冷後、濃縮器にて吸引乾燥した
。次に完全にピペリジンを除去するために蒸留水50μ
Qずつ2回、30μεずつ2回、20μQずつ2回繰返
して溶解、吸引乾燥し、ピペリジンの臭いがなくなるま
で繰返した。4種のチューブのカウントを測定し、グア
ニン:グアニン+アデニン:チミン+シトシン:シトシ
ンの比が1:2:2:1となるように色素液(80%ホ
ルムアミド(H十型及びOH−型混合イオン交換樹脂で
脱塩したもの)、IIM  EDTAニナトリウム、1
0mM水酸化ナトリウム、0.1%キシレンシアツール
、0.1%ブロムフェノールブルー)を加え、90℃に
て2分加熱後急冷し、ゲル電気泳動を行なった。ゲルは
12.5%ポリアクリルアミド、50%尿素のゲルを、
予備泳動を1時間以上行なってから用いた。
After modifying the base as described above, 100 μQ of a 1M piperidine aqueous solution was added, and the mixture was reacted at 90° C. for 30 minutes. After quenching in water, it was suction-dried in a concentrator. Next, add 50μ of distilled water to completely remove piperidine.
Dissolution was repeated twice for each Q, twice for 30με, and twice for 20μQ, followed by suction drying, and the process was repeated until the smell of piperidine disappeared. The counts of the four tubes were measured and the dye solution (80% formamide (mixed H-type and OH-type desalted with ion exchange resin), IIM EDTA disodium, 1
0mM sodium hydroxide, 0.1% xylene cyatool, 0.1% bromophenol blue) were added, heated at 90°C for 2 minutes, then rapidly cooled, and gel electrophoresis was performed. The gel is 12.5% polyacrylamide, 50% urea.
It was used after performing preliminary electrophoresis for more than 1 hour.

泳動終了後ゲルをポリ塩化ビニリデンフィルムで包み、
オートラジオグラフィーを行なった。
After electrophoresis, wrap the gel with polyvinylidene chloride film.
Autoradiography was performed.

−80℃、−晩感光後現像して、A−6が5′側よりT
CTGCACGACGGTの塩基配列をしていることを
確認した。
-80℃, - After late exposure and development, A-6 is T from the 5' side.
It was confirmed that the base sequence was CTGCACGACGGT.

他のオリゴヌクレオチドA−1〜A−5、A−7〜A−
16及びB−1〜B−16も同様にして所定の塩基配列
を有することが確認された。
Other oligonucleotides A-1 to A-5, A-7 to A-
16 and B-1 to B-16 were similarly confirmed to have the predetermined base sequences.

次に、オリゴヌクレオチドのオリゴマーブロックを造成
するために第1図に示すような手順でオリゴヌクレオチ
ドブロックおよびサブユニットを造成した、さらに詳細
に述べれば以下の通りである。
Next, in order to construct an oligomer block of oligonucleotides, oligonucleotide blocks and subunits were constructed according to the procedure shown in FIG. 1.More details are as follows.

まず、A−1、A−2、A−3、A−14、八−15及
びA−16を、それぞれ約5μQずつ1.5−容のエツ
ベンドルフチューブに秤量した。
First, A-1, A-2, A-3, A-14, 8-15, and A-16 were each weighed in an amount of about 5 μQ into a 1.5-volume Etzbendorf tube.

蒸留水を50μQ加えて約0.1μg/μQとなるよう
に溶かした。この6種の水溶液を10μQずつ(DNA
としては1μΩずつ)別の6本のエラベンドルチューブ
に各々とり、別に用意した2501Mトリス・塩酸(p
H7,6) 、50mM塩化マグネシウム、101Mス
ペルミン、50mM  DTTとなるように調製した混
液6μ91次いでγ−32P−ATP水溶液(アマルシ
ャム社製)0.5μQ及びTtポリヌクレオチドキナー
ゼ(宝酒造■製)0.5μQ1蒸留水13μQを加えて
30μQとし、37℃で30分反応させた後、30m 
M  ATP水溶液を1μQずつ添加してさらに30分
反応させた。100℃2分間加熱することによって反応
を停止させ、氷中にて急冷した。このようにして5′端
をリン酸化したA−1、A−2、A−3、A−14、八
−15及びA−16を各々10μQずつ別の1本の1.
5℃容のエツペンドルフチューブにとり、2501Mト
リス・塩酸水溶液(pH7,6)を40μQ150■M
塩化マグネシウムを40μQ及び蒸留水35μQを加え
て175μQとし、90℃にて2分間加熱した。加熱後
自然冷却し、室温までもどした後に、200m M  
DTT水溶液10μQ、201M  ATP水溶液10
μQ及びT、DNAリガーゼ(■ニラボンジーン製)5
μQ(100ユニツト)を加えて4℃にて一晩反応させ
、A−1、A−2、A−3、八−14、八−15及びA
−16が連結されたオリゴヌクレオチドのブロック1を
造成した。
50 μQ of distilled water was added to dissolve the solution at a concentration of about 0.1 μg/μQ. 10μQ each of these six types of aqueous solutions (DNA
Separately prepared 2501M Tris-hydrochloric acid (p
H7,6), 6μ91 of a mixture prepared to have 50mM magnesium chloride, 101M spermine, 50mM DTT, then 0.5μQ of γ-32P-ATP aqueous solution (manufactured by Amersham) and 0.5μQ1 of Tt polynucleotide kinase (manufactured by Takara Shuzo ■) Add 13μQ of distilled water to make 30μQ, react at 37℃ for 30 minutes, and then add 30μQ of distilled water.
1 μQ of M ATP aqueous solution was added and the reaction was further continued for 30 minutes. The reaction was stopped by heating at 100° C. for 2 minutes and quenched in ice. A-1, A-2, A-3, A-14, 8-15, and A-16 whose 5' ends were phosphorylated in this way were separated into 10 μQ each in one separate 1.
Transfer 2501M Tris/hydrochloric acid aqueous solution (pH 7.6) to a 5°C Eppendorf tube and add 40μQ150M
40 μQ of magnesium chloride and 35 μQ of distilled water were added to give a total concentration of 175 μQ, and the mixture was heated at 90° C. for 2 minutes. After heating, naturally cooling and returning to room temperature, 200 m M
DTT aqueous solution 10 μQ, 201M ATP aqueous solution 10
μQ and T, DNA ligase (■Nirabon Gene) 5
Add μQ (100 units) and react overnight at 4°C.
-16 linked oligonucleotide block 1 was constructed.

A−4、A−5、A−6、A−11、A−12及びA−
13のブロック2も同様に造成した。
A-4, A-5, A-6, A-11, A-12 and A-
Block 2 of 13 was constructed in the same way.

A−7、A−8、A−9及びA−10のブロック3につ
いては同様にして5′端をリン酸化後、夫々10μQず
つとり、2501Mトリス・塩酸水溶液(E)H7,6
)を40tIQ、5011M塩化マグネシウムを40μ
Q及び蒸留水55μQを加えて総量を175μQとし9
0℃にて2分間加熱゛した。加熱後自然冷却し室温まで
もどした後に200w M  DTT水溶液10μQ、
20111MATP水溶液10μQ及びTA DNAリ
ガーゼ(■ニラボンジーン製)5μQ(100ユニツト
)を加えて4℃にて一晩反応させ連結させた。
For blocks 3 of A-7, A-8, A-9 and A-10, after phosphorylating the 5' ends, 10 μQ each was taken and added to a 2501 M Tris/HCl aqueous solution (E) H7,6.
) to 40tIQ, 5011M magnesium chloride to 40μ
Add Q and 55μQ of distilled water to make a total volume of 175μQ9.
It was heated at 0°C for 2 minutes. After heating, naturally cooling and returning to room temperature, 10μQ of 200w M DTT aqueous solution,
10 μQ of 20111 MATP aqueous solution and 5 μQ (100 units) of TA DNA ligase (manufactured by Nirabon Gene) were added, and the mixture was reacted overnight at 4° C. for ligation.

上記各操作により連結させた各ブロックに2倍容のエタ
ノールを加え、−80℃で30分放置することによりD
NAを沈澱させ、12.5%ポリアクリルアミドゲル電
気泳動を行ない、オートラジオグラフィーによりブロッ
ク1については72b、p、及び36b、11.の位置
のバンドを、ブロック2については36b、I)、の位
置のバンドを、ブロック3については48 b、p、及
び24 b、p、の位置のバンドをそれぞれ切り出し、
10IMトリス・塩酸(pH7,6)、10+gM  
E[lTAニナトリウム水溶液を加え室温にて一晩放置
して溶出させた。
D
NA was precipitated, 12.5% polyacrylamide gel electrophoresis was performed, and autoradiography revealed 72b, p, and 36b, 11. for block 1. For block 2, cut out the band at position 36b, I), for block 3, cut out the band at position 48 b, p, and 24 b, p, respectively,
10IM Tris-HCl (pH 7,6), 10+gM
E[lTA disodium aqueous solution was added and allowed to stand at room temperature overnight to elute.

遠心分離して上清を分離し、フェノールを加えてよく振
りまぜた後遠心して下層を捨て、さらにフェノールを加
えて同様の操作を2回繰返した後、セファデックスG−
50を充填した直径1C■、長さ20CIのカラムを通
してフェノールとアクリルアミドを除き、次いで200
μQまで濃縮後、2倍容のエタノールを加えて一80℃
で30分放置させて沈澱させた。
Centrifuge to separate the supernatant, add phenol, shake well, centrifuge, discard the lower layer, add phenol, repeat the same operation twice, and add Sephadex G-
Phenol and acrylamide were removed through a column with a diameter of 1 C and a length of 20 CI packed with 200
After concentrating to μQ, add 2 times the volume of ethanol and
The mixture was allowed to stand for 30 minutes to allow precipitation.

得られた3種のオリゴヌクレオチドのブロックを合わせ
て501Mトリス・塩酸(p H7,6)、101M塩
化マグネシウム、20■M  DTT。
The resulting three oligonucleotide blocks were combined and mixed with 501M Tris-HCl (pH 7,6), 101M magnesium chloride, and 20M DTT.

1mM  ATPの混液としてTA DNAリガーゼ5
μQ(100ユニツト)を加え4℃で一晩放置して連結
させた。2倍容のエタノールを加えて一80℃、30分
装いて沈澱させ、8%ポリアクリルアミドゲル電気泳動
を行ないオートラジオグラフィーにより96 b、p、
と192 b、p、のバンドを切り出し101Mトリス
・塩酸(pH7,6)、10mM  EDTAニナトリ
ウム水溶液を加え室温にて一部放1して溶出させた。遠
心分離して上清を分離しフェノールを加えてよく振りま
ぜた後遠心して下層を捨て、さらにフェノールを加えて
同様の操作を2回繰返した後、セファデックスG−50
カラムを通した後、濃縮して2倍容のエタノールを加え
て、−80℃、30分放置によりDNAを沈澱させた。
TA DNA ligase 5 as a mixture of 1mM ATP
μQ (100 units) was added and allowed to stand overnight at 4°C for ligation. 96 b, p,
and 192b, p, and 101M Tris/HCl (pH 7,6) and 10mM disodium EDTA aqueous solution were added to the band and partially allowed to elute at room temperature. Centrifuge to separate the supernatant, add phenol, shake well, centrifuge, discard the lower layer, add phenol, repeat the same operation twice, and add Sephadex G-50.
After passing through the column, it was concentrated, 2 volumes of ethanol was added, and the DNA was left to stand at -80°C for 30 minutes to precipitate the DNA.

これをEcoRIとBa1HIで切断してサブユニット
Aが得られた。
This was cleaved with EcoRI and Ba1HI to obtain subunit A.

同様にして第2図に示すように、B−1、B−2、B−
15及びB−16を連結させてブロック4を、B−3、
B−4、B−13及びB−14を連結させてブロック5
を、B−5、B−6、B−11及びB−12を連結させ
てブロック6を、またB−7、B−8、B−9及びB−
10を連結させてブロック7を造成し、各ブロックの2
6 b、p。
Similarly, as shown in Figure 2, B-1, B-2, B-
15 and B-16 are connected to form block 4, B-3,
Connect B-4, B-13 and B-14 to form block 5
, B-5, B-6, B-11 and B-12 are connected to form block 6, and B-7, B-8, B-9 and B-
10 are connected to create block 7, and 2 of each block is
6 b, p.

及び52 b、p、のバンドを分取し、さらにこれらを
同様にし゛て連結させて104 b、p、と208 b
、p、としたものを得、これを)(ind[[と3am
HIで切断した。このようにしてサブユニットBが得ら
れた。
The bands of 104 b, p, and 208 b were collected by separating the bands of 104 b, p, and 52 b, p, and connecting them in the same manner.
, p, which is )(ind[[and 3am
Cut with HI. Subunit B was thus obtained.

第1図に示す様に、pBR322をEcoRIとBa1
HIで切断し、アルカリフォスファターゼ(宝酒造■製
)で5′側のPをはずしてもとの状態にもどらないよう
にした後、これにサブユニットAを合わせ、501Mト
リス・塩酸(pH7,6)、10mM塩化マグネシウム
、205M[)TT、1m M  ATPの混液として
TADNAリガーゼ5μQを加えて4℃にて一晩放置し
て連結させた。2倍容のエタノールを加えて一80℃に
30分置いて沈澱させ、遠心分離して沈澱を乾燥後、蒸
留水100μQに溶かした。かくして、サブユニットA
をpBR322に組み込んだプラfスミドp UGlが
得られた。
As shown in Fig. 1, pBR322 was diluted with EcoRI and Ba1.
After cutting with HI and removing P on the 5' side with alkaline phosphatase (manufactured by Takara Shuzo) to prevent it from returning to its original state, subunit A was combined with this, and 501M Tris/hydrochloric acid (pH 7,6) was added. , 10mM magnesium chloride, 205M[)TT, and 1mM ATP, 5 μQ of TA DNA ligase was added, and the mixture was allowed to stand overnight at 4°C for ligation. Two volumes of ethanol was added and the mixture was allowed to stand at -80°C for 30 minutes to precipitate, centrifuged to dry the precipitate, and then dissolved in 100 μQ of distilled water. Thus, subunit A
A plasmid pUGl was obtained in which the following was incorporated into pBR322.

