JPH0123059B2 - - Google Patents

Info

Publication number
JPH0123059B2
JPH0123059B2 JP5769181A JP5769181A JPH0123059B2 JP H0123059 B2 JPH0123059 B2 JP H0123059B2 JP 5769181 A JP5769181 A JP 5769181A JP 5769181 A JP5769181 A JP 5769181A JP H0123059 B2 JPH0123059 B2 JP H0123059B2
Authority
JP
Japan
Prior art keywords
lys
glu
val
asp
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5769181A
Other languages
Japanese (ja)
Other versions
JPS57184969A (en
Inventor
Nobuaki Nakagawa
Shigeo Kuzuki
Ko Morita
Kunio Ooyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Jozo KK
Original Assignee
Toyo Jozo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Jozo KK filed Critical Toyo Jozo KK
Priority to JP5769181A priority Critical patent/JPS57184969A/en
Priority to SE8107687A priority patent/SE453510B/en
Priority to DE19813151738 priority patent/DE3151738A1/en
Priority to US06/335,401 priority patent/US4409141A/en
Priority to FR8124412A priority patent/FR2497198B1/en
Priority to CH8335/81A priority patent/CH661735A5/en
Priority to GB8139060A priority patent/GB2092160B/en
Publication of JPS57184969A publication Critical patent/JPS57184969A/en
Priority to US07/332,801 priority patent/USRE33188E/en
Publication of JPH0123059B2 publication Critical patent/JPH0123059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06086Dipeptides with the first amino acid being basic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、被検液中のヒト副甲状線ホルモン
(ヒト−PTHまたはそのC末端フラクメントのエ
ンザイム・イミユノ・アツセイ(EIA)に関す
る。 詳しくは、下記一般式〔〕 R2−Ala46−Gly−Ser−Gln−Arg−Pro51−Arg
−Lys53−Lys−Glu55−Asp−Asn−Val−
Leu−Val60−Glu−Ser−His−Glu−Lys65
−Ser−Leu−Gly−Glu−Ala70−Asp−Lys
−Ala−Asp−Val75−Asp−Val−Leu−
Thr−Lys80−Ala−Lys−Ser−Gln84−OH
〔〕 (ただし式中、R2はHまたはH−R3−基、R3
はCys基を示す)で表わされるペプチドを用いて
得られる抗体を用いてなるヒト−PTHまたはそ
のC末端フラグメントのEIAに関する。 ヒト−PTHは、84個のアミノ酸よりなるペプ
チドホルモンであり、近年このPTHのC末端側
の血中濃度を測定することがPTH関連疾患を診
断するに重要であると報告されている。〔F.P.
Dibella etal;J.Cln.Endocrinol.Metab.,46(4),
604(1978)〕。 そこで、本発明者らは、ヒト−PTHのC末端
側のフラグメントである32残基〔h−PTH(53−
84)〕、34残基〔h−PTH(51−84)〕、39残基〔h
−PTH(46−84)〕、さらに〔Cys45〕−h−PTH
(45−84)および〔Tyr45〕−h−PTH(45−84)
を合成し(特願昭55−187686号;特開昭57−
126456号公報)、そのh−PTH(46−84)、
〔Cys45〕−h−PTH(45−84)により良好にヒト
−PTHのC末端フラグメントに対する抗体を用
いたEIAに基いて定量をなし得ることを見い出し
た。特に好ましくは〔Cys45〕−h−PTH(45−
84)またはその蛋白質結合体、例えば牛血清アル
ブミン(BSA)との結合体を抗原として得られ
る特異的抗体を用い、かつEIAに用いられる酵素
標識体として、下記一般式〔〕 R−Lys53−Lys−Glu55−Asp−Asn−Val−Leu
−Val60−Glu−Ser−His−Glu−Lys65−Ser
−Leu−Gly−Glu−Ala70−Asp−Lys−Ala
−Asp−Val75−Asp−Val−Leu−Thr−
Lys80−Ala−Lys−Ser−Gln84−OH 〔〕 (式中、RはHまたはR1−Rro51−Arg52−基、
R1はHまたはR2−Ala46−Gly47−Ser48−Gln49
Arg50−基、R2はHまたはH−R45 3−基、R3
Cys基を示す)で表わされるペプチドを酵素にて
標識せしめた標識化合物を用いることにより、ヒ
ト−PTHまたはヒト−PTHC末端フラグメント
を良好に定量し得ることを見い出した。本発明
は、上記の知見に基づいてなされたもので、ヒト
ーPTHまたはそのC末端フラグメントを含有す
る被検液に、免疫反応媒体中、標識抗原として酵
素標識したヒト−PTHのC末端フラグメントお
よび抗体として下記一般式〔〕 R2−Ala−Gly−Ser−Gln−Arg−Pro−Arg−
Lys−Lys−Glu−Asp−Asn−Val−Leu−
Val−Glu−Ser−His−Glu−Lys−Ser−
Leu−Gly−Glu−AlaAsp−Lys−Ala−Asp
−Val−Asp−Val−Leu−Thr−Lys−Ala
−Lys−Ser−Gln−OH 〔〕 (ただし式中、R2はHまたはH−R3−基、R3
はCys基を示す)で表わされるペプチドを用いて
ヒト以外の哺乳動物に感作せしめて得られる特異
的抗体を反応せしめ、次いで反応によつて結合し
た部分と結合していない遊離部とを分離し、その
後結合した部分または結合していない遊離部の酵
素活性を測定することを特徴とする被検液のヒト
−PTHまたはそのC末端フラグメントの測定法
である。 まず本発明に用いられる一般式〔〕で表わさ
れるペプチド、一般式〔〕で表わされるペプチ
ドは、その式〔〕、〔〕で示されるアミノ酸順
序に個々のアミノ酸または低級ペプチドを縮合せ
しめ、縮合反応の最終段階で側鎖の官能基の保護
基を脱離することにより得られる。縮合順序とし
ては式〔〕、〔〕で示されるアミノ酸配列であ
れば、如何なる順序からでも合成し得るが、C−
末端側から合成するのが有利である。また合成す
るに当つては、カルボジイミド法、アジド法、活
性エステル法や無水物法などの縮合方法を用いる
ことが好ましく、さらに縮合の各段階ではラセミ
化が起らない方法またはラセミ化が最小になる方
法を用いるのが望ましく、好ましくはアジド法、
活性エステル法、Wu¨nseh法またはGeiger法、と
りわけ縮合剤としてN−エチル−N′−3−ジメ
チルアミノプロピル−カルボジイミド(WSCI)
を用いる変法などが用いられる。また合成に当つ
ては、ペプチド分野の合成技術に基いて、適宜使
用し得る保護基を用い、縮合を順次行なうもの
で、ペプチド分野の合成技術がひろく用いられ
る。なお合成の詳細に関しては、何んら限定する
ものではないが、特願昭55−187680号明細書(特
開昭57−126456号公報)を参照されたい。 このようにして本発明における抗体を得るため
のh−PTH(46−84)、〔Cys45〕−h−PTH(45−
84)の一般式〔〕で表わされるペプチド、およ
び酵素標識体として用いる一般式〔〕のペプチ
ドや抗体を得る対照としてのh−PTH(53−84)、
h−PTH(51−84)を得ればよい。 このようにして一般式〔〕で表わされるペプ
チド(以下、ペプチド〔〕と略す)および一般
式〔〕で表わされるペプチド(以下、ペプチド
〔〕と略す)を用いてEIAに基いてヒト−PTH
またはそのC末端・フラグメントを測定するもの
であるが、まずそのPTH測定のための用いる
EIAの実施に必要な各試薬、例えば抗血清、また
は抗体や酵素標識体までを調整するのである。ま
ずペプチド〔〕を用いてその特異的抗体を得る
に当つては、ペプチド〔〕をそのまま、または
BSAまたはそのアルカリ処理もしくはソジウム
ラウリルサルフエートとメルカプトエタノール処
理による分子内ジスルフイド基を開裂せしめた処
理物などの蛋白質との結合体として用いて、種々
の哺乳動物例えばウサギ、ラツト、モルモツトや
マウスなどに投与せしめて感作せしめればよく、
例えば上記のペプチド〔〕またはその蛋白質結
合体をフロイント・コンプリート・アジユバント
に乳化せしめ、これをモルモツトに皮下注射せし
め、2週間隔で4〜7回投与することにより感作
せしめ得るもので、次いでこの目的とする抗体を
産生した動物より採血し、それを常法により遠心
処理などを行なつてその抗血清を得ればよい。ま
たこの抗血清は十分高濃度の特異的抗体を含有し
てなるもので、適宜そのまま保存してもよく、ま
たそのまま使用時に必要に応じて希釈して用いれ
ばよい。さらにこの抗血清は、塩析、等電点沈
澱、透析、クロマトグラフイー、ゲル過手段な
どの常法によりその特異的抗体を得てもよい。 また上記の蛋白質との結合体を得るに当つて
は、多官能性試薬、例えばスクシンアルデヒド、
グルタルアルデヒド、アジポアルデヒドなどのア
ルデヒド化合物、ヘキサメチレンジイソシアナー
ト、2,4−トルエンジイソシアナートなどのジ
イソシアナート化合物や3−(2′−ベンゾチアゾ
リル−ジチオ)プロピオン酸スクシンイミドエス
テル(特願昭53−85900号(特開昭55−17302号公
報)参照)6−N〔3−(2′−ベンゾチアゾリルー
ジチオ)プロピオニル〕カプロン酸スクシンイミ
ドエステル、N−〔2−(2′−ピリジルジチオ)エ
チル〕3−(2′−ベンゾチアゾリルージチオ)プ
ロピオンアミド特願昭54−3507号(特開昭55−
94367号公報)、特願昭54−41737号(特開昭55−
133382号公報)、特願昭54−44589(特開昭55−
136261号公報)、マレイミド安息香酸スクシンイ
ミドエステル、N,N′−エチレンビスマレイミ
ド、ビスジアゾベンジジン、ジエチルマロンイミ
デートなどが用いられ、これらの多官能性試薬
は、用いるペプチド〔〕および蛋白質の結合に
関与するアミノ基、カルボキシル基やチオール基
などの官能基を考慮して選択使用すればよい。特