このプラスミドp、UG1を、カルシウム法による形質
転換法により大腸菌88101株に導入した。
This plasmid p, UG1 was introduced into Escherichia coli strain 88101 by a transformation method using the calcium method.

即ち、宿主とする大腸菌H8101株を50m12のL
B培地(1%バクトドリプトン、0.5%酵母エキス、
0.5%塩化ナトリウム)で37℃で培養し、610n
mの吸光度が0.25に達したら401112の培養液
を遠心チューブに移し、4℃、6000 rpmで10
分間遠心分離して上澄をすて、沈澱を201111の氷
冷した0、1M塩化マグネシウムに懸濁し、再び同じ条
件で遠心分離して上澄をすてた。沈澱を20Wllの氷
冷した0、1M塩化カルシウム、0.05M塩化マグネ
シウム液に懸濁した。1時間氷冷した後、遠心分離して
上澄をすて、沈澱を211112の氷冷した0、1M塩
化カルシウム、0.05M塩化マグネシウム液に懸濁さ
せた。
That is, the E. coli H8101 strain used as a host was transferred to 50 m12 L.
B medium (1% Bactodrypton, 0.5% yeast extract,
0.5% sodium chloride) at 37°C and 610n
When the absorbance of m reached 0.25, the culture solution of 401112 was transferred to a centrifuge tube and incubated at 4°C and 6000 rpm for 10 min.
The mixture was centrifuged for a minute, the supernatant was discarded, the precipitate was suspended in ice-cold 0.1 M magnesium chloride 201111, and the mixture was centrifuged again under the same conditions, and the supernatant was discarded. The precipitate was suspended in 20Wl of ice-cooled 0.1M calcium chloride, 0.05M magnesium chloride solution. After cooling on ice for 1 hour, the mixture was centrifuged, the supernatant was discarded, and the precipitate was suspended in ice-cold 0, 1M calcium chloride, 0.05M magnesium chloride solution of 211112.

この懸濁液200μQに10μQの上記p UG1水溶
液を加え、1時間氷冷した後、43.5℃の水浴で30
秒間加温した。その後2.812のLB培地を加え37
℃で1時間培養し、アンピシリン50μg/−添加LB
平面培地にシャーレ一枚当り200μQをまいて37℃
で一晩培養した。生育してきたコロニーをさらにアンピ
シリン50μg/1m12添加のLB平面培地゛とテト
ラサイクリン20μg/或添加のLB平面培地の両方に
植菌して37℃で一晩培養し、1アンピシリンにのみ耐
性のものを分離して、形質転換株を得た。
10 μQ of the above pUG1 aqueous solution was added to 200 μQ of this suspension, cooled on ice for 1 hour, and then placed in a 43.5°C water bath for 30 minutes.
Warmed for seconds. Then add 2.812 LB medium and 37
LB cultured at ℃ for 1 hour and supplemented with 50 μg/- of ampicillin.
Sprinkle 200μQ per Petri dish on a flat medium and heat at 37°C.
Cultured overnight. The grown colonies were further inoculated into both LB flat medium supplemented with 50 μg/ml of ampicillin and LB flat medium supplemented with 20 μg/ml of tetracycline, cultured overnight at 37°C, and those resistant to only 1 ampicillin were isolated. A transformed strain was obtained.

次に、この株をアルカリ抽出法により小スケールでプラ
スミドを分“取し、Ba1IIの切断部位が存在するも
のを選んだ。これをさらに大量の培地で培養し、同じく
アルカリ抽出法によりプラスミドp UGlを分取した
Next, plasmids were isolated on a small scale from this strain using the alkaline extraction method, and those containing the Ba1II cleavage site were selected.This was further cultured in a large amount of medium, and the plasmid pUGl was isolated using the same alkaline extraction method. was separated.

次に、得られたp UGl中に組み込まれているサブユ
ニットAの塩基配列を、EC0RI切断サイト及びBa
i+HI切断サイトの二方向から解析した。
Next, the base sequence of subunit A incorporated into the obtained pUGl was extracted from the EC0RI cleavage site and Ba
The i+HI cleavage site was analyzed from two directions.

まず、EOORIと3a■HIでそれぞれ別々に切断し
たものを用意した。EcoRIで切断したものについて
は、アルカリフォスファターゼで5′端のPを除いた後
、γ−52P−ATPとT4ポリヌクレオチドキナーゼ
を用いて5′32 pラベルした。次いで、EcoRI
で切断して5′32Pラベルしたものを5alIで切断
して約380 b、p、のフラグメントを5%ポリアク
リルアミドゲル電気泳動で分離した。又、BamHIで
切断したものについては、同様に5′32Pラベルした
後PStIで切断して約860 b、p、のフラグメン
トを同様に分離した。切り出したゲルをつぶし、10m
Mトリス・塩1(E)H7,6)、10隊M  EDT
A二ナトジナトリウム混液て室温で一晩おいて溶出させ
た。遠心分離して上清を分離し、フェノールを加えて振
りまぜた後遠心して下層を捨て、さらにフェノールを加
えて同様の操作を2回繰返した後、セファデックスG−
50カラムを通し、フェノールとアクリルアミドを除去
した。液を濃縮し2倍容のエタノールを加えて、−80
℃、30分置くことによりDNAを沈澱させ、70%エ
タノールで2回洗浄後乾燥させた。蒸留水30μQに溶
かし、オリゴヌクレオチドの分析のところで述べたマキ
サム・ギルバート法によりDNA塩基配列の分析を行な
った。但し化学的修飾のための条件は、オリゴヌクレオ
チドの場合とは異なり、グアニンの反応では23℃で4
分間、グアニンとアデニンの反応では0.5M酢酸を用
い水30μQを加える代わりに1μg/μQのt RN
A水溶液11μQと水19μQを加えた。又反応時間も
45℃で20分間とした。チミンとシトシンの反応及び
シトシンのみの反応は、23℃で7分間行なった。
First, separately cut pieces were prepared using EOORI and 3a■HI. For those cut with EcoRI, P at the 5' end was removed with alkaline phosphatase, and then 5'32p was labeled using γ-52P-ATP and T4 polynucleotide kinase. Then EcoRI
The 5'32P-labeled product was cut with 5alI, and the approximately 380 b, p fragment was separated by 5% polyacrylamide gel electrophoresis. Furthermore, the fragment cut with BamHI was labeled with 5'32P in the same manner and then cut with PStI, and a fragment of approximately 860 b, p was isolated in the same manner. Crush the cut out gel and 10m
M Tris Salt 1 (E) H7, 6), 10th Corps M EDT
Elution was carried out with a mixture of disodium A disodium and left overnight at room temperature. Centrifuge to separate the supernatant, add phenol, shake, centrifuge, discard the lower layer, add phenol, repeat the same operation twice, and add Sephadex G-
50 column to remove phenol and acrylamide. Concentrate the solution and add 2 volumes of ethanol to -80
The DNA was precipitated by leaving it at ℃ for 30 minutes, washed twice with 70% ethanol, and then dried. It was dissolved in 30 μQ of distilled water, and the DNA base sequence was analyzed by the Maxam-Gilbert method described in the analysis of oligonucleotides. However, the conditions for chemical modification are different from those for oligonucleotides, and for the reaction of guanine, the conditions are
For the reaction of guanine and adenine, use 0.5M acetic acid and add 1μg/μQ of tRN instead of adding 30μQ of water.
11 μQ of aqueous solution A and 19 μQ of water were added. The reaction time was also set at 45°C for 20 minutes. The reaction of thymine and cytosine and the reaction of only cytosine were carried out at 23°C for 7 minutes.

上記以外の条件はオリゴヌクレオチドの場合と同様とし
た。電気泳動は、分析する塩基数によって12.5%ポ
リアクリルアミド、50%尿素ゲルで5′端から30塩
基程度まで、又8%ポリアクリルアミド、50%尿素ゲ
ルで泳動時間を長くすることによりそれ以上の塩基数を
読むことが出来た。
Conditions other than the above were the same as for oligonucleotides. Depending on the number of bases to be analyzed, electrophoresis can be performed up to about 30 bases from the 5' end using a 12.5% polyacrylamide, 50% urea gel, or longer by extending the electrophoresis time on an 8% polyacrylamide, 50% urea gel. I was able to read the number of bases.

解析結果を参考写真1及び2に示す。レーン1〜4はE
coRI−8alIフラグメント、レーン5〜8はBa
5HI −PstIフラグメントについての結果である
。レーン1及び5はグアニンの反応物、2及び6はグア
ニン+アデニンの反応物、3及び7はチミン+シトシン
の反応物、4及び8はシトシンの反応物をそれぞれ示す
。参考写真2は、参考写真1と同じ試料をゲル濃度を変
えて電気泳動した結果であって高分子量側(参考写真1
上部に相当する)を拡大したものである。このようにし
て、サブユニットAの塩基配列を確認できた。
The analysis results are shown in Reference Photos 1 and 2. Lanes 1-4 are E
coRI-8alI fragment, lanes 5-8 are Ba
Results for the 5HI-PstI fragment. Lanes 1 and 5 show the guanine reaction products, 2 and 6 show the guanine+adenine reaction products, 3 and 7 show the thymine+cytosine reaction products, and 4 and 8 show the cytosine reaction products, respectively. Reference photo 2 is the result of electrophoresis of the same sample as reference photo 1 with different gel concentrations, and is on the high molecular weight side (reference photo 1).
(corresponding to the upper part) is enlarged. In this way, the base sequence of subunit A could be confirmed.

同様にしてサブユニットBとpBR322を、それぞれ
Hindl[[と3amHIで切断し、大きい方のフラ
グメントを電気泳動で分離した後のものと連結して、サ
ブユニットBをpBR322に組み込んだプラスミドp
 LIG2を得た。こ九を用いて、同様にしてH810
1株を形質転換し、アンピシリンにのみ耐性のコロニー
を選んだ。該コロニーより同様にプラスミドを分取し、
BolI[の切断部位の有無及びMIuIの切断部位の
有無をしらべ両方とも存在するものを選んだ。大量に培
養してプラスミドp UO2を分取して、p LIG2
中のサブユニットBの塩基配列を、二方向から解析した
In the same manner, subunit B and pBR322 were cut with Hindl [[ and 3amHI, respectively, and the larger fragment was separated by electrophoresis and ligated to the plasmid pBR322 in which subunit B was integrated.
Obtained LIG2. H810 in the same way using this
One strain was transformed and colonies resistant only to ampicillin were selected. A plasmid was similarly collected from the colony,
The presence or absence of the BolI cleavage site and the presence or absence of the MIuI cleavage site were examined, and those containing both were selected. After culturing in large quantities, the plasmid pUO2 was collected and pLIG2
The base sequence of subunit B was analyzed from two directions.

即ち、Hindl[[とBag+HIとでそれぞれ切断
し、それぞれ5′32pラベルした後、1−(i口dl
[[で切断したものについては5alIで、又BamH
Iで切断したものについてはPstIで切断して、それ
ぞれ380 b、p、と890 b、p、のフラグメン
トを5%ポリアクリルアミドゲル電気泳動により分離し
た。
That is, after cutting with Hindl[[ and Bag+HI and labeling each with 5′32p,
[For those cut with [, 5alI and BamH
Those cut with PstI were cut with PstI, and the 380 b, p and 890 b, p fragments were separated by 5% polyacrylamide gel electrophoresis.

同様にして、両方ともマキサム・ギルバート法により分
析した。
Similarly, both were analyzed by the Maxam-Gilbert method.

解析結果を参考写真3に示す。レーン1〜4はHind
 m−8alIフラグメント、レーン5〜8は同じ試料
をゲル濃度を変えて電気泳動した結果であって、高分子
量側(レーン1〜4の上部に相当する)を拡大したもの
である。各レーンの反応物は参考写真1の場合と同様の
ことを示す。このようにしてサブユニットBの塩基配列
を確認できた。
The analysis results are shown in Reference Photo 3. Lanes 1 to 4 are Hind
m-8alI fragment, lanes 5 to 8 are the results of electrophoresis of the same sample at different gel concentrations, and are enlarged views of the high molecular weight side (corresponding to the upper part of lanes 1 to 4). The reaction products in each lane are the same as in Reference Photo 1. In this way, the base sequence of subunit B could be confirmed.