に好ましくは、ペプチド〔〕として〔Cys45〕−
h−PTH(45−84)を用い、かつ多官能性試薬と
して3−(2′−ベンゾチアゾリル−ジチオ)プロ
ピオン酸スクシンイミドエステルなどのチオール
基と良好に反応する試薬を用いて蛋白質を結合せ
しめることにより、そのCys45の基のチオール基
に基いて良好なペプチド〔〕の蛋白質結合体が
得られる。 また結合せしめるに当つては、本発明のペプチ
ド〔〕と蛋白質、例えばBSAとの使用量とし
てはBSA1モル当りペプチド〔〕1〜20モル程
度である。さらに反応に当つては、例えばPH7〜
8の水性媒体にペプチド〔〕を必要量加え、次
いでこれに多官能性試薬を添加して通常冷却下/
室温下にて1〜5時間反応せしめ、適宜これをゲ
ル過などの精製手段を用いて精製した後、これ
にBSAを加えて室温下1〜5時間反応せしめ、
反応後ゲル過、透析などの手段にて精製してペ
プチド〔〕とBSAなどの蛋白質との結合体を
得ればよい。さらに前記の特異的抗体は、必要に
応じて不溶性担体、例えばアルブミンやゼラチン
などの不溶性蛋白質担体、アガロース、セルロー
スやデキストリンなどのエピクロルヒドリン処理
や臭化シアン処理、さらにこれらのアミノ基導入
試薬処理してなる不溶性半合成高分子系担体、ア
クリロニトリル、アクリル酸、アクリル酸エステ
ル、メタアクリル酸、メタアクリル酸エステル、
ビニルアルコール、酢酸ビニル、アミノスチレ
ン、アクリルアミド、エチレンなどのポリマーま
たはコポリマーなどの不溶性高分子系担体を用い
て、前述の如くの多官能性化合物にて結合せしめ
た不溶化抗体として用いてもよい。 さらにまたEIAたる測定に用いられるペプチド
〔〕の酵素標識体を得るに当つて、まず用いら
れる酵素としては、酸化還元酵素、加水分解酵
素、転位酵素、リアーゼ、イソメラーゼ、リガー
ゼが適宜使用されるもので、例示すればラクテー
トデヒドロゲナーゼ、マレイトデヒドロゲナー
ゼ、リンゴ酸デヒドロゲナーゼ、マルトースデヒ
ドロゲナーゼ、ラクテートオキシダーゼ、マレイ
トオキシダーゼ、グルコースオキシダーゼ、コリ
ンオキシダーゼ、キサンチンオキシダーゼ、アミ
ノ酸オキシダーゼ、ザルコシンオキシダーゼ、カ
タラーゼ、α−アミラーゼ、β−ガラクトシダー
ゼ、リゾチーム、リパーゼ、アルカリホスフアタ
ーゼ、アミノペプチターゼ、トリプシン、パパイ
ン、α−キモトリプシン、アミダーゼ、ヘキソキ
ナーゼ、グリセロキナーゼなどが挙られる。さら
にこれらの酵素は、あらかじめ任意のスペーサー
導入を行なつてもよく、例えばグルタルアルデヒ
ドなどのジアルデヒド、ω−アミノ酸酸クロライ
ドなどの反応性誘導体、ジアルデヒドやジカルボ
ン酸クロライドとヘキサメチレンジアミン、デカ
メチレンアミンなどのジアミン、S−アセチルメ
ルカプトサクシニツク・アンハイドライド、ジア
ルデヒドと2−アミノエタンチオールなどのスペ
ーサー導入試薬を用いて新たにアルデヒド基、ア
ミノ基、チオール基を導入してもよい。このよう
な酵素を用いて酵素標識体を得るに当つては、本
発明のペプチド〔〕、酵素の有するアミノ基、
水酸基、カルボキシル基、チオール基などや、さ
らに導入されたアルデヒド基、アミノ基、チオー
ル基、カルボキシル基などに基いて、両者を結合
し得る多官能性試薬を用いて、ペプチド〔〕一
酵素結合体を得るものである。またこのようなペ
プチド〔〕一酵素結合体である酵素標識体を製
造するに当つては、例えばPH6〜8の緩衝液中メ
タノール、エタノール、アセトン、ジオキサン、
ジメチルスルホキサイド、ジメチルアセトアミ
ド、テトラヒドロフランなどの有機溶媒の存在
下、またはこれらの有機溶媒中、0℃〜40℃にて
本発明のペプチド〔〕と多官能性試薬とを反応
せしめる。この際使用する割合としてはペプチド
〔〕に対して多官能試薬等モル比以上使用すれ
ばよく、通常等モル比程度使用される。次いでこ
の反応終了後、必要に応じて精製し、これに酵素
を加え、好ましくは酵素の安定PHを有する緩衝液
中にて反応せしめればよく、また使用する酵素量
としてはペプチド〔〕と等モル程度用いればよ
い。のようにして得られた生成物たるペプチド
〔〕一酵素結合体は、吸着クロマトグラフイー
やゲル過などの精製手段により精製採取すれば
よい。 次いで本発明を実施するに当たつてEIAの競争
法が用いられる。競争法に関して詳しく例示すれ
ば、まずヒト−PTHの含量を測定しようとする
試料、ペプチド〔〕の酵素標識体およびペプチ
ド〔〕を用いて得られた抗血清または抗体を免
疫反応媒体、例えばリン酸緩衝液やベロナール緩
衝液中にて4〜5℃程度にて約1〜3日間インキ
ユベイトし、次いで免疫結合した部分たる結合部
Bと結合してない遊離部Fとを分離するためのB
−F分離を行なうもので、好ましくは抗血清作成
に用いた哺乳動物と同一動物の正常血清およびそ
の動物に対する抗血清を加えて一夜インキユベイ
トし、その後3000rpm、20〜30分程度にて遠心分
離してB−F分離し、次いでそのBたる沈澱物の
有する酵素標識体の酵素活性の測定またはそのF
たる液層部の酵素活性の測定を行なえばよい。ま
た固相法としては、上記競争法におけるペプチド
〔〕を用いて得られる抗血清または抗体の代わ
りに不溶化抗体を用いて競争反応を行なわせ、反
応後そのB−F分離を行ない、同様に酵素活性測
定を行なえばよい。 このようにして、ペプチド〔〕を用いて得ら
れる抗体、およびペプチド〔〕の酵素標識体を
用いることにより、極めて正確かつ簡便に試料中
のヒト−PTHまたはそのC末端−フラグメント
の定量をなし得る優れた方法であり、特に
〔Cys45〕−h−PTH(45−84)のβ−ガラクトシ
ダーゼ標識体は、特に好ましいものであつた。 次に本発明の実施例および参考例を挙げて詳し
く述べるが、本発明はこれらによつて何んら限定
されるものではない。 実施例 (1) 抗原について。 各参考例の如くして得られた、h−PTH(53−
84)、h−PTH(51−84)、h−PTH(46−84)、
および下記の如くして得られたBSA−〔Cys45〕−
h−PTH(45−84)を抗原として用いた。 なお、BSA−〔Cys45〕−h−PTH(45−84)の
作成は次の通りである。 BSA50mgを0.1Mリン酸緩衝液(PH8.0)10mlに
溶かし、これにEDTA・4ナトリウム塩6mgを
加えた。次いでこれに、5mgの3−(2′−ベンゾ
チアゾリル−ジチオ)プロピオン酸スクシンイミ
ドエステル含有ジメチルホルムアミド溶液1.5ml
を加えて氷冷下60分間撹拌反応せしめ、反応後こ
れに〔Cys45〕−h−PTH(45−84)50mgを加え
た。氷冷下で30分間反応した後、PHを7.0に調整
し、セフアデツクスG−75〔0.15M NaClを含む
0.01Mリン酸緩衝液(PH7.2)にて充填〕のカラ
ム(径5cm×50cm)でゲル過して、350mlから
450mlの流出分画を回収し、BSA−〔Cys45〕−h
−PTH(45−84)含有区分を得た〔BSA1分子当
り、〔Cys45〕−h−PTH(45−84)は平均11分子
結合〕。 (2) 抗体について 上記各抗原を用いて、500μg/mlの濃度の
0.15M NaCl含有0.01Mリン酸緩衝液(PH7.0)を
調整した。この溶液各々2.5mlづつ分取し、フロ
イント・コンプリート・アジユバンド25mlづつ加
えて乳化し、各々5匹づつの雄モルモツト背部に
皮下注射して免疫した(2週間毎に5回皮下注
射)。次いでその最終免疫から2週間目に、心臓
より採血し、常法に従つて各抗原に対する抗血清
を得た。 なお以下、h−PTH(53−84)に対する抗血清
はAと略し、h−PTH(51−84)に対する抗血清
はBと略し、h−PTH(46−84)に対する抗血清
はCと略し、BSA−〔Cys45〕−h−PTH(45−
84)に対する抗血清はDと略す。 (3) 酵素標識体について 〔Cys45〕−h−PTH(45−84)4mgを1mlの
0.1Mリン酸緩衝液(PH7.0)に溶解し、これ
に、N〔2−(2′−ピリジルジチオ)エチル〕3
−(2′−ベンゾチアゾリル−ジチオ)プロピオ
ンアミド0.6mg含有ジメチルホルムアミド0.9ml
を加え、0℃にて60分間撹拌反応した。反応後
塩酸にてPHを6.0に調節し、0.1Mリン酸緩衝液
(PH6.0)を媒体として、セフアデツクスG−25
のカラム(1cm×50cm)でゲル過し、15〜19
mlの分画を得た{1ml当り〔Cys45〕−h−
PTH(45−84)として660γを含む}。次いでβ
−ガラクトシダーゼ1.2mgを含む0.1Mリン酸緩
衝液(PH8.0)1.5mlに、上記分画20μを加え、
0℃、60分間撹拌反応せしめた後、セフアデツ
クスG−100のカラム(1cm×50cm)にて
0.15M NaCl含有0.01Mリン酸緩衝液(PH7.2)
で溶出してゲル過し、その13〜17mlの溶出分
画を得た。この分画におけるβ−ガラクトシダ
ーゼ標識体は、〔Cys45〕−h−PTH(45−84):
β−ガラクトシダーゼは約1:1であつた(以
下、「LotA」と略す)。 h−PTH(53−84)2mgを1mlの0.1Mリン
酸緩衝液(PH8.0)に溶解し、これに3−(2′−
ベンゾチアゾリル−ジチオ)プロピオン酸スク
シンイミドエステル315μgを含むジメチルホ
ルムアミド0.2mgを加えて、0℃、60分間撹拌
反応した。反応後この8.5μを、1mgのβ−ガ
ラクトシダーゼ含有0.1Mリン酸緩衝液(PH
7.0)1mlに加えて、0℃、60分間反応せしめ
た。次いで反応液をセフアデツクスG−100の
カラム(1cm×50cm)にてゲル過して、その
14〜17mlの溶出分画を得た。本品のβ−ガラク
トシダーゼ標識体は、h−PTH(53−84):β
−ガラクトシダーゼは約1:1であつた(以
下、「LotB」と略す)。 (4) 測定法について、 試料液100μ、酵素標識体含有液100μ、適
宜希釈した抗血清100μおよびモルモツトの正
常血清(100倍希釈)100μを5℃にて24時間イ
ンキユベイトレ、次いで抗モルモツトγ−グロブ
リンウサギ血清(10倍希釈)10μを加えて5
℃、24時間インキユベイトレ、これに0.5M
NaCl3mlを加えた後3000rpm、15分間遠心分離し
てその沈澱物を回収した。次いでこの沈澱物を、
0−ニトロフエニル−β−ガラクトシド5mg/ml
含有0.1Mリン酸緩衝液(0.1%アジ化ナトリウ
ム、0.1%BSA、20mMメルカプトエタノール、
10%エタノール含有、PH6.7)200μに加えて37
℃、90分間反応せしめ、次いで0.2Mグリシン緩
衝液(PH10.4)2.5mlを加えて反応を停止せしめ
た後420nmの波長にて吸光度測定した。 なお、免疫反応における希釈媒体としては、
0.1%アジ化ナトリウム、0.25%BSA、
0.15MNacl.5mMEDTAを含む0.01Mリン酸緩衝
液(PH7.2)を用いた。 酵素標識体としてLotAを用いて、前記の各
抗血清の抗体力価(Bo/T)を測定した。そ
の結果第1表に示す通りであつた。
The present invention relates to enzyme immunoassay ( EIA ) of human parathyroid hormone (human PTH or its C-terminal fragment) in a test solution. Ser−Gln−Arg−Pro 51 −Arg
−Lys 53 −Lys−Glu 55 −Asp−Asn−Val−