次に、第3図に示す様に、p UGlをHindllと
5alIで切断し大きい方の7グラメントを、バイオゲ
ル1.511カラムを通して分取した。又、9 UO2
をHlndI[[と5alIt’切断し電気泳動によっ
て小さい方のフラグメントを分取した。両者を合わせ、
T t D、’ N Aリガーゼで連結してサブユニッ
トA+Bであるβ−ウロガストロン遺伝子をpBR32
2に組み込んだプラスミド+1 UO3を得た。これを
用いて、大腸菌H8101株を形質転換した。この場合
も同様にして、アンピシリンにのみ耐性であってMlu
Iの切断部位を持つプラスミドを有するコロニーを選び
、大量培養してプラスミドp UO3を分取した。そし
て、EI UO3中のβ−ウロガストロン遺伝子の塩基
配列を二方向から解析した。即ち、EcoRI及びBa
mHIでそれぞれ切断したものを5132pラベルし、
EC0RIで切断し32pラベルしたものについては3
al工で切断して約550b、p、のフラグメントを分
取し、Ba!IHIで切断し32pラベルしたものにつ
いてはPstIで切断して900 b、p、のフラグメ
ントを分取した。それぞれマキサム・ギルバート法によ
りDNA塩基配列の解析を行なった。
Next, as shown in FIG. 3, pUGl was cut with Hindll and 5alI, and the larger 7 grams were fractionated through a Biogel 1.511 column. Also, 9 UO2
was digested with HlndI[[ and 5alIt', and the smaller fragment was separated by electrophoresis. Combine both,
The β-urogastrone gene, which is subunit A+B, was ligated with T t D,'NA ligase to pBR32.
2+1 UO3 was obtained. This was used to transform E. coli strain H8101. In this case as well, it is resistant only to ampicillin and Mlu
Colonies containing a plasmid having the I cleavage site were selected, cultured on a large scale, and plasmid pUO3 was fractionated. Then, the base sequence of the β-urogastrone gene in EI UO3 was analyzed from two directions. That is, EcoRI and Ba
Label each cut with mHI with 5132p,
3 for those cut with EC0RI and labeled with 32p.
A fragment of approximately 550b,p was separated by cutting with an alkaline process, and Ba! Those that were cut with IHI and labeled with 32p were cut with PstI and a 900 b, p fragment was collected. The DNA base sequences of each were analyzed by the Maxam-Gilbert method.

解析結果を参考写真4に示す。レーン1〜4はBamH
I −PstIフラグメントについての結果である。レ
ーン5〜8は同じ試料をゲル濃度を変えて電気泳動した
結果であって、高分子量側(レーン1〜4の上部に相当
する)を拡大したものである。各レーンの反応物は参考
写真1と同様のことを示す。この解析により、β−ウロ
ガストロン遺伝子の塩基配列を確認できた。
The analysis results are shown in Reference Photo 4. Lanes 1-4 are BamH
Results for the I-PstI fragment. Lanes 5 to 8 are the results of electrophoresis of the same sample with different gel concentrations, and are enlarged views of the high molecular weight side (corresponding to the upper part of lanes 1 to 4). The reaction products in each lane are the same as in Reference Photo 1. Through this analysis, the base sequence of the β-urogastrone gene could be confirmed.

′ λファージの左向きプロモーターλPLを利用して
、β−ウロガストロンを発現させた実施例について以下
に具体的に述べる。
' An example in which β-urogastrone was expressed using the leftward promoter λPL of the λ phage will be specifically described below.

まず、APL発現プラスミドの宿主である大腸菌881
01株由来のECl−2株の造成、λファージの変異株
であるλCl857S7のDNAからのλPLプロモー
ターを含むDNA断1片のクローニング及び発現プラス
ミドの構築について述べ、次いでλPLプロモーターに
よりβ−ウロガストロンの遺伝子を宿主ECl−2株中
で発現させたことについて述べる。
First, E. coli 881, the host of the APL expression plasmid,
We will describe the construction of ECl-2 strain derived from strain 01, the cloning of a DNA fragment containing the λPL promoter from the DNA of λCl857S7, a mutant strain of λ phage, and the construction of an expression plasmid. We will describe the expression of the vector in the host strain ECl-2.

(a)  ECl−2株の造成 ECl−2株は、Cl857遺伝子を発現するプラスミ
ドpGH37を保有させた大腸菌88101株である。
(a) Construction of ECl-2 strain ECl-2 strain is E. coli 88101 strain carrying plasmid pGH37 expressing the Cl857 gene.

DGH37は第5図に示すようにして造った。DGH37 was constructed as shown in FIG.

即ちまず、λCl857S7 DNAeBllIIIr
切断した。その際に生じるDNA5’側末端の一本鎖部
分を分解して平滑末端とするために、SIヌクレアーゼ
を用いた。200■M塩化ナトリウム、301MI¥酸
ナトリウム、5aM硫酸亜鉛(pH4,5)の反応溶液
100wtJ中にBoll[で切断したλCl857S
y  DNA1μ0とS1ヌクレアーゼ200ユニツト
を含む条件で20℃、30分間反応させた。このように
して得られた平滑末端DNA断片から1.0%アガO−
スゲル電気°泳動によりCl857の全構造遺伝子を有
する2385塩基対の断片を単離した。この断片をプラ
スミドI)GLlolのPvuI[切断部位に挿入して
、1acUV5プロモーター支配下にCl857遺伝子
を発現するプラスミドpGH3,6を造成した。次いで
、EIGH36をEcoRIとPstIの2種の制限酵
素で切断し、得られた1193塩基対の断片をプラスミ
ドE)SC101のEcoRIとpsBの両切断部位の
間に挿入してプラスミドpGH37を作成した。
That is, first, λCl857S7 DNAeBllIIIr
Amputated. SI nuclease was used to decompose the single-stranded portion of the 5' end of the DNA generated at this time to make a blunt end. λCl857S cut with a Boll[
The reaction was carried out at 20°C for 30 minutes under conditions containing 1μ0 of y DNA and 200 units of S1 nuclease. From the blunt-ended DNA fragment thus obtained, 1.0% Aga O-
A 2385 base pair fragment containing the entire structural gene of Cl857 was isolated by gel electrophoresis. This fragment was inserted into the PvuI cut site of plasmid I) GLlol to construct plasmids pGH3,6 expressing the Cl857 gene under the control of the 1acUV5 promoter. Next, EIGH36 was digested with two restriction enzymes, EcoRI and PstI, and the resulting 1193 base pair fragment was inserted between the EcoRI and psB cleavage sites of plasmid E) SC101 to create plasmid pGH37.

次に、大腸菌H8101株をpGH37を用いて既に述
べた方法で形質転換して得られた株の1つをECl−2
と命名した。この株はテトラサイクリン耐性でCl85
7遺伝子を発現し、しかも  4pBR322などから
由来した他のプラスミドを形質転換により共存させるこ
とができる。従って、以後λPL発現プラスミドの宿主
としてECl−2株を用いた。
Next, one of the strains obtained by transforming E. coli H8101 strain with pGH37 by the method described above was transformed into ECl-2.
It was named. This strain is tetracycline resistant and Cl85
7 genes, and can coexist with other plasmids derived from 4pBR322 and the like by transformation. Therefore, strain ECl-2 was used hereafter as a host for the λPL expression plasmid.

<b>  λPLプロモーターのクローニングと発現プ
ラスミドの造成 まず、λCl857Sy DNAをtlORIと5al
Iで切断してλPLプロモーター、Cl857遺伝子、
λPRプロモーターの領域を含む5925塩基対の断片
をとり、これをプラスミドE)BR322のEcoRI
と5alI切断部位間に挿入して、プラスミドpGH2
5を造成した。
<b> Cloning of λPL promoter and construction of expression plasmid First, λCl857Sy DNA was cloned with tlORI and 5al.
λPL promoter, Cl857 gene,
A 5925 base pair fragment containing the λPR promoter region was taken and used as a plasmid E) with EcoRI of BR322.
and 5alI cleavage site to create plasmid pGH2.
5 was created.

次いで、pGH25をB awl(I r切断し、同様
に13a璽HIで切断したDBR322と結合してpG
H34を造成した。
Next, pGH25 was cut with Bawl (Ir) and ligated with DBR322, which was also cut with 13a HI, to form pGH25.
Created H34.

続いてpGH34をAva工及びBgllet”切断後
、S1ヌクレアーゼで約4500塩基対の平滑末端を有
する断片とし、これをTa DNAリガーゼで環状にし
てプラスミド1lGH35を造成した。
Subsequently, pGH34 was digested with Ava and Bgllet, cut into a blunt-end fragment of approximately 4500 base pairs with S1 nuclease, and circularized with Ta DNA ligase to construct plasmid 11GH35.

一連の操作の概略を第6図に示す。An outline of the series of operations is shown in FIG.

次に、EIGH35をHl)aIで切断し、アダプター
としてSD配列を保有する合成オリゴヌクレオチドC−
1−1とC−1−2を結合し、さらにBaw+HIで切
断したプラスミドp MC1403を結合してプラスミ
ドpEG−2を造成した。pEG−2はアンピシリン耐
性遺伝子を持ち、又λPLプロモーター支配で合成オリ
ゴヌクレオチドC−1−1、c−1−2上のSD配列を
利用し、同じく合成オリゴヌクレオチド上の開始コドン
からβ−ガラクトシダーゼが翻訳されるように組み立て
たものである。
Next, EIGH35 was cleaved with Hl)aI, and a synthetic oligonucleotide C-
1-1 and C-1-2 were ligated, and plasmid pMC1403 cut with Baw+HI was further ligated to construct plasmid pEG-2. pEG-2 has an ampicillin resistance gene, and utilizes the SD sequences on synthetic oligonucleotides C-1-1 and c-1-2 under the control of the λPL promoter to generate β-galactosidase from the start codon on the same synthetic oligonucleotides. It is constructed to be translated.

アダプターc−1−i及びC−1−2は、下記の構造の
も=のである。
Adapters c-1-i and C-1-2 have the following structure.

プラスミドp EG2は、宿主EC丁−2中でβ−ガラ
クトシダーゼを実際に発現することがMillerの方
法(Miller 、J、(1972)“E xper
iment  in  M olecular  G 
enetics ”New  York 、 Co1d
  3pring  HarborL aborato
ry  1)l)352−355 )により確かめられ
た。この方法は、合成基質0NPG (オルトニトロフ
ェニルガラクトシド)がβ−ガラクトシダーゼにより分
解されて黄色のニトロフェノールを生成する呈色反応を
利用して酵素量を定量するものである。該Miller
の方法をより具体的に以下に説明する。 610nmで
の吸光度を測定した供試菌の培養液0.110を1.9
0のアッセイバッファ(0,1Mリン酸ナトリウムJ)
)17.0゜11M1aIIマグネシウム、0.1M 
 B−メ)Lhブトメタノール)と混和し、0.1−の
トルエンを加えて15秒間激しく撹拌して、膜透過性を
高めた後、アスピレータ−でトルエンを蒸散させる。
Plasmid pEG2 actually expresses β-galactosidase in the host EC-2 using the method of Miller (Miller, J. (1972) “Exper
iment in Molecular G
enetics ”New York, Colorado
3pring Harbor L aborato
ry 1) l) 352-355). In this method, the amount of enzyme is quantified using a color reaction in which the synthetic substrate 0NPG (orthonitrophenyl galactoside) is decomposed by β-galactosidase to produce yellow nitrophenol. Miller
The method will be explained in more detail below. The culture solution of the test bacteria whose absorbance was measured at 610 nm was 0.110 to 1.9
0 assay buffer (0,1M sodium phosphate J)
)17.0゜11M1aII Magnesium, 0.1M
B-Me) Lh-butomethanol) is mixed, 0.1-l of toluene is added and stirred vigorously for 15 seconds to increase membrane permeability, and the toluene is evaporated with an aspirator.

これに0.2m12ONPG溶液(400+gaONP
Gを100−のアッセイバッファーに溶解)を加え、黄
色に着色するまで一定時間30℃で振盪する。
Add to this 0.2m12ONPG solution (400+gaONP
G (dissolved in 100-ml assay buffer) and shaken at 30°C for a certain period of time until it turns yellow.

次いで1M炭酸ナトリウム0.511Gを加えて酵素反
応を停止させ、420nsと550nlの吸光度を測定
する。
Next, 0.511 G of 1M sodium carbonate is added to stop the enzyme reaction, and the absorbance at 420 ns and 550 nl is measured.

610tvでの吸光度を1.0として換輝した菌液11
111中のβ〜ガラクトシダーゼ活性は、次式により算
出される。
Bacterial liquid 11 brightened with absorbance at 610tv set to 1.0
The β~galactosidase activity in 111 is calculated by the following formula.

β−ガラクトシダーゼ活性  ODa 2o −1,7
5X0Ds s 。
β-galactosidase activity ODa 2o -1,7
5X0Ds s.

(units )    =           x
looot XV X0D6 + 。
(units) = x
root XV X0D6 +.

t:反応時wA(Iin ) ■=供試菌の反応系に加えた量(0,1m12)ODe
 + o :供試菌の610闇における吸光度その結果
、p EG2を保有するECl−2株を30℃で培養し
た時には、β−ガラクトシダーゼ活性は98ユニツトで
あったものが30℃で前培養した後42℃で1時間培養
を行うと、λPLプロモーターが活性化されてβ−ガラ
クトシダーゼ活性は9637ユニツトとなった。これに
より、p EG2において、λPLプロモーター以下β
−ガラクトシダーゼまでの配列が正しく連結されている
ことが証明された。
t: wA (Iin) during reaction ■=Amount of test bacteria added to reaction system (0.1m12) ODe
+ o: Absorbance of the test bacterium in the dark at 610°C As a result, when the ECl-2 strain carrying pEG2 was cultured at 30°C, the β-galactosidase activity was 98 units, but after pre-culture at 30°C When cultured at 42°C for 1 hour, the λPL promoter was activated and the β-galactosidase activity was 9637 units. As a result, in pEG2, β below the λPL promoter
- It was proven that the sequence up to galactosidase was correctly linked.

次にp EG2はBa1lIによる切断点を2ケ所に有
するがβ−ガラクトシダーゼのSD配列の直後に存在す
るBglI[サイトみが必要で他方゛はむしろ不要であ
るためBaa+HIで切断し再結合することにより、約
770塩基対のBa1HI断片を除去したI)EK28
を造成した。このp EK28の造成によりλPLプロ
モーター系の発現プラスミドが完成したものである。
Next, pEG2 has Ba1lI cleavage sites at two sites, but only the BglI site located immediately after the SD sequence of β-galactosidase is required, and the other site is rather unnecessary, so it is cut with Baa + HI and recombined. , I) EK28 with the approximately 770 base pair Ba1HI fragment removed.
was created. With the construction of pEK28, an expression plasmid for the λPL promoter system was completed.

一連の操作の概略を第7図に示す。An outline of the series of operations is shown in FIG.

(C)  β−ウロガストロン前半部とβ−ガラクトシ
ダーゼ融合遺伝子の発現 まず、β−ウロガストロン前半部とβ−ガラクトシダー
ゼとの融合遺伝子を有するプラスミド+)UGlolを
次のようにして造成した。即ち、β−ウロガストロン前
半部のみがクローニングされた1)UGlとβ−ガラク
トシダーゼ遺伝子を有するp MCI 403をそれぞ
れB amHI テ切断後、結合してI)UGlolを
造成した。このプラスミドでは、β−ウロガストロン前
半部とβ−ガラクトシダーゼ遺伝子が同一のフレームで
結合しているので、これが発現すると両者のアミノ酸配
列が連結したいわゆる融合タンパクとして発現するもの
である。
(C) Expression of fused gene between the first half of β-urogastrone and β-galactosidase First, a plasmid +)UGlol having a fusion gene between the first half of β-urogastrone and β-galactosidase was constructed as follows. That is, pMCI 403 containing 1) UGl and β-galactosidase genes, in which only the first half of β-urogastrone was cloned, was digested with BamHI and ligated to construct I) UGlol. In this plasmid, the first half of β-urogastrone and the β-galactosidase gene are linked in the same frame, so when this plasmid is expressed, it is expressed as a so-called fusion protein in which the amino acid sequences of both are linked.

そこで、これをλPLプロモーター支配で発現させるた
めに、pLIGlolとDEK28とをそれぞれB!1
lII[で切断した。
Therefore, in order to express this under the control of the λPL promoter, pLIGlol and DEK28 were each inserted into B! 1
Cleaved with lII[.

形の5′末端がとび出したDNA断片が得られるがこれ
を基質として大腸菌DNAボラメラーゼの大フラグメン
ト(K lenowフラグメント)で反応さぜると4種
のヌクレオチド存在下で ド(GATC)が付加された平滑末端を生じる。
A DNA fragment with a protruding 5' end was obtained, and when this was reacted with a large fragment of E. coli DNA bolamerase (K lenow fragment), do (GATC) was added in the presence of four types of nucleotides. Produces blunt ends.

ここでもし、ヌクレオチドとしてd GTPのみ加えれ
ば、dグアノシンのみ付加されて フレアーゼを用いて単鎖部分を分解するとてd GTP
とd ATPを加えテK Ienow反応を行なった後
、S1ヌクレアーゼで分解するとd TTPを加えてK
 lenow反応を行なった後に得られる。またK l
enow反応を行なわずにs1ヌてK Ienow反応
の際添加するヌクレオチドの種類と81ヌクレア一ゼ反
応との組み合わせにより、長さが1塩基対ずつ異なる5
種類の平滑末端が得られることになる。
Here, if only d-GTP is added as a nucleotide, only d-guanosine is added and the single-stranded part is broken down using flarese, resulting in d-GTP.
and d ATP is added to perform the TeK Ienow reaction, and then digested with S1 nuclease. d TTP is added and K
Obtained after carrying out the lenow reaction. Also K l
s1 without performing an enow reaction. 5.
type of blunt ends will be obtained.

ここで、K lenow反応及びS1ヌクレア一ゼ反応
の条件は下記の通りである。
Here, the conditions for the K lenow reaction and the S1 nuclease reaction are as follows.

* K lenow反応条件・・・リン酸カリウム緩衝
液(p H7,4)40m M、β−メルカプトエタノ
ール1sM、塩化マグネシウム101 M。
* Klenow reaction conditions: Potassium phosphate buffer (pH 7,4) 40mM, β-mercaptoethanol 1sM, magnesium chloride 101M.

ATPlm M及びデオキシリボヌクレオチド三すン酸
各11RMの反応液50μQ中に基質のDNA1μ0と
酵素(K lenow 77グメント)1ユニツトを含
む条件で12℃、30分間反応させる。
The reaction was carried out at 12° C. for 30 minutes under conditions containing 1 μ0 of substrate DNA and 1 unit of enzyme (Klenow 77 component) in 50 μQ of a reaction solution containing 11 RM each of ATPlm M and deoxyribonucleotide trisic acid.

*S1S1ヌクレア一ゼ条件・・・20011M塩化ナ
トリウム、30mM酢酸ナトリウム、5sM硫酸亜鉛(
El )(4,5)の反応溶液100μQ中に、基質の
DNA1μgと酵素200ユニツトを含む条件で20℃
、30分間反応させる。
*S1S1 nuclease conditions: 20011M sodium chloride, 30mM sodium acetate, 5sM zinc sulfate (
20°C under conditions containing 1 μg of substrate DNA and 200 units of enzyme in 100 μQ of the reaction solution of El ) (4, 5).
, react for 30 minutes.

そこで、p EK38とpLIGlolをそれぞれ3a
ll[で切断したあと、それぞれK Ienow反応と
81ヌクレア一ゼ反応を組み合せて行ない、各々5種類
ずつの平滑末端を有する断片を得た。これらの両者を組
み合せることにより第3表に示すように、SD配列と、
融合タンパクの開始コドンの間の塩基数と配列が互いに
異なる21通りの組み合わせが可能である。
Therefore, pEK38 and pLIGlol were each 3a
After cutting with ll[, each fragment was subjected to a combination of K Ienow reaction and 81 nuclease reaction to obtain fragments each having five types of blunt ends. By combining these two, as shown in Table 3, the SD array and
There are 21 possible combinations in which the number of bases and sequences between the start codons of the fusion protein differ from each other.

実際には、このようにして得たDNA断片を、次にSa
l工で切断したのち、pUGlolからはβ−ウロガス
トロン前半部とβ−ガラクトシダーゼの融合タンパクの
遺伝子を含むフラグメントを、p EK28からはλP
Lプロモーターを含むフラグメントを単離して、これら
を第3表に示した組み合わせでTa DNAリガーゼに
より結合した。
In reality, the DNA fragments obtained in this way are then
After cutting with l engineer, a fragment containing the gene for the first half of β-urogastrone and β-galactosidase fusion protein was obtained from pUGlol, and λP was obtained from pEK28.
Fragments containing the L promoter were isolated and these were ligated with Ta DNA ligase in the combinations shown in Table 3.

その結果、第4表に示したNo、の融合タンパクを発現
する組み換え体が得られた。これらについて、発現した
融合タンパクの示すβ−ガラクトシダーゼ活性をMil
lerの方法で測定した。その結果、第4表に示したよ
うにいずれも比較的高い発現量を示したが、特にpUG
103.1)UG104、pLIGI 17等が^い発
現量を示すことが明らかになった。
As a result, a recombinant expressing fusion protein No. shown in Table 4 was obtained. For these, the β-galactosidase activity of the expressed fusion protein was measured by Mil.
It was measured by the method of ler. As a result, as shown in Table 4, all showed relatively high expression levels, but especially pUG
103.1) It was revealed that UG104, pLIGI 17, etc. showed high expression levels.

第  4  表 次に、pLIG103とp uei 17からβ−ウロ
ガストロンを発現するベクターの造成について述べる。
Table 4 Next, the construction of a vector expressing β-urogastrone from pLIG103 and puei 17 is described.

pUG103とl) LJGl 17を、それぞれHi
ndl[とpvul[で切断してλPLプロモーターか
らβ−ウロガストロン前半部遺伝子までの配列を含む1
,2kbのフラグメントを分離した。また、p LIG
2をEcoRIで切断して4.1kbの7ラグメントを
得た。両者をTt DNAリガーゼで結合して、大腸菌
ECl−2株をすでに記した方法で形質転換して、β−
ウロガストロン遺伝子前半部と後半部とが結合して全β
−ウロガストロン遺伝子がλPLプロモーター支配で発
現するプラスミドD UG103−E、I)UGI 1
7−Eを保有する組み換え体を得た。
pUG103 and l) LJGl 17, respectively
1 containing the sequence from the λPL promoter to the first half of the β-urogastrone gene by cutting with ndl[ and pvul[
, a 2 kb fragment was isolated. Also, p LIG
2 was digested with EcoRI to obtain 7 fragments of 4.1 kb. Both were ligated with Tt DNA ligase, and E. coli strain ECl-2 was transformed using the method described above to obtain β-
The first half and the second half of the urogastrone gene combine to produce total β
-Plasmid D in which the urogastrone gene is expressed under the control of the λPL promoter UG103-E, I) UGI 1
A recombinant containing 7-E was obtained.

上述の一連の操作の概略を第8図に示す。FIG. 8 shows an outline of the above-mentioned series of operations.

0 合タンパク  ベクター プラスミドpBR322上に存在するβ−ラクタマーゼ
遺伝子とβ−ウOガストロン遺伝子とを連結することに
より、β−ウロガストロンを融合タンパクとして発現さ
せた。実施例について以下に具体的に述べる。
0 Fusion protein By linking the β-lactamase gene and the β-UO gastron gene present on the vector plasmid pBR322, β-Urogastrone was expressed as a fusion protein. Examples will be specifically described below.

0β−ラクタマーゼ 伝子  の供与 1)BRHO2は、D BR322をAraIとpvu
Iで切断し、K Ienow処理後、Tt DNAリガ
ーゼで結合して得た欠失体で、アンピシリン耐性(AE
l F? )と、ラトラサイクリン耐性(TOR)をマ
ーカーとして保有する。I)BRHO3は、pBR32
5をAvaIとHindlllで切断し、K1°eno
w処理後結合して得た欠失体であって、マーカーとして
ApR及びクロラムフェニコール耐性(CI R)を保
有する。これらのプラスミドを第9図に示す。
Donation of 0β-lactamase gene 1) BRHO2 converts DBR322 to AraI and pvu
This is a deletion product obtained by cutting with I, treating with K Ienow, and ligating with Tt DNA ligase, and is resistant to ampicillin (AE
lF? ) and latracycline resistance (TOR) as a marker. I) BRHO3 is pBR32
5 was cut with AvaI and Hindll, and K1°eno
It is a deletion product obtained by ligation after treatment with w, and has ApR and chloramphenicol resistance (CIR) as markers. These plasmids are shown in FIG.

0− ロガストロン遺伝子供与 記述の如く造成したD IJG3を、MbOI[で切断
した結果、13種類のDNA断片が得られた。これらの
DNA断片は、大きさの順にAからMと名付けられた。
0-Logastrone Gene Donation As a result of cutting DIJG3 constructed as described above with MbOI, 13 types of DNA fragments were obtained. These DNA fragments were named A to M in order of size.

これを第10図に示す。これらのDNA断片のうちH断
片は、β−ウロガストロン遺伝子N端のアスパラギンを
コードするヌクレオチドからはじまり、終止コドンの下
流16塩基までの179塩基対から成り、β−ウロガス
トロンの全構造遺伝子を保有していた。次にこのH断片
を単離するために6%ポリアクリルアミドゲル電気泳動
を行ない、断片を分離して精製した。
This is shown in FIG. Among these DNA fragments, the H fragment consists of 179 base pairs starting from the asparagine-encoding nucleotide at the N-terminus of the β-urogastrone gene to 16 bases downstream of the stop codon, and contains the entire structural gene of β-urogastrone. Ta. Next, 6% polyacrylamide gel electrophoresis was performed to isolate this H fragment, and the fragments were separated and purified.

olLムム− アダプターとして下記第5表に示されているオリゴヌク
レオチド(合成法は既述)を用いた。即ち、これらのア
ダプターは発現した融合タンパクからβ−ウロガストロ
ンを酵素的に分離するためにL vS−A rO又はA
r1J−LySの2連の塩基性アミノ酸をコードするよ
うに設計して合成し、以下の操作に用いた。
The oligonucleotides shown in Table 5 below (the synthesis method has already been described) were used as oOLM adapters. That is, these adapters can be used to enzymatically separate β-urogastrone from the expressed fusion protein.
It was designed and synthesized to encode two consecutive basic amino acids of r1J-LyS, and used in the following operations.

第  5  表 0−ラクタマーゼと −〇ガス ロン ムタ(1) L
ys−Aroで連結されたβ−ラクタマーゼとβ−ウロ
ガストロンとの融合タンパク発現系β−ラクタマーゼー
β−ウロガストロン融合タンパク発現ベクターの組み立
てに当り、アダプターの結合を確認するために、アダプ
ターを含む領域に制限酵素認識部位が生成されるように
して行なった。
Table 5 0-Lactamase and -〇Gas Ron Muta (1) L
ys-Aro linked β-lactamase and β-urogastrone fusion protein expression system When assembling the β-lactamase β-urogastrone fusion protein expression vector, in order to confirm adapter binding, restriction was made to the region containing the adapter. This was done in such a way that an enzyme recognition site was generated.