Leu−Val 60 −Glu−Ser−His−Glu−Lys 65
−Ser−Leu−Gly−Glu−Ala 70 −Asp−Lys
−Ala−Asp−Val 75 −Asp−Val−Leu−
Thr−Lys 80 −Ala−Lys−Ser−Gln 84 −OH
[] (In the formula, R 2 is H or H-R 3 - group, R 3
The present invention relates to EIA of human PTH or its C-terminal fragment using an antibody obtained using a peptide represented by (indicates a Cys group). Human PTH is a peptide hormone consisting of 84 amino acids, and in recent years it has been reported that measuring the blood concentration of the C-terminal side of PTH is important for diagnosing PTH-related diseases. [FP
Dibella etal; J.Cln.Endocrinol.Metab., 46 (4),
604 (1978)]. Therefore, the present inventors investigated the C-terminal fragment of human-PTH, 32 residues [h-PTH (53-
84)], 34 residues [h-PTH(51-84)], 39 residues [h
-PTH(46-84)], and further [Cys 45 ]-h-PTH
(45−84) and [Tyr 45 ]−h−PTH (45−84)
(Japanese Patent Application No. 187686, 1983;
126456), its h-PTH (46-84),
It has been found that [Cys 45 ]-h-PTH (45-84) allows good quantification based on EIA using an antibody against the C-terminal fragment of human-PTH. Particularly preferably [Cys 45 ]-h-PTH (45-
84) or a protein conjugate thereof, for example, a conjugate with bovine serum albumin (BSA), is used as an enzyme-labeled substance for EIA using a specific antibody obtained using the antigen as an enzyme-labeled substance using the following general formula [] R-Lys 53 − Lys−Glu 55 −Asp−Asn−Val−Leu
−Val 60 −Glu−Ser−His−Glu−Lys 65 −Ser
−Leu−Gly−Glu−Ala 70 −Asp−Lys−Ala
−Asp−Val 75 −Asp−Val−Leu−Thr−
Lys 80 -Ala-Lys-Ser-Gln 84 -OH [] (wherein, R is H or R 1 -Rro 51 -Arg 52 - group,
R 1 is H or R 2 −Ala 46 −Gly 47 −Ser 48 −Gln 49
Arg 50 - group, R 2 is H or H-R 45 3 - group, R 3 is
It has been found that human-PTH or human-PTHC terminal fragments can be quantified favorably by using a labeled compound in which a peptide represented by Cys (indicating a Cys group) is labeled with an enzyme. The present invention was made based on the above findings, and involves adding an enzyme-labeled C-terminal fragment of human PTH and an antibody as a labeled antigen to a test solution containing human PTH or its C-terminal fragment in an immunoreaction medium. The following general formula [] R 2 −Ala−Gly−Ser−Gln−Arg−Pro−Arg−
Lys−Lys−Glu−Asp−Asn−Val−Leu−
Val−Glu−Ser−His−Glu−Lys−Ser−
Leu−Gly−Glu−AlaAsp−Lys−Ala−Asp
−Val−Asp−Val−Leu−Thr−Lys−Ala
-Lys-Ser-Gln-OH [] (In the formula, R 2 is H or H-R 3 - group, R 3
(represents a Cys group) is used to sensitize a non-human mammal to react with a specific antibody obtained, and then the bound part and the unbound free part are separated by the reaction. This is a method for measuring human-PTH or its C-terminal fragment in a test liquid, which is characterized in that the enzyme activity of the bound portion or the unbound free portion is then measured. First, the peptides represented by the general formula [] and the peptides represented by the general formula [] used in the present invention are produced by condensing individual amino acids or lower peptides in the amino acid order shown by the formula [], [], and then reacting with the condensation reaction. It is obtained by removing the protective group of the functional group on the side chain in the final step. As for the condensation order, it can be synthesized in any order as long as it is an amino acid sequence shown by the formulas [] and [], but C-
It is advantageous to synthesize from the terminal side. In addition, when synthesizing, it is preferable to use a condensation method such as the carbodiimide method, azide method, active ester method, or anhydride method, and in each step of the condensation, a method that does not cause racemization or a method that minimizes racemization is preferred. It is desirable to use a method, preferably an azide method,
Active ester method, Wu¨nseh method or Geiger method, especially N-ethyl-N'-3-dimethylaminopropyl-carbodiimide (WSCI) as condensing agent
A modified method using . In the synthesis, condensation is carried out sequentially using appropriately available protecting groups based on the synthetic techniques of the peptide field, and the synthetic techniques of the peptide field are widely used. Regarding the details of the synthesis, please refer to Japanese Patent Application No. 187680/1980 (Japanese Patent Application Laid-open No. 126456/1982), although it is not limited in any way. In this way, h-PTH (46-84), [Cys 45 ]-h-PTH (45-
h-PTH (53-84) as a control to obtain a peptide represented by the general formula [] of 84), and a peptide or antibody of the general formula [] used as an enzyme label;
It is sufficient to obtain h-PTH (51-84). In this way, the peptide represented by the general formula [] (hereinafter abbreviated as peptide []) and the peptide represented by the general formula [] (hereinafter abbreviated as peptide []) were used to determine human PTH based on EIA.
Or, it measures its C-terminus/fragment, but first, it is used for PTH measurement.
They prepare all the reagents necessary to conduct EIA, such as antiserum, antibodies, and enzyme labels. First, when obtaining a specific antibody using the peptide [], the peptide [] may be used as is or
It is used as a conjugate with a protein such as BSA or its treated product with an alkali treatment or treatment with sodium lauryl sulfate and mercaptoethanol to cleave an intramolecular disulfide group, and is used in various mammals such as rabbits, rats, guinea pigs, and mice. All you have to do is to sensitize it by administering it to
For example, sensitization can be achieved by emulsifying the above-mentioned peptide [] or its protein conjugate in Freund's Complete Adjuvant, injecting this subcutaneously into guinea pigs, and administering this 4 to 7 times at 2-week intervals; Blood may be collected from an animal that has produced the desired antibody, and the blood may be centrifuged in a conventional manner to obtain the antiserum. Furthermore, this antiserum contains a sufficiently high concentration of specific antibodies, and may be stored as it is, or may be diluted as needed before use. Further, this antiserum may be used to obtain its specific antibody by conventional methods such as salting out, isoelectric precipitation, dialysis, chromatography, and gel filtration. In addition, in order to obtain a conjugate with the above protein, a polyfunctional reagent such as succinic aldehyde,
Aldehyde compounds such as glutaraldehyde and adipaldehyde, diisocyanate compounds such as hexamethylene diisocyanate and 2,4-toluene diisocyanate, and 3-(2'-benzothiazolyl-dithio)propionic acid succinimide ester (patent application) 53-85900 (Japanese Unexamined Patent Publication No. 55-17302)) 6-N[3-(2'-benzothiazolyldithio)propionyl]caproic acid succinimide ester, N-[2-(2'-pyridyldithio) )Ethyl]3-(2'-Benzothiazolyludithio)propionamide Patent Application No. 3507, 1983
Publication No. 94367), Japanese Patent Application No. 41737 (1983)
133382), Japanese Patent Application No. 133382 (Japanese Patent Application No. 1983-44589)
136261), maleimidobenzoic acid succinimide ester, N,N'-ethylene bismaleimide, bisdiazobenzidine, diethylmalonimidate, etc., and these polyfunctional reagents are effective in binding the peptide [] and protein used. They may be selected and used in consideration of the functional groups involved, such as amino groups, carboxyl groups, and thiol groups. Particularly preferably, the peptide [] is [ Cys45 ]-
By binding proteins using h-PTH (45-84) and a reagent that reacts well with thiol groups such as 3-(2'-benzothiazolyl-dithio)propionic acid succinimide ester as a polyfunctional reagent. , a good protein conjugate of peptide [] can be obtained based on the thiol group of the Cys 45 group. In addition, for binding, the amount of the peptide [] of the present invention and protein, such as BSA, to be used is approximately 1 to 20 moles of peptide [] per mole of BSA. Furthermore, for the reaction, for example, pH7~
Add the required amount of peptide [ ] to the aqueous medium in step 8, then add the polyfunctional reagent to this and cool/cool normally.
After reacting at room temperature for 1 to 5 hours, purifying this as appropriate using a purification method such as gel filtration, adding BSA to this and reacting at room temperature for 1 to 5 hours,
After the reaction, it may be purified by means such as gel filtration or dialysis to obtain a conjugate of the peptide [ ] and a protein such as BSA. Furthermore, the above-mentioned specific antibody can be prepared by treating an insoluble carrier such as an insoluble protein carrier such as albumin or gelatin, agarose, cellulose or dextrin with epichlorohydrin or cyanogen bromide, and further treating with an amino group-introducing reagent thereof, as necessary. Insoluble semi-synthetic polymeric carrier, acrylonitrile, acrylic acid, acrylic ester, methacrylic acid, methacrylic ester,
An insoluble polymeric carrier such as a polymer or copolymer of vinyl alcohol, vinyl acetate, aminostyrene, acrylamide, ethylene, etc. may be used as an insolubilized antibody bound with a polyfunctional compound as described above. Furthermore, when obtaining an enzyme-labeled peptide [] used for EIA measurement, the first enzyme used is an oxidoreductase, a hydrolase, a transposase, a lyase, an isomerase, or a ligase. Examples include lactate dehydrogenase, maleate dehydrogenase, malate dehydrogenase, maltose dehydrogenase, lactate oxidase, maleate oxidase, glucose oxidase, choline oxidase, xanthine oxidase, amino acid oxidase, sarcosine oxidase, catalase, α-amylase, β- Examples include galactosidase, lysozyme, lipase, alkaline phosphatase, aminopeptidase, trypsin, papain, α-chymotrypsin, amidase, hexokinase, and glycerokinase. Furthermore, any spacer may be introduced in advance into these enzymes, such as dialdehydes such as glutaraldehyde, reactive derivatives such as ω-amino acid acid chloride, dialdehydes or dicarboxylic acid chlorides, hexamethylene diamine, decamethylene, etc. New aldehyde groups, amino groups, and thiol groups may be introduced using diamines such as amines, S-acetylmercaptosuccinic anhydride, dialdehydes, and spacer-introducing reagents such as 2-aminoethanethiol. When obtaining an enzyme label using such an enzyme, the peptide of the present invention [], the amino group possessed by the enzyme,
Based on hydroxyl groups, carboxyl groups, thiol groups, etc., and further introduced aldehyde groups, amino groups, thiol groups, carboxyl groups, etc., a peptide [mono-enzyme conjugate] is created using a polyfunctional reagent that can bind both groups. This is what you get. In addition, when producing an enzyme label that is such a peptide []-enzyme conjugate, for example, methanol, ethanol, acetone, dioxane,
The peptide of the present invention [ ] is reacted with a polyfunctional reagent at 0°C to 40°C in the presence of or in an organic solvent such as dimethylsulfoxide, dimethylacetamide, or tetrahydrofuran. In this case, the ratio to be used is equal to or more than the equimolar ratio of the polyfunctional reagent to the peptide [], and usually the equimolar ratio is used. After this reaction is completed, the enzyme may be purified if necessary, and an enzyme may be added thereto, and the reaction may be carried out preferably in a buffer having a stable pH for the enzyme.The amount of enzyme used is equal to that of the peptide. It is sufficient to use a molar amount. The product peptide []-enzyme conjugate obtained in the above manner may be purified and collected by purification means such as adsorption chromatography or gel filtration. The competition law of EIA is then used in implementing the invention. To give a detailed example of the competition method, first, a sample for which the content of human PTH is to be measured, an enzyme-labeled peptide [], and an antiserum or antibody obtained using the peptide [] are mixed with an immunoreaction medium, such as a phosphoric acid Incubate in a buffer solution or veronal buffer at about 4 to 5°C for about 1 to 3 days, and then separate the bound part B, which is the immune-bound part, from the free part F, which is not bound to B.
-F separation, preferably by adding normal serum from the same mammal as the one used for antiserum preparation and antiserum against that animal, incubating overnight, and then centrifuging at 3000 rpm for about 20 to 30 minutes. to separate B-F, and then measure the enzyme activity of the enzyme-labeled substance contained in the precipitate (B) or the F-F separation.
The enzyme activity in the liquid layer of the barrel may be measured. In addition, in the solid phase method, a competitive reaction is performed using an insolubilized antibody instead of the antiserum or antibody obtained using the peptide [] in the competitive method, and after the reaction, the B-F separation is performed, and similarly the enzyme All you have to do is measure the activity. In this way, by using an antibody obtained using peptide [] and an enzyme-labeled form of peptide [], human PTH or its C-terminal fragment in a sample can be quantified extremely accurately and easily. This is an excellent method, and in particular, [Cys 45 ]-h-PTH (45-84) labeled with β-galactosidase was particularly preferred. Next, the present invention will be described in detail with reference to Examples and Reference Examples, but the present invention is not limited thereto. Example (1) Regarding antigens. h-PTH (53-
84), h-PTH (51-84), h-PTH (46-84),
and BSA − [Cys 45 ] − obtained as follows.
h-PTH (45-84) was used as the antigen. Note that BSA-[Cys 45 ]-h-PTH (45-84) was prepared as follows. 50 mg of BSA was dissolved in 10 ml of 0.1M phosphate buffer (PH8.0), and 6 mg of EDTA tetrasodium salt was added thereto. This was then added with 1.5 ml of a dimethylformamide solution containing 5 mg of 3-(2'-benzothiazolyl-dithio)propionic acid succinimide ester.
was stirred and reacted for 60 minutes under ice cooling, and after the reaction, 50 mg of [Cys 45 ]-h-PTH (45-84) was added thereto. After reacting for 30 minutes under ice-cooling, adjust the pH to 7.0 and add Cephadex G-75 [containing 0.15M NaCl].
Filled with 0.01M phosphate buffer (PH7.2)] column (diameter 5cm x 50cm) from 350ml.
Collect the effluent fraction of 450 ml and add BSA-[Cys 45 ]-h
-PTH (45-84) containing category was obtained [per 1 molecule of BSA, [Cys 45 ]-h-PTH (45-84) has an average of 11 molecules bound]. (2) About antibodies Using each of the above antigens, antibodies were prepared at a concentration of 500 μg/ml.
A 0.01M phosphate buffer (PH7.0) containing 0.15M NaCl was prepared. 2.5 ml of each solution was taken, emulsified by adding 25 ml of Freund's Complete Adjuvant, and immunized by subcutaneous injection into the backs of 5 male guinea pigs (5 subcutaneous injections every 2 weeks). Then, two weeks after the final immunization, blood was collected from the heart, and antiserum against each antigen was obtained according to a conventional method. In addition, hereinafter, the antiserum against h-PTH (53-84) is abbreviated as A, the antiserum against h-PTH (51-84) is abbreviated as B, and the antiserum against h-PTH (46-84) is abbreviated as C. , BSA−[Cys 45 ]−h−PTH(45−
Antiserum against 84) is abbreviated as D. (3) About the enzyme label: 4 mg of [Cys 45 ]-h-PTH (45-84) in 1 ml.
Dissolved in 0.1M phosphate buffer (PH7.0) and added N[2-(2'-pyridyldithio)ethyl]3
- 0.9 ml of dimethylformamide containing 0.6 mg of (2′-benzothiazolyl-dithio)propionamide
was added, and the reaction was stirred at 0°C for 60 minutes. After the reaction, adjust the pH to 6.0 with hydrochloric acid, and add Sephadex G-25 using 0.1M phosphate buffer (PH6.0) as a medium.
Gel filtration with a column (1 cm x 50 cm) of 15 to 19
ml fractions were obtained {[Cys 45 ] per ml -h-
Contains 660γ as PTH(45−84)}. Then β
- Add 20μ of the above fraction to 1.5ml of 0.1M phosphate buffer (PH8.0) containing 1.2mg of galactosidase,
After stirring for 60 minutes at 0°C, the reaction was carried out using a Sephadex G-100 column (1 cm x 50 cm).