■ p UG2301〜2303の造成pBRH0,2
を’)5mn工で37℃で3時間完全に切断した後、3
μgのベクターと約0.1μgの179b、p、β−ウ
ロガストロンフラグメント及びアダプターとしてE−1
とE−2を約1μQずつ(5′端非リン酸化)、1段階
で12℃、15時間で結合を行ない発現ベクターである
プラスミドを得た。H8101を前述と同様にして形質
転換した。
■ Creation of p UG2301-2303 pBRH0,2
After cutting completely at 37°C for 3 hours using a 5mm mill,
μg of vector and approximately 0.1 μg of 179b, p, β-urogastrone fragment and E-1 as an adapter.
and E-2 (5' end non-phosphorylated) were ligated in one step at 12°C for 15 hours to obtain a plasmid, which is an expression vector. H8101 was transformed in the same manner as described above.

得られた499個のTCPコロニーのうち、1681!
(33,7%)がAD”であった。それらについてミニ
プレバレージョンを行ない、プラスミドDNAの大きさ
を調べたところ、ベクターより約200 b、p、大き
く、β−ウロガストロン遺伝子が挿入されていると考え
られるものが13個あった。これらすべてはMlnIl
n上を持っていた。これらについて)llnfiにて切
断し、1.5%アガロースゲル電気泳動にてβ−ウロガ
ストロン遺伝子挿入の方向性を調べた。そのうち3個は
約1050b、p、と約800 b、p、のフラグメン
トが生じたので、β−ウロガストロンがβ−ラクタマー
ゼと同じ方向へ挿入されたものと考えられ、p LIG
2301〜11 UG2303と名付けられた。
Of the 499 TCP colonies obtained, 1681!
(33.7%) were found to be ``AD''. When we performed miniprevention on them and examined the size of the plasmid DNA, it was found that it was approximately 200 b, p larger than the vector, and the β-urogastrone gene had been inserted. There were 13 items that could be considered as MlnIl.
I had n top. These were cut with llnfi, and the directionality of the β-urogastrone gene insertion was examined by 1.5% agarose gel electrophoresis. Three of them resulted in fragments of approximately 1050 b, p and approximately 800 b, p, suggesting that β-urogastrone was inserted in the same direction as β-lactamase, and p LIG
2301-11 It was named UG2303.

上記操作を第11図に示す。The above operation is shown in FIG.

■ 1)LIG2101〜2105(7)造成プラスミ
ドベクターとしてpBR32,2を用いた。pBR32
2はβ−ラクタマーゼ遺伝子中に唯一のpvuエサイト
を持つ。■で述べた方法に準じて、アダプターとしてE
−1及びE−5を用い発現ベクターを造成した。これを
第12図に示す。
(1) Construction of LIG2101-2105 (7) pBR32,2 was used as a plasmid vector. pBR32
2 has only one pvu esite in the β-lactamase gene. According to the method described in ■, as an adapter
Expression vectors were constructed using -1 and E-5. This is shown in FIG.

得うれた1626!mのTORコロニーについてAp感
受性を調べたところ、31個(1,9%)がAD 8 
テあった。Tc R,Ap 822コoニーについてミ
ニプレバレージョンを行ない、MIuIにて切断し、β
−ウロガストロン遺伝子の挿入を調べた。20個がMl
uIサイトを持っていた。方向性はHinfI及び3a
m)−IIによる切断にて夫々調べられ、pUG210
1〜pLIG2105はβ−ラクタマーゼ遺伝子と同方
向にβ−ウロガストロン遺伝子が挿入されていることが
わかった。
I got 1626! When TOR colonies of m were examined for Ap susceptibility, 31 (1.9%) were AD 8
There was a time. Tc R, Ap 822 coney was subjected to miniprevention, cut with MIuI, and β
- Insertion of the urogastrone gene was investigated. 20 pieces are Ml
I had a uI site. Directions are HinfI and 3a
m)-II, pUG210
It was found that in pLIG2105, the β-urogastrone gene was inserted in the same direction as the β-lactamase gene.

■ p UG270i〜2703の造成ベクターにpB
R322を、アダプターにE−7とE−8を用い、■と
同様の操作にて発現プラスミドを造成した。これを第1
3図に示す。
■ pB to the construction vector of pUG270i-2703
An expression plasmid was constructed using R322 and E-7 and E-8 as adapters in the same manner as in (2). This is the first
Shown in Figure 3.

217個のTCPコロニーが得られ、そのうちの106
個(48,8%)がAI)8だった。25個についてミ
ニプレバレージョンを行ない、そのうちベクターよりも
約200b、’p、大きい8個にβ−ウロガストロン遺
伝子が挿入されていると考え、その方向性がBai+H
Iによる切断によって調べられた。この結果3個がβ−
ラクタマーゼと同方向にβ−ウロガストロン遺伝子が挿
入されていると考えられ、DUG2701〜2703と
名付けられた。
217 TCP colonies were obtained, of which 106
(48.8%) were AI) 8. We performed mini-prevention on 25 genes, and considered that the β-urogastrone gene was inserted into 8 genes that were approximately 200 b, 'p larger than the vector, and the direction was determined to be Bai+H.
was investigated by cleavage with I. As a result, three β-
It is thought that the β-urogastrone gene was inserted in the same direction as the lactamase, and the genes were named DUG2701-2703.

上記■により得られたp UG2301が産生するβ−
ラクタマーゼの一部とβ−ウロガストロンとの融合タン
パクの一次構造を、塩基配列と対応して下記に示す。
β- produced by pUG2301 obtained in ① above
The primary structure of a fusion protein of a part of lactamase and β-urogastrone is shown below in correspondence with the base sequence.

TAGTGAAGATCTGGATCCGTTTAGC
GTTTTCCAATGATGAGCACTTTTAA
AGTTCTGCTATGTGGCGCGGTATTA
TCCCGTGTTGACGCCGGGCAAGAGC
AACTCGGTCGCCGCATAC同様に、上記■
により得られたpUG2101が産生ずる融合タンパク
の一次構造を、下記に示す。
TAGTGAAGATCTGGATCCGTTTAGC
GTTTTCCAATGATGAGCACTTTTAA
AGTTCTGCTATGTGGCGCGGTATTA
TCCCGTGTTGACGCCGGGCAAGAGC
Similar to AACTCGGTCGCCGCATAC, above ■
The primary structure of the fusion protein produced by pUG2101 is shown below.

Leu  Asn  Ser  Gly  Lys  
Ile  Leu  GluCTCAACAGCGGT
 AAG ATCCTT  GAGSer  Phe 
 ArgPro  Glu’  Glu  Aro  
PheAGT TTT CGCCCCGAA GAA 
 CGT TTTPro  Met  Met  Se
r  Thr  pbe  Lys  ValCCA 
ATG ATG AGCACT TTT AAA GT
TLeu  Leu  Cys  Gly  Ala 
 Vat  leu  5erCTG CTA TGT
 GGCGCG GTA TTA  TCCAro  
Vat  Asp  Ala  Gly  Gln  
Glu  GinCGT GTT GACGCCGGG
 CAA GAG CAALeJJ  Gly  Ar
o  Al’OIle  His  Tyr  5er
CTCGGT OGCC(3CATA CACTAT 
TCTGln  Asn  Asp  Ile  Va
t  Glu  Tyr  5erCAG AAT G
ACTTG GTT GAG TACTCAPro  
Val  Thr  Glu  Lys  His  
Leu  ThrCCA GTCACA GAA AA
G CAT CTT ACGASI)  GIV  M
et  Thr  Val  Ara  Glu  L
euGAT GGCATG ACA GTA AGA 
GAA TTACys  Ser  Ala  A!a
  Ile  Thr  Met  5erTGCAG
T GCT GCCATA ACCATG AGTAs
p  Asn  Thr  Ala  Ala  As
n  Leu  LeuGAT  AACACT  G
CG GCCAACTTA  CTTLeu  Thr
  Thr   iIe  Ala  Lys  Ar
Cl  AsnCTG ACA ACG ATCGCT
 AAA  CGG AAT3er  Asp  3e
r  Qlu  Cys  pro  1−eu  3
erAGCGAT  TCT  GAG  TGCCC
A  CTG  TCTHis  Asp  Gly 
 Tyr  Cys  Leu  His  AspC
ACGAT GGCTAT  TGT  CTG  C
ACGAGaly  vat  Cys  Met  
Tyr  Ile  Glu  AlaGGT GTT
  TGCATG  TACATCGAA  GCTl
eu  ASpLys  TVI’  Ala  Cy
s  Asn  CysTTG GAT AAA  T
ACGCG  TGT AACTGTVat  Val
  aly  Tyr  Ile  aly  Glu
  Ar(JGTA  GTG GGT TAT AT
CGGT GAA  CGCCys  Gln  Ty
r  Ar11l  ASI)   Leu   IJ
s  7rpTGT  CAA  TACCGT  G
AT  CTG AAA  TGGTrp   Glu
   leu   Arg(stoll)TGG GA
A  TTG  CGT  TAA  TAGTGAA
GATCTG GA T CCG T TTA G C
QA T CGGA G GA CCGA A GGA
GCTAACCGCTTTTTTGCACA同様に、上
記■により得られたp UG2701が産生する融合タ
ンパクの一次構造を下記に示す。
Leu Asn Ser Gly Lys
Ile Leu GluCTCAACAGCGGT
AAG ATCCTT GAGSer Phe
ArgPro Glu' Glu Aro
PheAGT TTT CGCCCCGAA GAA
CGT TTTPro Met Met Se
r Thr pbe Lys ValCCA
ATG ATG AGCACT TTT AAA GT
TLeu Leu Cys Gly Ala
Vat leu 5erCTG CTA TGT
GGCGCG GTA TTA TCCAro
Vat Asp Ala Gly Gln
Glu GinCGT GTT GACGCCGGG
CAA GAG CAALeJJ Gly Ar
o Al'Oile His Tyr 5er
CTCGGT OGCC (3CATA CACTAT
TCTGln Asn Asp Ile Va
t Glu Tyr 5erCAG AAT G
ACTTG GTT GAG TACTCAPro
Val Thr Glu Lys His
Leu ThrCCA GTCACA GAA AA
G CAT CTT ACGASI) GIV M
et Thr Val Ara Glu L
euGAT GGCATG ACA GTA AGA
GAA TTACys Ser Ala A! a
Ile Thr Met 5erTGCAG
T GCT GCCATA ACCATG AGTAs
p Asn Thr Ala Ala As
n Leu LeuGAT AACACT G
CG GCCAAACTTA CTTLeu Thr
Thr iIe Ala Lys Ar
Cl AsnCTG ACA ACG ATCGCT
AAA CGG AAT3er Asp 3e
r Qlu Cys pro 1-eu 3
erAGCGAT TCT GAG TGCCC
A CTG TCTHis Asp Gly
Tyr Cys Leu His AspC
ACGAT GGCTAT TGT CTG C
ACGAGaly vat Cys Met
Tyr Ile Glu AlaGGT GTT
TGCATG TACATCGAA GCTl
eu ASpLys TVI' Ala Cy
s Asn CysTTG GAT AAA T
ACGCG TGT AACTGTVat Val
aly Tyr Ile aly Glu
Ar(JGTA GTG GGT TAT AT
CGGT GAA CGCCys Gln Ty
r Ar11l ASI) Leu IJ
s 7rpTGT CAA TACCGT G
AT CTG AAA TGGTrp Glu
leu Arg(stall) TGG GA
A TTG CGT TAA TAGTGAA
GATCTG GA T CCG T TTA G C
QA T CGGA G GA CCGA A GGA
Similar to GCTAACCGCTTTTTTGCACA, the primary structure of the fusion protein produced by pUG2701 obtained in step ① above is shown below.

Met  513r  Ile!  Gin  His
  Phe  Arc  ValATG AGT AT
T CAA CAT TTCCGT GTCAla  
Leu  Ile  Pro  Phe  Phe  
Ala  AlaGCCCTT ATT CCCTTT
 TTT GCG GCAPhe  Cys  Leu
  Pro  Val  Phe  Ala  His
TTT TGCCTT CCT GTT TTT GC
T CACpro  Qlu  7hr  Leu  
Val  Lys  Val  LysCCA GAA
 ACG CTG GTG AAA GTA AAAA
SD  Ala  Glu  ASII  Gln  
LelJ  any  AlaGAT GCT GAA
 GAT CAG TTG GGT GCAAro  
Vat  Gly  Tyr  Ile  Glu  
Leu  Asp・CGA GTG GGT TACA
TCGAA CTG GATLeu  Asn  Se
r  Gly  Lys  Ile  Leu  Gl
uCTCAACAGCGGT AAG ATCCTT 
GAGSer  Phe  ArgPro  Glu 
 Glu  Ara  PbeAGT TTT CGC
CCCGAA GAA CGT TTTPro  Me
t  Met  Ser  Thr   Phe  I
Js  VatCCA  ATG  ATG  AGC
ACT  TTT  AAA  GTTleu   L
eu   cys  GIY  Ala   Va! 
  leu   3erCTG  CTA  TGT 
 GGC,GCG  GTA  TTA  TCCAr
′gVal   Asp  Ala  Gly  Gl
n  Glu  GlnCGT  GTT  GACG
CCGGG  CAA  GAG  CAALeu  
Gly  ArgAro   Ile  His  T
yr  5erCTCGGT  CGCCGCATA 
 CACTAT  TCTGln  Asn  Asp
   Ile  Val   Glu  Ser  A
laCAG  AAT  GACTTG  GTT  
GAG  TCG  GCTLys  ArgAsn 
 3er  ASpSer  Glu   CysAA
A  CGG  AAT  AGCGAT  TCT 
 GAG  TGCpro   leu  Ser  
His  Asp  GiV  Tyr  CVliC
CA  CTG  TCT  CACGAT  GGC
TAT  TGTLeu   His  Asp   
Gly   Val   Cys  Met   Ty
rCTG  CACGAG  GGT  GTT  T
GCATG  TACIIs  Glu  Ala  
 Leu  Asp   cys  TVr  Ala
ATCGAA  GOT  TTG  GAT  AA
A  TACGCGCys  Asn   Cys  
 Vat   Val   Gly   Tyr   
l1eTGT  AACTGT  GTA  GTG 
 GGT  TAT  ATCTAGTGAAGATC
TGGATCCGTTTAGCCGACTCACCAG
TCACAGAAAAGCATCTTACGGATE)
LIG2101、I)UG2301及びDUG2701
においてβ−ウロガストロンの遺伝子がアダプターを介
してp8R322のβ−ラクタマーゼ遺伝子の目的とし
た°位置に組み込まれているかどうかを塩基配列から解
析した。即ちMluIで切断し、5′32pラベル後p
UG2101においてはEooRI及びPStIで二次
切断し、5%ポリアクリルアミドゲル電気泳動とオート
ラジオグラフィーによって5′31’pラベルされた7
21b、p、と224 b、p、のフラグメントを分取
した。
Met 513r Ile! Gin His
Phe Arc ValATG AGT AT
T CAA CAT TTCCGT GTCAla
Leu Ile Pro Phe Phe
Ala AlaGCCCTT ATT CCCTTT
TTT GCG GCAPhe Cys Leu
Pro Val Phe Ala His
TTT TGCCTT CCT GTT TTT GC
T CACpro Qlu 7hr Leu
Val Lys Val LysCCA GAA
ACG CTG GTG AAA GTA AAAA
SD Ala Glu ASII Gln
LelJ any AlaGAT GCT GAA
GAT CAG TTG GGT GCAAro
Vat Gly Tyr Ile Glu
Leu Asp・CGA GTG GGT TACA
TCGAA CTG GATLeu Asn Se
r Gly Lys Ile Leu Gl
uCTCAACAGCGGT AAG ATCCTT
GAGSer Phe ArgPro Glu
Glu Ara PbeAGT TTT CGC
CCCGAA GAA CGT TTTPro Me
t Met Ser Thr Phe I
Js VatCCA ATG ATG AGC
ACT TTT AAA GTTleu L
eu cys GIY Ala Va!
leu 3erCTG CTA TGT
GGC, GCG GTA TTA TCCAr
'gVal Asp Ala Gly Gl
n Glu GlnCGT GTT GACG
CCGGG CAA GAG CAALeu
Gly ArgAro Ile His T
yr 5erCTCGGT CGCCGCATA
CACTAT TCTGln Asn Asp
Ile Val Glu Ser A
laCAG AAT GACTTG GTT
GAG TCG GCTLys ArgAsn
3er ASpSer Glu CysAA
A CGG AAT AGCGAT TCT
GAG TGCpro leu Ser
His Asp GiV Tyr CVliC
CA CTG TCT CACGAT GGC
TAT TGTLeu His Asp
Gly Val Cys Met Ty
rCTG CACGAG GGT GTT T
GCATG TAC IIs Glu Ala
Leu Asp cys TVr Ala
ATCGAA GOT TTG GAT AA
A TACGCGCys Asn Cys
Vat Val Gly Tyr
l1eTGT AACTGT GTA GTG
GGT TAT ATCTAGTGAAGATC
TGGATCCGTTTAGCCGACTCACCAG
TCACAGAAAAGCATCTTACGGATE)
LIG2101, I) UG2301 and DUG2701
Based on the base sequence, it was determined whether the β-urogastrone gene was integrated into the desired position of the β-lactamase gene of p8R322 via an adapter. That is, after cutting with MluI and labeling 5'32p, p
UG2101 was subjected to secondary cleavage with EooRI and PStI, and 5'31'p-labeled 7
Fragments of 21b,p and 224b,p were separated.

p LJG2301においてはBa1HIで二次切断し
、同様にして452 b、p、と87 b、p、のフラ
グメントを分取した。pLjG2701においてはEC
0RIとPstIで二次切断し、同様にして5iob、
p、と335 b、p、のフラグメントを分取した。
pLJG2301 was subjected to secondary cleavage with Ba1HI, and fragments of 452 b, p and 87 b, p were separated in the same manner. In pLjG2701, EC
Secondary cleavage was performed with 0RI and PstI, and 5iob,
The fragments of 335 b, p, and 335 b, p were fractionated.

以上のようにして得られたフラグメントをマキサム・ギ
ルバート法により解析した。解析結果を参考写真5に示
す。参考写真5においてレーン1〜4はpLIG210
1のMltlI−PStIフグラメント(224b、p
、)、レーン5〜8はpUG2101のMluI−Ec
oRIフラグメント(721b、p、)、レーン9〜1
2はpLIG2301のMluI−Bam)−IIフラ
グメント(452b、p、)レーン13〜16はpUG
2701のM luI −PstIフラグメント(33
5b、p、)及びレーン17〜20はp UG2701
のMluI−EcoRI7ラグメント(610b、p、
)についての結果である。レーン1.5.9.13及び
17はグアニンの反応物、レーン2.6.10.14及
び18はグアニン+アデニンの反応物、レーン3.7.
11、15及び19はチミン+シトシンの反応物並びに
レーン4.8.12.16及び20はシトシンの反応物
をそれぞれ示す。
The fragments obtained as described above were analyzed by the Maxam-Gilbert method. The analysis results are shown in Reference Photo 5. In reference photo 5, lanes 1 to 4 are pLIG210
MltlI-PStI fragment of 1 (224b, p
), lanes 5 to 8 are MluI-Ec of pUG2101
oRI fragment (721b,p,), lanes 9-1
2 is the MluI-Bam)-II fragment of pLIG2301 (452b, p,) Lanes 13-16 are pUG
MluI-PstI fragment of 2701 (33
5b, p, ) and lanes 17-20 are p UG2701
MluI-EcoRI7 fragment (610b, p,
). Lanes 1.5.9.13 and 17 are the guanine reaction, lanes 2.6.10.14 and 18 are the guanine+adenine reaction, lane 3.7.
11, 15 and 19 show the thymine+cytosine reaction and lanes 4.8.12.16 and 20 show the cytosine reaction, respectively.

また参考写真中で「)」で示した部分がアダプターであ
る。
Also, the part marked with ")" in the reference photo is the adapter.

(2)  Aro−Lysで連結されたβ−ラクタマー
ゼとβ−ウロガストロンとの融合タンパク発現系 ■ I)LIG1102及び1105の造成β−ラクタ
マーゼーβ−ウロガストロン融合タンパクの発現ベクタ
ーとして、pBR322のArJR遺伝子に−か所だけ
存在するPvuI制限酵素サイトにβ−ウロガストロン
遺伝子を挿入したものを造成した。これを第14図に示
す。
(2) Aro-Lys linked β-lactamase and β-urogastrone fusion protein expression system I) Construction of LIG1102 and 1105 As an expression vector for the β-lactamase β-urogastrone fusion protein, - A gene was constructed in which the β-urogastrone gene was inserted into the PvuI restriction enzyme site, which exists only at one location. This is shown in FIG.

p BR322を、PvuIにて37℃、3時間切断し
、その一部をアガロースゲル電気泳動で調べ完全に切断
されていることを確かめてから、アダプターD−1−3
とD−3−2を12℃、15時間の条件で結合した。結
合終了後、1%アガロースゲル電気泳動にてDNAフラ
グメントを単離した。続いて、β−ウロガストロンフラ
グメントと、ベクターをほぼ5:1のモル比で混合し、
12℃、15時間で結合を行なった。結合後、前述の方
法でH8101を形質転換し、TcRを指標としてコロ
ニーを選択した。
pBR322 was cleaved with PvuI at 37°C for 3 hours, a part of it was examined by agarose gel electrophoresis to confirm that it had been completely cleaved, and then adapter D-1-3
and D-3-2 were combined at 12° C. for 15 hours. After completion of binding, DNA fragments were isolated by 1% agarose gel electrophoresis. Subsequently, the β-urogastrone fragment and the vector are mixed in a molar ratio of approximately 5:1,
Binding was performed at 12°C for 15 hours. After ligation, H8101 was transformed by the method described above, and colonies were selected using TcR as an indicator.

71個のTCR形質転換体が得られ、それぞれAp感受
性を調べたところ20個(28,2%)がAEI感受性
であった。この20個のAE)8コロニーからDNAを
Wi製し、β−ウロガストロン遺伝子挿入の有無を、M
1u■制限酵素サイトの有無により調べた。20個のう
ち5個のみMlulサイトが存在し、β−ウロガストロ
ン遺伝子が挿入されていた。挿入の方向性はHinfI
にてDNA切断後、1.5%アガロースゲル電気泳動に
て調べられ、そのうち2(!1t(1)LIG1102
とpUG1105)が正方向に挿入されていた。
Seventy-one TCR transformants were obtained, and when each was examined for Ap sensitivity, 20 (28.2%) were sensitive to AEI. DNA was prepared from these 20 AE) 8 colonies, and the presence or absence of β-urogastrone gene insertion was determined by M
The presence or absence of a 1 u ■ restriction enzyme site was investigated. Only 5 out of 20 had Mlul sites, and the β-urogastrone gene was inserted. The direction of insertion is HinfI
After cutting the DNA, it was examined by 1.5% agarose gel electrophoresis.
and pUG1105) were inserted in the forward direction.

■ D LJGl 004.1201及び1301の造
成 ■においてPvuIの代わりにpstI、 Hinc 
II及びx−n工を用い同様にしてpUG1004、p
UG1201及びpLIG1301の夫々を得た。
■ In the construction of D LJGl 004.1201 and 1301, pstI, Hinc was used instead of PvuI.
pUG1004, pUG1004 and pUG1004 were prepared in the same manner using II and
UG1201 and pLIG1301 were obtained, respectively.

これらを第15図、第16図及び第17図に示す。These are shown in FIGS. 15, 16, and 17.

実施例 3 −ロガストロン  の 前記によって構築された発現プラスミドを大腸菌881
01株又はECl−2株に形質転換したものを、下記方
法にて培養後抽出し、ラジオイムノアッセイで発現の有
無を確認した。
Example 3 - The expression plasmid constructed by the above of Logastron was transformed into E. coli 881.
The cells transformed into the 01 strain or the ECl-2 strain were cultured and extracted using the method described below, and the presence or absence of expression was confirmed by radioimmunoassay.

(1)β−ウOガストロン遺遺伝部組え微生物の培養及
び抽出 (a )λPLプロモーターを使用した発現系発現プラ
スミドp LIGl 03−E又はDUGl 17−E
を保有する大腸lECl−2を19のLB培地で、それ
ぞれ2本、25℃で培養し、1本は660 ngiの吸
光度が0.3になったときに42℃、1時間ヒートイン
ダクションを行ない、他の1本はそのまま25℃で吸光
度が0.4になるまで培養した。集菌後PBS液(,1
371M塩化ナトリウム、2.7mM塩化カリウム、8
.1−Mリン酸二ナトリウム、1.51Mリン酸−カリ
ウム(11H7,O))にて洗浄後、菌体を原液の3%
量のPBS液に懸濁し、氷冷しながら超音波細胞破壊器
(大田製作所製、5202型)にて菌体を破壊(100
Wで3″0秒間を3回)した。
(1) Cultivation and extraction of microorganisms with the β-UO gastron gene (a) Expression system using the λPL promoter Expression plasmid p LIGl 03-E or DUGl 17-E
Two tubes of colonic lECl-2 containing 19 LB medium were cultured at 25°C, and one tube was subjected to heat induction at 42°C for 1 hour when the absorbance at 660 ngi reached 0.3. The other one was cultured as it was at 25°C until the absorbance reached 0.4. After collecting bacteria, PBS solution (1
371M sodium chloride, 2.7mM potassium chloride, 8
.. After washing with 1-M disodium phosphate, 1.51M potassium phosphate (11H7,O)), the bacterial cells were reduced to 3% of the stock solution.
Suspend the cells in PBS solution and destroy the bacterial cells (100
W for 3″0 seconds 3 times).

次に超遠心(40000oで1時間)を行なって細胞残
渣を除いた。上清を0.0IN酢酸水溶液中で透析し、
凍結乾燥を行ない、以後のラジオイムノアッセイ(以下
、RIAという)に供した。
Next, cell debris was removed by ultracentrifugation (40,000° for 1 hour). The supernatant was dialyzed in 0.0 IN acetic acid aqueous solution,
It was freeze-dried and subjected to subsequent radioimmunoassay (hereinafter referred to as RIA).

(b)11合タンパクの発現系 pUG1004.1301.2101.2303又は2
703を保有する大腸菌He101株をテトラサイクリ
ン50μり/−を含むLB培地で37℃にて前培養を行
ない、同じ培地に1:100の割合で希釈し、660 
nmの吸光度が0.4になるまで振盪培養した。集菌し
、PBS液により洗浄の後、菌体を原液の3%量のPB
S液に懸濁し、氷冷しながら超音波細胞破壊器(大田製
作所製5202型)にて、菌体破壊<100W、30秒
で3回)を行なった。次に超音心(40000o 、1
時間)を行なって細胞残渣を除いた。上清を0.01N
Ii¥酸水溶液中透析し、凍結乾燥を行ない、RIAに
供した。
(b) Expression system for protein 11 pUG1004.1301.2101.2303 or 2
E. coli He101 strain harboring 703 was precultured at 37°C in LB medium containing 50μl/- of tetracycline, diluted in the same medium at a ratio of 1:100, and 660
The culture was continued with shaking until the absorbance at nm reached 0.4. After collecting bacteria and washing with PBS solution, the bacteria were added to 3% of the original solution in PB.
The cells were suspended in S solution, and the bacterial cells were disrupted using an ultrasonic cell disrupter (Model 5202 manufactured by Ota Seisakusho Co., Ltd., <100 W, 3 times for 30 seconds) while cooling on ice. Next, super sound center (40000o, 1
time) to remove cell debris. Supernatant 0.01N
The product was dialyzed in an aqueous solution of Ii\ acid, freeze-dried, and subjected to RIA.