0.01M phosphate buffer containing 0.15M NaCl (PH7.2)
The eluate was eluted and gel-filtered to obtain a 13-17 ml eluate fraction. The β-galactosidase labeled product in this fraction is [Cys 45 ]-h-PTH (45-84):
The ratio of β-galactosidase was approximately 1:1 (hereinafter abbreviated as "LotA"). Dissolve 2 mg of h-PTH (53-84) in 1 ml of 0.1M phosphate buffer (PH8.0), and add 3-(2'-
0.2 mg of dimethylformamide containing 315 μg of benzothiazolyl-dithio)propionic acid succinimide ester was added, and the mixture was reacted with stirring at 0° C. for 60 minutes. After the reaction, this 8.5μ was added to 0.1M phosphate buffer (PH) containing 1mg of β-galactosidase.
7.0) and reacted at 0°C for 60 minutes. Next, the reaction solution was gel-filtered through a Sephadex G-100 column (1 cm x 50 cm).
Elution fractions of 14-17 ml were obtained. The β-galactosidase labeled substance of this product is h-PTH(53-84):β
- The ratio of galactosidase was approximately 1:1 (hereinafter abbreviated as "LotB"). (4) Regarding the measurement method, incubate 100μ of the sample solution, 100μ of the enzyme-labeled solution, 100μ of appropriately diluted antiserum, and 100μ of normal guinea pig serum (100-fold dilution) at 5°C for 24 hours, and then incubate with anti-guinea pig γ-globulin. Add 10μ of rabbit serum (10-fold dilution) and
℃, 24 hour ink bait training, 0.5M to this
After adding 3 ml of NaCl, the mixture was centrifuged at 3000 rpm for 15 minutes to collect the precipitate. Then, this precipitate was
0-nitrophenyl-β-galactoside 5mg/ml
Contains 0.1M phosphate buffer (0.1% sodium azide, 0.1% BSA, 20mM mercaptoethanol,
Contains 10% ethanol, PH6.7) 200μ plus 37
C. for 90 minutes, then 2.5 ml of 0.2M glycine buffer (PH 10.4) was added to stop the reaction, and the absorbance was measured at a wavelength of 420 nm. In addition, as a dilution medium for immune reaction,
0.1% sodium azide, 0.25% BSA,
A 0.01M phosphate buffer (PH7.2) containing 0.15M Nacl.5mMEDTA was used. The antibody titer (Bo/T) of each antiserum was measured using LotA as an enzyme label. The results were as shown in Table 1.

【表】 なお各抗血清は1000倍希釈にて用いたものであ
る。 酵素標識体としてLotBを用いて、前記のC
およびD抗血清の抗体力価(Bo/T)を測定
した。 その結果、第2表に示す通りであつた。
[Table] Each antiserum was used at a 1000-fold dilution. Using LotB as an enzyme label, the above C
Antibody titer (Bo/T) of antiserum and D was measured. The results were as shown in Table 2.

【表】 なお各抗血清は2000倍希釈にて用いたものであ
る。 前記抗血清を用いて、その検量線を作成し
た。用いた抗血清としてはA−2(600倍希釈)、
B−2(500倍希釈)C−2(1500倍希釈)、D−
2(2000倍希釈)を用い、また酵素標識体とし
てLotBを用いて、h−PTH(53−84)に対す
る検量線を作成した。その結果、A−2の場合
は第1図に示す通りで、B−2の場合は第2図
に示す通りで、C−2の場合は第3図に示す通
りで、D−2の場合は第4図に示す通りであつ
た。 上記の結果、本発明のペプチド〔〕を用い
て得られた抗血清は良好な検量線を与えるもの
で、このことからヒト−PTHまたはそのC末
端フラグメントを良好にEIAにて測定し得るも
のであつた。 参考例 1 h−PTH(53−84);H−Lys−Lys−Glu−
Asp−Asn−Val−Leu−Val−Glu−Ser−His−
Glu−Lys−Ser−Leu−Gly−Glu−Ala−Asp−
Lys−Ala−Asp−Val−Asp−Val−Leu−Thr−
Lys−Ala−Lys−Ser−Gln−OHの製造例。 (1) BOC−Lys(Z−Cl)−Lys(Z−Cl)−Glu
(OBzl)−Asp(OBzl)−Asn−Val−Leu−Val
−Glu(OBzl)−Ser(Bzl)−His−Glu(OBzl)−
Lys(Z−Cl)−Ser(Bzl)−Leu−Gly−Glu−
(OBzl)−Ala −Asp(OBzl)−Lys(Z−Cl)−Ala−Asp
(OBzl)−Val−Asp(OBzl)−Val−Leu−Thr
(Bzl)−Lys(Z−Cl)−Ala−Lys(Z−Cl)−
Ser(Bzl)−Gln−OBzl〔1〕〔アミノ酸分析;
Thr0.92(1)Ser1.60(3)、Glu4.06(5)、Gly0.85(1)、
Ala3.00(3)、Val3.33(4)、Leu2.48(3)、Lys5.41
(6)、His0.70(1)〕3.49g(0.6mM)およびアニ
ソール3mlを無水弗化水素(HF)25mlに0℃
に冷却下加え、75分間撹拌した。反応後、HF
を減圧下留去し、残渣にエーテルを加えた。生
じた沈澱物を回収し、0.1N酢酸50mlに溶かし、
ダウエツクス×1のカラム(2.7×35cm)に通
した。流出液を凍結乾燥して粗生成物2.18gを
得た。これを8M尿素水溶液50mlに溶かし、ア
ンモニア水でPH9.5に調節した後、50分間放置
した。次いでこの溶液を8M尿素水溶液で充填
したCM−セルロースのカラム(4.4×12cm)に
チヤージし、0.01M酢酸アンモニウム水溶液
(PH4.5)約100mlで流出した後、0.01M酢酸ア
ンモニウム水溶液(PH4.5)700ml〜0.1M酢酸
アンモニウム水溶液(PH4.5)700mlの直線型濃
度勾配による溶出を行い、次いで0.2M酢酸ア
ンモニウム水溶液(PH4.5)300mlで溶出した。
溶出液は、13.5mlづつ分画し、各分画はFolin
−Lowry法(500nm)により測定して30〜50本
目の区分C1、56〜119本目の区分C2および120
〜150本目の区分C3の溶出液を得た。 各区分をセフアデツクスLH−20のカラムに
通して脱塩した。流出液は85mlづつ分画し、各
分画は上記と同じ方法で測定した。区分C1
3.4×113cmのカラムに通し、31〜40本目の区分
L1、41〜44本目の区分L2および45〜54本目の
区分L3を得た。区分C2は3.4×120cmのカラムに
通し、35〜45本目の区分L1、46〜52本目の区
分L2および53〜60本目の区分L3を得た。区分
C3は3.4×120cmのカラムに通し、31〜44本目の
区分L1および45〜52本目の区分L2を得た。各
区分を凍結乾燥して、次の各成分を得た。
[Table] Each antiserum was used at a 2000-fold dilution. A calibration curve was created using the antiserum. The antisera used were A-2 (600-fold dilution);
B-2 (500-fold dilution) C-2 (1500-fold dilution), D-
A calibration curve for h-PTH (53-84) was created using 2 (2000-fold dilution) and LotB as an enzyme label. As a result, the results are as shown in Figure 1 for A-2, as shown in Figure 2 for B-2, as shown in Figure 3 for C-2, and as shown in Figure 3 for D-2. was as shown in Figure 4. As a result of the above, the antiserum obtained using the peptide of the present invention [] gives a good calibration curve, and therefore human-PTH or its C-terminal fragment can be measured well by EIA. It was hot. Reference example 1 h-PTH (53-84); H-Lys-Lys-Glu-
Asp−Asn−Val−Leu−Val−Glu−Ser−His−
Glu−Lys−Ser−Leu−Gly−Glu−Ala−Asp−
Lys−Ala−Asp−Val−Asp−Val−Leu−Thr−
Production example of Lys-Ala-Lys-Ser-Gln-OH. (1) BOC−Lys(Z−Cl)−Lys(Z−Cl)−Glu
(OBzl)−Asp(OBzl)−Asn−Val−Leu−Val
−Glu(OBzl)−Ser(Bzl)−His−Glu(OBzl)−
Lys(Z−Cl)−Ser(Bzl)−Leu−Gly−Glu−
(OBzl)-Ala-Asp(OBzl)-Lys(Z-Cl)-Ala-Asp
(OBzl)−Val−Asp(OBzl)−Val−Leu−Thr
(Bzl)−Lys(Z−Cl)−Ala−Lys(Z−Cl)−
Ser(Bzl)-Gln-OBzl [1] [Amino acid analysis;
Thr0.92(1)Ser1.60(3), Glu4.06(5), Gly0.85(1),
Ala3.00(3), Val3.33(4), Leu2.48(3), Lys5.41
(6), His0.70(1)] 3.49g (0.6mM) and 3ml of anisole in 25ml of anhydrous hydrogen fluoride (HF) at 0℃
was added under cooling and stirred for 75 minutes. After reaction, HF
was distilled off under reduced pressure, and ether was added to the residue. The resulting precipitate was collected and dissolved in 50ml of 0.1N acetic acid.