また、融合タンパクがペリプラズム′へ蓄積することを
確認するために、オスモティックショックによるペリプ
ラズム画分の抽出を行なった;”即ち、S、J、Cha
nらの方法(Chan 、 S、 J、 etat、 
Proc 、 Natl 、 Acad 、 Sci、
、 USA。
In addition, in order to confirm that the fusion protein accumulates in the periplasm, we extracted the periplasmic fraction by osmotic shock;
The method of n et al. (Chan, S. J. etat.
Proc, Natl, Acad, Sci,
, USA.

ユ、5401−5405 (1981))に従って、ペ
リプラズム画分の抽出を行なった。[B培地にて行なっ
た前培養の菌液を新鮮なE培地(リン酸二カリウム10
g、リン酸水素アンモニウムナトリウム3.5g、硫酸
マグネシウム7水塩0.2Q、クエン酸2g、グルコー
ス2Q 、L−プロリン0.23m%Q−0イシン39
.5園9、チアミン16.85−〇及びテトラサイクリ
ン塩酸塩20−gを水に溶解して1Qとしたもの)を用
いて1:100に希釈し、37℃で660n園の吸光度
が0.4になるまで振盪培養した。集菌(6000rp
醜、10分)した後、10−Mトリス・塩11 (p 
H8,0) 、30s M塩化ナトリウム混液にて2回
洗浄し、菌体1gに対し80−の20%シヨ糖−50−
Mトリス・塩酸(p)18.0)に再懸濁した。即座に
EDTAニナトリウムを最終濃度IMになるように加え
ロータリーシエイカーにて10分間、180回転でtm
(24℃)を行なった後、遠心分離(130000,1
分)により集菌し、等量の蒸留水に再懸濁した。水中に
静請し、時々撹拌を行ない約10分後、遠心分離(13
000Ω、1時間)を行ない、上清をペリプラズム画分
(0−8up)として回収した。ペレットについては、
10IIIMトリス・塩酸(p H8,0) 、30m
 M塩化ナトリウム混液に懸濁し、上記超音波破壊によ
り、菌体内タンパク画分(0−PI)t)を得た。これ
らのサンプルをRIAに供した。
Extraction of the periplasmic fraction was performed according to J. J., 5401-5405 (1981)). [The bacterial suspension of the preculture carried out in B medium was mixed with fresh E medium (dipotassium phosphate 10
g, sodium ammonium hydrogen phosphate 3.5g, magnesium sulfate heptahydrate 0.2Q, citric acid 2g, glucose 2Q, L-proline 0.23m% Q-0 isine 39
.. Diluted 1:100 with 1Q (dissolved 16.85-g of thiamin and 20-g of tetracycline hydrochloride in water), and the absorbance at 660n at 37°C was 0.4. The cells were cultured with shaking until the Bacteria collection (6000rp
ugliness, 10 minutes), then 10-M Tris salt 11 (p
H8,0), washed twice with 30 s M sodium chloride mixture, and added 20% sucrose-50-80 to 1 g of bacterial cells.
The mixture was resuspended in M Tris/HCl (p) 18.0). Immediately add disodium EDTA to a final concentration of IM and mix in a rotary shaker for 10 minutes at 180 rpm.
(24℃), then centrifugation (130,000,1
Bacteria were collected by 1 minute) and resuspended in an equal volume of distilled water. Pour into water, stir occasionally, and after about 10 minutes, centrifuge (13
000Ω for 1 hour), and the supernatant was collected as a periplasm fraction (0-8up). Regarding pellets,
10IIIM Tris/hydrochloric acid (pH 8,0), 30m
The microbial cell protein fraction (0-PI)t) was obtained by suspending it in a M sodium chloride mixture and disrupting it with the above-mentioned ultrasonic waves. These samples were subjected to RIA.

(2)ラジオイムノアッセイ (a)RIA系の確立 精製ヒトβ−ウロガストロンを抗原として、家兎を免疫
し抗血清を作成した。β−ウロガストロン300μaを
蒸留水0.2vtJに溶解後、50%ポリビニルピロリ
ドン液1.5−を加え室温で2時間撹拌した。コンプリ
ート・フロイント・アジュバント2.0−を加えて乳化
し、家兎3匹の胸部に皮下注射した。2週間毎に免疫を
4回くり返した後、さらに50μgの抗原を静注し、3
日後に全採血を行ない、血清を分離した。
(2) Radioimmunoassay (a) Establishment of RIA system A domestic rabbit was immunized with purified human β-urogastrone as an antigen to prepare an antiserum. After dissolving 300 μa of β-urogastrone in 0.2 vtJ of distilled water, 1.5 μm of 50% polyvinylpyrrolidone solution was added and stirred at room temperature for 2 hours. Complete Freund's Adjuvant 2.0- was added and emulsified, and the mixture was subcutaneously injected into the chest of three domestic rabbits. After repeating the immunization four times every two weeks, an additional 50 μg of antigen was injected intravenously, and 3
A day later, whole blood was collected and serum was separated.

次にアッセイに用いる抗血清の希釈倍率を求めるタイト
レージョンカーブ、アッセイ条件を最適化するためイン
キュベーション時間、抗体結合標識抗原(バウンド)と
遊離標識抗原(フリー)の分離方法等の検討を加え、下
記RIA測定条件を設定した。
Next, we examined the tightness curve to determine the dilution factor of the antiserum used in the assay, the incubation time to optimize the assay conditions, and the separation method of antibody-bound labeled antigen (bound) and free labeled antigen (free). The following RIA measurement conditions were set.

即ち、0.5%のウシ血清アルブミン(BSA)、14
0i、M塩化ナトリウム、25畷MEDTAニナトリウ
ムを含むリン酸緩衝液(10s M、p H7,4)を
希釈液として用いた。希釈液400μQ1測定試料又は
標準ヒトβ−ウロガストロン100μQ1抗ヒトβ−ウ
ロガストロン自涜 100μQを加えて4℃にて24時
間インキュベートした後125工標識ヒトβ−ウロガス
トロン100μQ(約5000cp園)を加えた。
i.e. 0.5% bovine serum albumin (BSA), 14
A phosphate buffer (10s M, pH 7,4) containing 0i, M sodium chloride, and 25m disodium MEDTA was used as a diluent. 400 μQ of the diluted sample or standard human β-urogastrone 100 μQ1 anti-human β-urogastrone was added and incubated at 4° C. for 24 hours, and then 100 μQ of 125-labeled human β-urogastrone (approximately 5000 cp) was added.

更に4℃にて48時間インキュベートした後、第2抗体
(抗家兎γ−グロブリンヤギ血清)(1:20)100
μQ1正常家兎白清(1:200)100μQ、5%ポ
リエチレングリコールを含む1b゛l1MPBS液90
0μQを加えて4℃にて3時間インキュベートした。次
に3000 rl)Inで30分間遠心分離し、上清を
除き沈澱物をカウントした。標準ヒトβ−ウロガストロ
ンより得られた標準曲線より試料中のヒトβ−ウロガス
トロン免疫活性物の含量を求めた。
After further incubation at 4°C for 48 hours, a second antibody (anti-rabbit γ-globulin goat serum) (1:20) 100
μQ1 normal rabbit white serum (1:200) 100 μQ, 1 ml 1 MPBS solution containing 5% polyethylene glycol 90
0 μQ was added and incubated at 4° C. for 3 hours. Next, the mixture was centrifuged for 30 minutes at 3000 rl) In, the supernatant was removed, and the precipitate was counted. The content of human β-urogastrone immunoreactive substance in the sample was determined from a standard curve obtained from standard human β-urogastrone.

(b)組み換え微生物中のβ−ウロガストロン生産性の
確認 λPLプロモーターを使用した発現系のRIAの結果を
第6表に示す。
(b) Confirmation of β-urogastrone productivity in recombinant microorganisms Table 6 shows the results of RIA of the expression system using the λPL promoter.

第  6  表 融合タンパクの発現系のRIAの結果を第7表に示す。Table 6 Table 7 shows the RIA results of the fusion protein expression system.

第  7  表 o −s up及び0−Pptについての結果を第8表
に示す。
Table 7 Results for o-s up and 0-Ppt are shown in Table 8.

第  8  表 第6表及び第7表より、β−ウロガストロンを直接発現
するλPLプロモーター系、及び融合タンパクとして発
現する系のいずれも大腸菌によりβ−ウロガストロン活
性を発現していることが確認された。また第8表より融
合タンパクの場合には、発現したβ−ウロガストロン活
性のほとんどが、ペリプラズムに局在していることが1
1W1された。
Table 8 From Tables 6 and 7, it was confirmed that both the λPL promoter system that directly expresses β-urogastrone and the system that expresses it as a fusion protein expressed β-urogastrone activity in E. coli. Furthermore, Table 8 shows that in the case of the fusion protein, most of the expressed β-urogastrone activity is localized in the periplasm.
It was 1W1.

本発明のプラスミドp UO3を大腸菌HB101に保
持させた微生物は、HBlol (pUG3)として通
商産業省工業技術院微生物工業技術研究所(微工研)に
寄託されており、その受託番号は微工研条寄第543号
(FERM  BP−543)である。またプラスミド
pGH37を大腸菌HB101に保持させた微生物は、
ECl−2として同微工研に、受託番号微工研条寄第5
42号(FERM  BP−542)として寄託されて
いる。
The microorganism in which the plasmid pUO3 of the present invention is maintained in Escherichia coli HB101 has been deposited as HBlol (pUG3) at the Institute of Microbial Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and its accession number is This is Article No. 543 (FERM BP-543). In addition, the microorganism in which plasmid pGH37 was retained in Escherichia coli HB101,
As ECl-2, it was submitted to the same FEIKEN with the accession number FEIKEN Joyori No. 5.
No. 42 (FERM BP-542).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、オリゴヌクレオチドA−1〜A−16からサ
ブユニットA・を造成し、それをpBR322に組み込
んでp LIGlを得る行程を示すものである。第2図
は、同様にしてサブユニットBを組み込んだp UO2
を得る行程を示すものである。第3図は、I)UGlと
p UO2からI) tJG3を得る行程を示すもので
ある。第4図は、オリゴヌクレオチドA−3の塩基配列
を、ホモクロマトグラフィーを使った二次展開法により
分析した結果を示すものである。 第5図は、pGH37を得る行程を示すものである。第
6図は、pGH35を得る行程を示すものである。第7
図は、p EK38を得る行程を示すものである。第8
図は1)UG102〜1)UG122、D UG103
−E及びp UGl 17−Eを得る行程を示すもので
ある。第9図は、pBRHO2及びp BRI−103
を得る行程を示すものである。第10図は、1)UO3
のMbo■切断DNA断片を示し、そのうちH断片(1
79b、l)、)はβ−ウロガストロン遺伝子を含むこ
とを示すものである。第11図は、ρLIG2301〜
pLIG2303を得る行程を示すものである。第13
図は、+1 UG2701〜EI UG2703を得る
行程を示すものである。第14図は、pUG1102及
び1)UG1105を得る行程、を示すものである。 第15図は、p tJGl 004を得る行程を示すも
のである。第16図は、+1 UGl 201を得る行
程を示すものである。第17図は、pUG1301を得
る行程を示すものである。 (以 上) 第4図 第5図 第11図 )(H 第12図 第16図 第14図 第15図 第16図
FIG. 1 shows the process of constructing subunit A. from oligonucleotides A-1 to A-16 and incorporating it into pBR322 to obtain pLIGl. Figure 2 shows p UO2 in which subunit B is incorporated in the same way.
This shows the process of obtaining . FIG. 3 shows the process of obtaining I) tJG3 from I) UGl and pUO2. FIG. 4 shows the results of analyzing the base sequence of oligonucleotide A-3 by a secondary development method using homochromatography. FIG. 5 shows the process for obtaining pGH37. FIG. 6 shows the process for obtaining pGH35. 7th
The figure shows the process for obtaining pEK38. 8th
The diagram shows 1) UG102 to 1) UG122, D UG103
-E and pUGl 17-E are shown. Figure 9 shows pBRHO2 and pBRI-103.
This shows the process of obtaining . Figure 10 shows 1) UO3
Shows the Mbo■ cut DNA fragment, among which the H fragment (1
79b, l), ) indicate that the β-urogastrone gene is included. Figure 11 shows ρLIG2301~
It shows the process for obtaining pLIG2303. 13th
The figure shows the process of obtaining +1 UG2701 to EI UG2703. FIG. 14 shows the process for obtaining pUG1102 and 1) UG1105. FIG. 15 shows the process for obtaining p tJGl 004. FIG. 16 shows the process of obtaining +1 UGl 201. FIG. 17 shows the process for obtaining pUG1301. (Above) Figure 4, Figure 5, Figure 11) (H Figure 12, Figure 16, Figure 14, Figure 15, Figure 16)

Claims (12)