It was passed through a Dowex x 1 column (2.7 x 35 cm). The effluent was freeze-dried to obtain 2.18 g of crude product. This was dissolved in 50 ml of 8M urea aqueous solution, adjusted to pH 9.5 with aqueous ammonia, and then left for 50 minutes. Next, this solution was charged to a CM-cellulose column (4.4 x 12 cm) packed with 8M urea aqueous solution, and about 100ml of 0.01M ammonium acetate aqueous solution (PH4.5) was discharged, and then 0.01M ammonium acetate aqueous solution (PH4.5) was charged. ) Elution was performed using a linear concentration gradient from 700 ml to 700 ml of a 0.1 M aqueous ammonium acetate solution (PH4.5), followed by elution with 300 ml of a 0.2 M aqueous ammonium acetate solution (PH4.5).
The eluate was fractionated into 13.5 ml portions, and each fraction was
−Category C 1 of 30th to 50th line, C2 and 120 of 56th to 119th line measured by Lowry method (500 nm)
~150th segment C3 eluate was obtained. Each fraction was desalted by passing it through a Sephadex LH-20 column. The effluent was fractionated into 85 ml portions, and each fraction was measured in the same manner as above. Category C 1 is
Pass through a 3.4 x 113 cm column and divide the 31st to 40th sections.
L 1 , 41st to 44th segment L 2 and 45th to 54th segment L 3 were obtained. Segment C2 was passed through a 3.4 x 120 cm column to obtain the 35th to 45th segment L1 , the 46th to 52nd segment L2 , and the 53rd to 60th segment L3 . classification
C3 was passed through a 3.4 x 120 cm column to obtain the 31st to 44th sections L1 and the 45th to 52nd sections L2 . Each section was freeze-dried to obtain the following components.

【表】 (2) C2L2の精製 前記のC2L2565mgを0.1N酢酸5mlに溶かし、
CM−セルロースのカラム(4.4×70cm)にチヤ
ージし、0.01M酢酸アンモニウム水溶液(PH
4.5)500ml〜0.1M酢酸アンモニウム水溶液
(PH4.5)500mlの直線型濃度勾配による溶出を
行つた。溶出液は6.0mlづつ分画し、各分画は
Folin−Lowry法により測定して113〜136本目
の区分C2L2−C1、137〜151本目の区分C2L2
C2および152〜190本目の区分C2L2−C3を得た。 各区分をセフアデツクスLH−20のカラムに
通して脱塩した。流出液は5.2mlづつ分画し、
各分画は上記と同じ方法で測定した。区分
C2L2−C1は3.4×120cmのカラムに通し、55〜72
本目の区分C2L2−C1L1および73〜80本目の区
分C2L2−C1L1を得た。区分C2L2−C2は3.4×
110cmのカラムに通し、50〜59本目の区分C2L2
−C2L1および60〜67本目の区分C2L2−C2L2
得た。区分C2L2−C3は3.4×110cmのカラムに通
し、45〜60本目の区分のC2L2−C3L1および61
〜72本目の区分C2L2−C3L2を得た。各区分を
凍結乾燥して、次の各成分を得た。 C2L2−C1L1 108.7mg C2L2−C1L2 95.9mg C2L2−C2L1 53.6mg C2L2−C2L2 44.1mg C2L2−C3L1 97.0mg C2L2−C3L2 95.1mg (3) C2L2−C1L1の精製 前記のC2L2−C1L1を0.1N酢酸1mlに溶かし、
CM−セルロースのカラム(2.0×15cm)にチヤ
ージし、0.01M酢酸アンモニウム水溶液(PH
4.5)300ml〜0.1M酢酸アンモニウム水溶液
(PH4.5)300mlの直線型濃度勾配による溶出を
行つた。溶出液は7.4mlづつ分画し、各分画は
Folin−Lowry法(500nm)により測定した46
〜56本目の区分C2L2−C1L1−Cを得た。これ
を凍結乾燥し、セフアデツクスLH−20のカラ
ム(3.0×90cm)にチヤージし、0.1N酢酸で溶
出した。溶出後は6.0mlづつ分画し、上記と同
じ方法で測定して25〜35本目の区分C2L2
C1L1−CLを得た。これを凍結乾燥してh−
PTH(53−84)90.0mgを得た。 TLC;R9=0.76 1スポツト アミノ酸分析;Asp4.45(5)、Thr0.92(1)、
Ser2.16(3)、Glu4.94(5)、Gly0.96(1)、Ala3、
Val3.96(4)、Leu2.92(3)、Lys6.22(6)、His1.01(1) 参考例 2 h−PTH(51−84);H−Pro−Arg−Lys−
Lys−Glu−Asp−Asn−Val−Leu−Val−Glu−
Ser−His−Glu−Lys−Ser−Leu−Gly−Glu−
Ala−Asp−Lys−Ala−Asp−Val−Asp−Val−
Leu−Thr−Lys−Ala−Lys−Ser−Gln−OHの
製造例。 (1) P(52−54);AOC−Arg(Tos)−Lys(Z−
Cl)−Lys(Z−Cl)−PAC〔2〕について BOC−Lys(Z−Cl)−Lys(Z−Cl)−PAC
(融点72〜75℃、元素分析値〔C41H50O10N4Cl2
として、C=59.22%、H=5.98%、N=6.81
%)14.65g(18mM)にTFA50mlを加え、室
温で30分間撹拌した。反応後、TFAを減圧下
留去し、残渣にエーテルを加えた。生じた沈澱
物を集め、DMF10mlに溶かし、これにAOC−
Arg(Tos)−OH9.19g(1.2倍M)−HOBT2.92
g(1.2倍M)およびWSCI3.95ml(1.2倍M)を
加え、室温で一夜撹拌した。反応後、DMFを
減圧下留去し、残渣を酢酸エチル300mlに溶か
した後、5%重曹水、1N塩酸、水の順に各々
3回づつ洗浄した。酢酸エチル層を無水芒硝で
乾燥後、減圧乾固し、酢酸エチル−エーテルよ
り再結晶して〔2〕14.46g(収率69.6%)を
得た。 融点;79〜82℃ TLC;Rf7=0.76 元素分析〔C55H70O13N8SClとして〕 C% H% N% 測定値 57.06 6.26 9.82 計算値 57.23 6.11 9.71 (2) P(51−54);BOC−Pro−Arg(Tos)−Lys
(Z−Cl)−Lys(Z−Cl)−PAC〔3〕について。 〔2〕14.43g(12.5mM)にTFA40mlを加
え、室温で20分間撹拌した。反応後、TFAを
減圧下留去し、残渣にエーテルを加え、生じた
沈澱物を集め、DMF80mlに溶した。これに
HOBT2.03g(1.2倍M)、BOC−Pro−
OH3.23g(1.2倍M)およびWSCI2.75ml(1.2
倍M)を加え、室温で一夜撹拌した。反応後、
DMFを減圧下留去し、残渣を酢酸エチル300ml
に溶かした後、5%重曹水、1N塩酸水の順に
洗浄した。酢酸エチル層を無水芒硝で乾燥後、
減圧乾固し、残渣を酢酸エチル−エーテルより
2回再結晶して〔37〕14.71g(収率95.1%)
を得た。 融点;90〜93℃ TLC;Rf7=0.64 元素分析〔C59H75O14N9SCl2として〕 C% H% N% 測定値 57.33 6.20 9.79 計算値 57.27 6.11 10.19 (3) P(51−54);BOC−Pro−Arg(Tos)−Lys
(Z−Cl)−Lys(Z−Cl)−OH〔4〕について。 亜鉛末20g/酢酸30mlに〔37〕6.19g
(5mM)を酢酸40mlに溶かした溶液を加え、室
温で2時間撹拌した。反応後、亜鉛末を別
し、液を減圧濃縮し、残渣に5%重曹水とエ
ーテルを加えて抽出し、分離した水層を1N塩
酸でPH2に調節した後、酢酸エチルで抽出し
た。酢酸エチル層を水で3回洗浄し、無水芒硝
で乾燥後、減圧乾固し、残渣を酢酸エチル−エ
ーテルより再結晶して〔4〕5.40g(収率96.5
%)を得た。 融点;110〜113℃ TLC;Rf4=0.43 元素分析〔C51H69O13N9SCl2として〕 C% H% N% 測定値 54.56 6.46 11.22 計算値 54.73 6.21 11.27 (4) P(51−84);BOC−Pro−Arg(Tos)−Lys
(Z−Cl)−Lys(Z−Cl)−Glu(OBzl)−Asp
(OBzl)−Asn−Val−Leu−Val−Glu(OBzl)
−Ser(Bzl)−His−Glu(OBzl)−Lys(Z−Cl)
−Ser(Bzl)−Leu−Gly−Glu(OBzl)−Ala−
Asp(OBzl)−Lys(Z−Cl)−Ala−Asp(OBzl)
Val−Asp(OBzl)−Val−Leu−Thr(Bzl)−
Lys(Z−Cl)−Ala−Lys(Z−Cl)−Ser(Bzl)
−Gln−OBzl〔5〕について。 BOC−Glu(OBzl)−Asp(OBzl)−Asn−Val
−Leu−Val−Glu(OBzl)−Ser(Bzl)−His−
Glu(OBzl)−Lys(Z−Cl)−Ser(Bzl)−Leu−
Gly−Glu(OBzl)−Ala−Asp(OBzl)−Lys(Z
−Cl)−Ala−Asp(OBzl)−Val−Asp(OBzl)
−Val−Leu−Thr(Bzl)−Lys(Z−Cl)−Ala
−Lys(Z−Cl)−Ser(Bzl)−Gln−OBzl〔6〕
〔アミノ酸分析;Asp4.11(5)、Thr0.92(1)、
Ser1.59(3)、Glu3.99(5)、Gly0.83(1)、Ala3、
Val3.28(4)、Leu2.49(3)、Lys4.08(4)、His0.71
(1)〕7.83g(1.5mM)にTFA50mlを加え、室
温で60分間撹拌し、反応後、TFAを減圧下留
去し、残渣にエーテルを加えた。生じた沈澱物
を集め、DMF120mlとNMP120mlを加えて溶し
た。これにHOBT0.30g(1.5倍M)、〔4〕2.52
g(1.5倍M)およびWSCI0.41ml(1.5倍M)を
加え、室温で2日間撹拌し、反応液を氷水に加
え、生じた沈澱物を水洗後、メタノールを加え
て加熱処理した。冷却後不溶物を集め、上記の
加熱処理を2回繰り返した後、エーテルで洗浄
して〔5〕8.20g(収率87.9%)を得た。 アミノ酸分析;Asp4.09(5)、Thr1.05(1)、
Ser2.30(3)、Glu4.08(5)、Pro0.52(1)、Gly0.88
(1)、Ala3、Val3.42(4)、Leu2.53(3)、Lys5.11
(6)、His0.69(1)、Arg0.51(1) (41)h−PTH(51−84) 無水HF40mlに0℃に冷却下〔5〕3.73g
(0.6mM)およびアニソール4mlを加え、60分
間撹拌した。反応後、HFを減圧下留去し、残
渣にエーテルを加え、生じた沈澱物を集め、
0.1N酢酸50mlに溶かし、ダウエツクス×1の
カラム(アセテート型−2.7×33cm)に通じ、
流出液を凍結乾燥して粗生成物2.41gを得た。 これを8M尿素水溶液50mlに溶かし、アンモ
ニア水でPH10.0に調節した後、80分間放置し
た。次いでこの溶液を8M尿素水溶液で充填し
たCM−セルロースのカラム(4.2×11.5cm)に
チヤージし、0.01M酢酸アンモニウム水溶液
(PH4.5)で尿素を流出した後、0.01M酢酸アン
モニウム水溶液(PH4.5)700ml〜0.1M酢酸ア
ンモニウム水溶液(PH4.5)700mlの直線型濃度
勾配による溶出を行い、次いで0.2M酢酸アン
モニウム水溶液(PH4.5)250mlで溶出した。溶
出後は8.5mlづつ分画し、各分画はFolin−
Lowry法(500nm)により測定して30〜63本目
の区分C1、105〜150本目の区分C2および151〜
195本目の区分C3の溶出液を得た。区分C2およ
び区分C3をセフアデツクスLH−20のカラムに
通して脱塩した。流出液は5.2mlづつ分画し、
区分C2は3.4×110cmのカラムに通し、51〜63本
目の区分C2L1および64〜80本目の区分C2L2
得た。区分C3は3.4×120cmのカラムに通し、50
〜69本目の区分C3L1および70〜78本目の区分
C3L2を得た。各区分を凍結乾燥して次の各成
分を得た。
[Table] (2) Purification of C 2 L 2 Dissolve 565 mg of the above C 2 L 2 in 5 ml of 0.1N acetic acid,
Charge a CM-cellulose column (4.4 x 70 cm) and add 0.01M ammonium acetate aqueous solution (PH
4.5) Elution was performed using a linear concentration gradient from 500 ml to 500 ml of a 0.1 M ammonium acetate aqueous solution (PH4.5). The eluate was fractionated into 6.0ml portions, and each fraction was
Measured by Folin-Lowry method: 113th to 136th segment C 2 L 2 − C 1 , 137th to 151st segment C 2 L 2
C2 and the 152nd to 190th sections C2L2 - C3 were obtained. Each fraction was desalted by passing it through a Sephadex LH-20 column. The effluent was fractionated into 5.2 ml portions.
Each fraction was measured in the same manner as above. classification
C 2 L 2 −C 1 is passed through a 3.4 x 120 cm column and 55 to 72
The main division C2L2 - C1L1 and the 73rd to 80th divisions C2L2 - C1L1 were obtained. Division C 2 L 2 −C 2 is 3.4×
Pass through a 110cm column and divide the 50th to 59th sections C 2 L 2
−C 2 L 1 and the 60th to 67th sections C 2 L 2 −C 2 L 2 were obtained. Segments C 2 L 2 - C 3 are passed through a 3.4 x 110 cm column, and C 2 L 2 - C 3 L 1 and 61 of the 45th to 60th sections are passed through a 3.4 x 110 cm column.
~72nd segment C 2 L 2 −C 3 L 2 was obtained. Each section was freeze-dried to obtain the following components. C 2 L 2 −C 1 L 1 108.7mg C 2 L 2 −C 1 L 2 95.9mg C 2 L 2 −C 2 L 1 53.6mg C 2 L 2 −C 2 L 2 44.1mg C 2 L 2 −C 3 L 1 97.0mg C 2 L 2 −C 3 L 2 95.1 mg (3) Purification of C 2 L 2 −C 1 L 1 Dissolve the above C 2 L 2 −C 1 L 1 in 1 ml of 0.1N acetic acid,
Charge a CM-cellulose column (2.0 x 15 cm) and add 0.01M ammonium acetate aqueous solution (PH
4.5) Elution was performed using a linear concentration gradient from 300 ml to 300 ml of a 0.1 M ammonium acetate aqueous solution (PH4.5). The eluate was fractionated into 7.4ml portions, and each fraction was
46 measured by Folin-Lowry method (500nm)
~56th segment C2L2 - C1L1 - C was obtained. This was lyophilized, charged to a Sephadex LH-20 column (3.0 x 90 cm), and eluted with 0.1N acetic acid. After elution, fractionate into 6.0 ml portions and measure using the same method as above to determine the 25th to 35th fraction C 2 L 2
C1L1 - CL was obtained. This is freeze-dried and h-
90.0 mg of PTH (53-84) was obtained. TLC; R 9 = 0.76 1 spot Amino acid analysis; Asp4.45(5), Thr0.92(1),
Ser2.16(3), Glu4.94(5), Gly0.96(1), Ala3,
Val3.96(4), Leu2.92(3), Lys6.22(6), His1.01(1) Reference example 2 h-PTH(51-84); H-Pro-Arg-Lys-
Lys−Glu−Asp−Asn−Val−Leu−Val−Glu−
Ser−His−Glu−Lys−Ser−Leu−Gly−Glu−
Ala−Asp−Lys−Ala−Asp−Val−Asp−Val−
Production example of Leu-Thr-Lys-Ala-Lys-Ser-Gln-OH. (1) P(52−54); AOC−Arg(Tos)−Lys(Z−
Regarding BOC-Lys(Z-Cl)-Lys(Z-Cl)-PAC [Cl)-Lys(Z-Cl)-PAC[2]
(Melting point 72-75℃, elemental analysis value [C 41 H 50 O 10 N 4 Cl 2
As, C=59.22%, H=5.98%, N=6.81
%) to 14.65g (18mM) was added TFA50ml and stirred at room temperature for 30 minutes. After the reaction, TFA was distilled off under reduced pressure, and ether was added to the residue. The resulting precipitate was collected, dissolved in 10 ml of DMF, and AOC-
Arg(Tos)-OH9.19g (1.2xM)-HOBT2.92
g (1.2 times M) and 3.95 ml of WSCI (1.2 times M) were added and stirred at room temperature overnight. After the reaction, DMF was distilled off under reduced pressure, and the residue was dissolved in 300 ml of ethyl acetate and washed three times each in the order of 5% sodium bicarbonate solution, 1N hydrochloric acid, and water. The ethyl acetate layer was dried over anhydrous sodium sulfate, dried under reduced pressure, and recrystallized from ethyl acetate-ether to obtain 14.46 g (yield: 69.6%) of [2]. Melting point: 79-82℃ TLC; Rf 7 = 0.76 Elemental analysis [as C 55 H 70 O 13 N 8 SCl] C% H% N% Measured value 57.06 6.26 9.82 Calculated value 57.23 6.11 9.71 (2) P (51-54 );BOC−Pro−Arg(Tos)−Lys
Regarding (Z-Cl)-Lys(Z-Cl)-PAC [3]. [2] 40 ml of TFA was added to 14.43 g (12.5 mM) and stirred at room temperature for 20 minutes. After the reaction, TFA was distilled off under reduced pressure, ether was added to the residue, and the resulting precipitate was collected and dissolved in 80 ml of DMF. to this
HOBT2.03g (1.2x M), BOC-Pro-
OH3.23g (1.2xM) and WSCI2.75ml (1.2
M) was added, and the mixture was stirred at room temperature overnight. After the reaction,
DMF was distilled off under reduced pressure and the residue was dissolved in 300ml of ethyl acetate.
After dissolving in water, the solution was washed with 5% sodium bicarbonate solution and 1N hydrochloric acid solution in this order. After drying the ethyl acetate layer with anhydrous sodium sulfate,
It was dried under reduced pressure and the residue was recrystallized twice from ethyl acetate-ether [37] 14.71g (yield 95.1%)
I got it. Melting point: 90-93℃ TLC; Rf 7 = 0.64 Elemental analysis [as C 59 H 75 O 14 N 9 SCl 2 ] C% H% N% Measured value 57.33 6.20 9.79 Calculated value 57.27 6.11 10.19 (3) P (51− 54);BOC−Pro−Arg(Tos)−Lys
Regarding (Z-Cl)-Lys(Z-Cl)-OH [4]. 20g of zinc powder/30ml of acetic acid [37] 6.19g
A solution of (5mM) dissolved in 40ml of acetic acid was added, and the mixture was stirred at room temperature for 2 hours. After the reaction, the zinc powder was separated, the liquid was concentrated under reduced pressure, and the residue was extracted by adding 5% aqueous sodium bicarbonate and ether. The separated aqueous layer was adjusted to pH 2 with 1N hydrochloric acid, and then extracted with ethyl acetate. The ethyl acetate layer was washed three times with water, dried over anhydrous sodium sulfate, dried under reduced pressure, and the residue was recrystallized from ethyl acetate-ether to give 5.40 g (yield 96.5) of [4].