【特許請求の範囲】[Claims] (1)β−ウロガストロンの発現暗号の一部又は全部を
含む遺伝子。
(1) A gene containing part or all of the expression code for β-urogastrone.
(2)β−ウロガストロン遺伝子が下記塩基配列である
特許請求の範囲第1項に記載の遺伝子。 【塩基配列があります】
(2) The gene according to claim 1, wherein the β-urogastrone gene has the following base sequence. [There is a base sequence]
(3)β−ウロガストロン遺伝子を含む下記塩基配列を
有する特許請求の範囲第1項に記載の遺伝子。 【塩基配列があります】
(3) The gene according to claim 1, which has the following base sequence including the β-urogastrone gene. [There is a base sequence]
(4)下記塩基配列を有する2種のサブユニット構造を
含む特許請求の範囲第1項に記載の遺伝子。 サブユニットA: 【塩基配列があります】 サブユニットB: 【塩基配列があります】
(4) The gene according to claim 1, which includes two types of subunit structures having the following base sequences. Subunit A: [There is a base sequence] Subunit B: [There is a base sequence]
(5)β−ウロガストロン遺伝子の上流に、該遺伝子の
発現を制御するプロモーター及びSD配列を連結したも
のをプラスミドベクターに挿入したプラスミド組換体。
(5) A plasmid recombinant in which a promoter that controls the expression of the β-urogastrone gene and an SD sequence linked upstream of the β-urogastrone gene are inserted into a plasmid vector.
(6)β−ウロガストロン遺伝子とプロモーター及びS
D配列との間又は(及び)該遺伝子の下流に、更に他の
遺伝子を連結した特許請求の範囲第5項に記載のプラス
ミド組換体。
(6) β-urogastrone gene, promoter and S
The plasmid recombinant according to claim 5, wherein another gene is further linked between the D sequence or (and) downstream of the gene.
(7)他の遺伝子がβ−ラクタマーゼ遺伝子である特許
請求の範囲第6項のプラスミド組換体。
(7) The plasmid recombinant according to claim 6, wherein the other gene is a β-lactamase gene.
(8)プロモーターがλP_L又はlacUV5である
特許請求の範囲第5〜7項のいずれかに記載のプラスミ
ド組換体。
(8) The plasmid recombinant according to any one of claims 5 to 7, wherein the promoter is λP_L or lacUV5.
(9)プラスミドベクターがpBR322である特許請
求の範囲第5〜8項のいずれかに記載のプラスミド組換
体。
(9) The plasmid recombinant according to any one of claims 5 to 8, wherein the plasmid vector is pBR322.
(10)β−ウロガストロン遺伝子を発現し得るプラス
ミド組換体を、宿主細胞に形質転換させた形質転換体。
(10) A transformant obtained by transforming a host cell with a plasmid recombinant capable of expressing the β-urogastrone gene.
(11)宿主細胞が大腸菌である特許請求の範囲第10
項に記載の形質転換体。
(11) Claim 10 in which the host cell is E. coli
Transformants described in Section.
(12)宿主細胞がTc^R、遺伝子及びCI857遺
伝子を挿入されているプラスミド組換体を保持している
特許請求の範囲第10項又は第11項に記載の形質転換
体。 (12)β−ウロガストロン遺伝子を発現し得るプラス
ミド組換体を宿主細胞に形質転換させ、次いでその形質
転換体を培養し、発現されたβ−ウロガストロンを回収
することを特徴とするβ−ウロガストロンの製造法。
(12) The transformant according to claim 10 or 11, wherein the host cell holds a plasmid recombinant into which Tc^R gene and CI857 gene have been inserted. (12) Production of β-urogastrone, which comprises transforming a host cell with a plasmid recombinant capable of expressing the β-urogastrone gene, then culturing the transformant, and collecting the expressed β-urogastrone. Law.
JP59137691A 1984-07-02 1984-07-02 β-urogastron gene, corresponding plasmid recombinant and corresponding transformant Expired - Lifetime JP2554459B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP59137691A JP2554459B2 (en) 1984-07-02 1984-07-02 β-urogastron gene, corresponding plasmid recombinant and corresponding transformant
AU44111/85A AU599003B2 (en) 1984-07-02 1985-06-24 Novel beta-urogastrone gene, corresponding recombinant plasmids, corresponding transformants and preparation thereof and of beta-urogastrone
CA000485007A CA1304023C (en) 1984-07-02 1985-06-24 .beta.-UROGASTRONE GENE, CORRESPONDING RECOMBINANT PLASMIDS, CORRESPONDING TRANSFORMANTS AND PREPARATION THEREOF AND OF .beta.-UROGASTRONE
DK291885A DK291885A (en) 1984-07-02 1985-06-27 BETA-UROGASTRON GENES, SIMILAR RECOMBINANT PLASMIDS, SIMILAR TRANSFORMERS, AND THEIR PREPARATION AND OF BETA-UROGASTRON
SE8503228A SE8503228L (en) 1984-07-02 1985-06-28 NEW BETA-UROGASTRON GEN
NL8501880A NL192116C (en) 1984-07-02 1985-06-28 Beta-urogastron genes, corresponding recombinant plasmids, corresponding transformants and their preparation, and of beta-urogastron.
IT8505195A IT1210142B (en) 1984-07-02 1985-07-01 NEW BETA-UROGASTRONE GENE, CORRESPONDING RECOMBINANTS, TRANSFORMING CORRESPONDENTS AND METHOD FOR THE PREPARATION OF THESE AND BETA-UROGASTRONE.
GB8516591A GB2162851B (en) 1984-07-02 1985-07-01 Novel b-urogastrone gene, corresponding recombinant plasmids, corresponding transformants and preparations thereof and of b-urogastrone.
KR1019850004708A KR920009543B1 (en) 1984-07-02 1985-07-01 Novel beta-urogastrone gene
CH2812/85A CH670654A5 (en) 1984-07-02 1985-07-01
DE19853523634 DE3523634A1 (en) 1984-07-02 1985-07-02 SS-UROGASTRON GEN, RECOMBINANT PLASMIDE, TRANSFORMERS, THEIR PRODUCTION AND PRODUCTION OF SS-UROGASTRON
FR858510072A FR2566799B1 (en) 1984-07-02 1985-07-02 B-UROGASTRONE GENE AND SUBUNITS, PLASMIDS AND TRANSFORMANTS THEREOF AND PREPARATION THEREOF, PROCESS FOR THE PRODUCTION OF B-UROGASTRONE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59137691A JP2554459B2 (en) 1984-07-02 1984-07-02 β-urogastron gene, corresponding plasmid recombinant and corresponding transformant

Publications (2)

Publication Number Publication Date
JPS6115691A true JPS6115691A (en) 1986-01-23
JP2554459B2 JP2554459B2 (en) 1996-11-13

Family

ID=15204546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59137691A Expired - Lifetime JP2554459B2 (en) 1984-07-02 1984-07-02 β-urogastron gene, corresponding plasmid recombinant and corresponding transformant

Country Status (12)

Country Link
JP (1) JP2554459B2 (en)
KR (1) KR920009543B1 (en)
AU (1) AU599003B2 (en)
CA (1) CA1304023C (en)
CH (1) CH670654A5 (en)
DE (1) DE3523634A1 (en)
DK (1) DK291885A (en)
FR (1) FR2566799B1 (en)
GB (1) GB2162851B (en)
IT (1) IT1210142B (en)
NL (1) NL192116C (en)
SE (1) SE8503228L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509140A (en) * 1993-04-26 1995-10-12 ダイウォン ファーマシューティカル カンパニー,リミテッド A novel gene encoding human epidermal growth factor and its production method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870008A (en) * 1983-08-12 1989-09-26 Chiron Corporation Secretory expression in eukaryotes
GB8507666D0 (en) * 1985-03-25 1985-05-01 Wellcome Found Epidermal growth factor production
US4743679A (en) * 1986-02-24 1988-05-10 Creative Biomolecules, Inc. Process for producing human epidermal growth factor and analogs thereof
US5222978A (en) 1987-08-26 1993-06-29 United States Surgical Corporation Packaged synthetic absorbable surgical elements
US5306289A (en) 1987-08-26 1994-04-26 United States Surgical Corporation Braided suture of improved characteristics
US5226912A (en) 1987-08-26 1993-07-13 United States Surgical Corporation Combined surgical needle-braided suture device
US5366081A (en) 1987-08-26 1994-11-22 United States Surgical Corporation Packaged synthetic absorbable surgical elements
US5472702A (en) * 1987-08-26 1995-12-05 United States Surgical Corporation Sterilization of growth factors
GB2210618B (en) * 1987-10-08 1991-10-16 British Bio Technology Synthetic egf gene
FI891308A (en) * 1988-03-24 1989-09-25 Oncogen NYA POLYPEPTIDER MED TILLVAEXTFAKTORAKTIVITET OCH DESSA KODANDE NUCLEIN SYRASE SEQUENTOR.
US5102789A (en) * 1989-03-15 1992-04-07 The Salk Institute Biotechnology/Industrial Associates, Inc. Production of epideramal growth factor in pichia pastoris yeast cells
US5359831A (en) 1989-08-01 1994-11-01 United States Surgical Corporation Molded suture retainer
CA2059245C (en) * 1991-02-08 2004-07-06 Michael P. Chesterfield Method and apparatus for calendering and coating/filling sutures
US5904716A (en) * 1995-04-26 1999-05-18 Gendler; El Method for reconstituting cartilage tissue using demineralized bone and product thereof
JP4057846B2 (en) 2002-06-07 2008-03-05 株式会社アステア Bumper structural material
US20090192554A1 (en) 2008-01-29 2009-07-30 Confluent Surgical, Inc. Bioabsorbable block copolymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE53166B1 (en) * 1980-08-05 1988-08-03 Searle & Co Synthetic urogastrone gene,corresponding plasmid recombinants,transformed cells,production thereof and urogastrone expression
FR2488557A1 (en) * 1980-08-13 1982-02-19 Ducellier & Cie DEVICE FOR TILTING PROJECTORS OF A MOTOR VEHICLE
US4532207A (en) * 1982-03-19 1985-07-30 G. D. Searle & Co. Process for the preparation of polypeptides utilizing a charged amino acid polymer and exopeptidase
WO1983004030A1 (en) * 1982-05-06 1983-11-24 Applied Molecular Genetics, Inc. The manufacture and expression of genes for urogastrone and polypeptide analogs thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509140A (en) * 1993-04-26 1995-10-12 ダイウォン ファーマシューティカル カンパニー,リミテッド A novel gene encoding human epidermal growth factor and its production method

Also Published As

Publication number Publication date
GB2162851A (en) 1986-02-12
DE3523634A1 (en) 1986-01-09
DK291885A (en) 1986-01-03
IT1210142B (en) 1989-09-06
KR860001186A (en) 1986-02-24
SE8503228L (en) 1986-01-03
FR2566799A1 (en) 1986-01-03
AU4411185A (en) 1986-01-09
DK291885D0 (en) 1985-06-27
IT8505195A0 (en) 1985-07-01
NL192116B (en) 1996-10-01
NL8501880A (en) 1986-02-03
JP2554459B2 (en) 1996-11-13
DE3523634C2 (en) 1993-07-08
AU599003B2 (en) 1990-07-12
GB2162851B (en) 1989-05-17
SE8503228D0 (en) 1985-06-28
CA1304023C (en) 1992-06-23
GB8516591D0 (en) 1985-08-07
NL192116C (en) 1997-02-04
FR2566799B1 (en) 1989-10-20
CH670654A5 (en) 1989-06-30
KR920009543B1 (en) 1992-10-19

Similar Documents

Publication Publication Date Title
JPS6115691A (en) Beta-urogastrone gene, corresponding plasmid recombinant, corresponding transformat, and preparation of beta-urogastrone
US5362853A (en) Polypeptide derivatives of human granulocyte colony stimulating factor
US5470720A (en) HIV antibody assays comprising p24-gp41 chimeric antigens
JP2528232B2 (en) Method for activating recombinant protein
US5786205A (en) Delivery and expression of a hybrid surface protein by bacteria
JPH074255B2 (en) DNA expression vector for expressing hybrid polypeptide in transformed host cell
US5795968A (en) Polypeptide derivatives of human granulocyte colony stimulating factor
US5457033A (en) Preparation of polypeptides having an amide carboxyl terminal end
JPS59162887A (en) Dual chain polydeoxynucleotide containing growth hormone discharge factor grf code structured gene
CA1339464C (en) ¬leu13| motilin, dnas coding for same and methods for producing same
JP2549504B2 (en) DNA base sequence, polypeptide secretory expression vector and transformed microorganism
JPS62272989A (en) Fused protein and antibody and production thereof
EP0107710A4 (en) The manufacture and expression of genes for calcitonin and polypeptide analogs thereof.
US5420113A (en) [Leu13]motilin, DNAs coding for same and methods for producing same
US5695952A (en) Method for producing Leu13 !motilin
EP0343132B1 (en) Methods and systems for producing HIV antigens
JP2574146B2 (en) Polypeptide expression vector, host transformed with the vector, and method for producing polypeptide using the host
JPS62179398A (en) Production of beta-urogastrone
JP2538200B2 (en) Polypeptide secretion expression vector and transformed microorganism
SU1724691A1 (en) Recombinant plasmid dna p10 fmd, encoding hybridous protein p204 - asp-pro-cys-vpi (200-213)-pro-pro-ser-pro (131-160) and a strain of bacteria escherichia coli-a producer of hybridous protein p204-asp-pro-cys-cys-vpi (200-213) - pro-pro-ser-pro-vpi (131-160)
JPH0123059B2 (en)
JPS6234760B2 (en)
JPS63245691A (en) Human immunoglobulin gfc region protein and production thereof
JPS6312298A (en) Beta-urogastorone derivative, production thereof, dna base sequence coding said derivative, manifestation vector containing same and microorganism containing said vector
JPH025881A (en) Cutting of fused protein

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term