%) was obtained. Melting point: 110-113℃ TLC; Rf 4 = 0.43 Elemental analysis [as C 51 H 69 O 13 N 9 SCl 2 ] C% H% N% Measured value 54.56 6.46 11.22 Calculated value 54.73 6.21 11.27 (4) P (51- 84);BOC−Pro−Arg(Tos)−Lys
(Z-Cl)-Lys(Z-Cl)-Glu(OBzl)-Asp
(OBzl) −Asn−Val−Leu−Val−Glu(OBzl)
−Ser(Bzl)−His−Glu(OBzl)−Lys(Z−Cl)
−Ser(Bzl)−Leu−Gly−Glu(OBzl)−Ala−
Asp(OBzl)−Lys(Z−Cl)−Ala−Asp(OBzl)
Val−Asp(OBzl)−Val−Leu−Thr(Bzl)−
Lys(Z-Cl)-Ala-Lys(Z-Cl)-Ser(Bzl)
Regarding -Gln-OBzl [5]. BOC−Glu(OBzl)−Asp(OBzl)−Asn−Val
−Leu−Val−Glu(OBzl)−Ser(Bzl)−His−
Glu(OBzl)−Lys(Z−Cl)−Ser(Bzl)−Leu−
Gly−Glu(OBzl)−Ala−Asp(OBzl)−Lys(Z
−Cl) −Ala−Asp(OBzl) −Val−Asp(OBzl)
−Val−Leu−Thr(Bzl)−Lys(Z−Cl)−Ala
-Lys(Z-Cl)-Ser(Bzl)-Gln-OBzl[6]
[Amino acid analysis; Asp4.11(5), Thr0.92(1),
Ser1.59(3), Glu3.99(5), Gly0.83(1), Ala3,
Val3.28(4), Leu2.49(3), Lys4.08(4), His0.71
(1)] 50 ml of TFA was added to 7.83 g (1.5 mM) and stirred at room temperature for 60 minutes. After the reaction, TFA was distilled off under reduced pressure, and ether was added to the residue. The resulting precipitate was collected and dissolved by adding 120 ml of DMF and 120 ml of NMP. Add to this HOBT0.30g (1.5x M), [4] 2.52
g (1.5 times M) and WSCI 0.41 ml (1.5 times M) were added, stirred at room temperature for 2 days, the reaction solution was added to ice water, and the resulting precipitate was washed with water, then methanol was added and heat treated. After cooling, the insoluble matter was collected, and the above heat treatment was repeated twice, followed by washing with ether to obtain 8.20 g (yield: 87.9%) of [5]. Amino acid analysis; Asp4.09(5), Thr1.05(1),
Ser2.30(3), Glu4.08(5), Pro0.52(1), Gly0.88
(1), Ala3, Val3.42(4), Leu2.53(3), Lys5.11
(6), His0.69(1), Arg0.51(1) (41) h-PTH (51-84) 3.73 g in 40 ml of anhydrous HF while cooling to 0°C [5]
(0.6mM) and 4ml of anisole were added and stirred for 60 minutes. After the reaction, HF was distilled off under reduced pressure, ether was added to the residue, and the resulting precipitate was collected.
Dissolve in 50 ml of 0.1N acetic acid and pass through a Dowex x 1 column (acetate type - 2.7 x 33 cm).
The effluent was freeze-dried to obtain 2.41 g of crude product. This was dissolved in 50 ml of 8M urea aqueous solution, adjusted to pH 10.0 with aqueous ammonia, and then left for 80 minutes. Next, this solution was charged to a CM-cellulose column (4.2 x 11.5 cm) packed with 8M urea aqueous solution, and after urea was flushed out with 0.01M ammonium acetate aqueous solution (PH4.5), 0.01M ammonium acetate aqueous solution (PH4.5) was charged. 5) Elution was performed using a linear concentration gradient from 700 ml to 700 ml of a 0.1 M aqueous ammonium acetate solution (PH4.5), followed by elution with 250 ml of a 0.2 M aqueous ammonium acetate solution (PH4.5). After elution, fractionate into 8.5 ml portions, and each fraction is
Measured by Lowry method (500nm): 30th to 63rd division C 1 , 105th to 150th division C 2 and 151~
A 195th eluate of category C3 was obtained. Section C 2 and Section C 3 were desalted by passing through a Sephadex LH-20 column. The effluent was fractionated into 5.2 ml portions.
Segment C 2 was passed through a 3.4×110 cm column to obtain 51st to 63rd sections C 2 L 1 and 64th to 80th sections C 2 L 2 . Section C 3 was passed through a 3.4 x 120 cm column and 50
~69th division C 3 L 1 and 70th to 78th division
C 3 L 2 was obtained. Each section was freeze-dried to obtain the following components.

【表】 前記のC2L2区分375mgを0.1N酢酸4mlに溶か
し、CM−セルロースのカラム(2.0×31cm)にチ
ヤージし、0.01M酢酸アンモニウム水溶液(PH
4.5)500ml〜0.2M酢酸アンモニウム水溶液(PH
4.5)500mlの直線型濃度勾配による溶出を行つ
た。溶出液は7.5mlづつ分画し、85〜103本目の区
分C2L2−Cを得た。この区分をセフアデツクス
LH−20のカラム(3.0×123cm)に通して脱塩し
た。流出液は6mlづつ分画し、34〜42本目の区分
C2L2−CL1および43〜50本目の区分C2L2−CL2
得た。各区分を凍結乾燥して次の各成分を得た。 C2L2−CL1 80.0mg アミノ酸分析;Asp4.95(5)、Thr0.98(1)、
Ser2.47(3)、Glu5.14(5)、Gly1.01(1)、Ala3(3)、
Val4.05(4)、Leu3.02(3)、Lys6.16(6)、His0.96(1)、
Arg0.97(1)、Pro1.06(1) C2L2−CL2 197.6g アミノ酸分析;Asp5.00(5)、Thr0.93(1)、
Ser2.30(3)、Glu5.17(5)、Gly1.01(1)、Ala3(3)、
Val4.03(4)、Leu3.00(3)、Lys6.15(6)、His0.95(1)、
Arg1.01(1)、Pro1.04(1) 前記のC2L2−CL2区分195mgを0.1N酢酸2mlに
溶かし、CM−セルロースのカラム(2.0×15cm)
にチヤージし、0.01M酢酸アンモニウム水溶液
(PH4.5)300ml〜0.2M酢酸アンモニウム水溶液
(PH4.5)300mlの直線型濃度勾配による溶出を行
つた。溶出液は6.4mlづつ分画し、55〜64本目の
区分C2L2−CL2−C1および56〜72本目の区分
C2L2−CL2−C2を得た。各区分をセフアデツクス
LH−20のカラムに通して脱塩した。区分C2L2
CL2−C1は3.0×123cmのカラムに通し、流出液は
7.4mlづつ分画し、31〜38本目の区分C2L2−CL2
−C1L1と39〜43本目の区分C2L2−CL2−C1L2
得た。区分C2L2−CL2−C1L1を凍結乾燥してh−
PTH(51−84)77.2mgを得た。 TLC;R10=0.89 1スポツト 参考例 3 h−PTH(46−84);H−Ala−Gly−Ser−Gln
−Arg−Pro−Arg−Lys−Lys−Lys−Glu−Asp
−Asn−Val−Leu−Val−Glu−Ser−His−Glu
−Lys−Ser−Leu−Gly−Glu−Ala−Asp−Lys
−Ala−Asp−Val−Asp−Val−Leu−Thr−Lys
−Ala−Lys−Ser−Gln−OHの製造例。 (1) P(49−50);BOC−Gln−Arg(Tos)−OMe
〔7〕について。 H−Arg(Tos)−OMe・HCl11.37g
(30mM)とBOC−Gln−ONP13.21g(1.2倍
M)をDMF200mlに溶かし、0℃に冷却下
NMMでPH7に調節した後、一夜撹拌した。反
応後、DMFを減圧下留去し、残渣をクロロホ
ルムに溶かした後、5%重曹水で3回、1N塩
酸で2回、水で3回洗浄した。クロロホルム層
を無水芒硝で乾燥し、クロロホルムで充填した
シリカゲルのカラムでクロマトグラフイーを行
い、クロロホルム−エタノール−酢酸エチルで
流し、目的物が溶出し始めるとクロロホルム−
エタノール−酢酸エチル(1:1:1)で溶出
した。相当する区分を集めて減圧濃縮した。残
渣を酢酸エチルに溶かし、0℃に冷却下ヘキサ
ンを加えて結晶化させて〔7〕を得た。収量
11.86g 融点;103〜107℃ (2) P(48−50);BOC−Ser(Bzl)−Gln−Arg
(Tos)−OMe〔8〕について。 〔7〕9.39g(16.5mM)にTFA50mlを加え
室温で20分間撹拌した後、TFAを減圧下留去
した。残渣にエーテルを加え、生じた沈澱物を
取し、DMF50mlに溶かした。この溶液に
HOBT3.24g(1.45倍M)、BOC−Ser(Bzl)−
OH7.07g(1.45倍M)およびWSCI4.39ml
(1.45倍M)を加え、室温で一夜撹拌した。反
応後、DMFを減圧下留去し、残渣を酢酸エチ
ル300mlに溶かした後、5%重曹、1N塩酸、水
の順に洗浄した。酢酸エチル層を無水芒硝で乾
燥後、減圧濃縮し、残渣を酢酸エチル−エーテ
ルから結晶化を2回行い、〔8〕10.0g(収率
81.0%)を得た。 融点;97〜102℃ 元素分析〔C34H49O10N7S・1/2H2Oとして〕 C% H% N% 測定値 54.07 6.90 13.29 計算値 53.95 6.66 13.00 (3) P(46−50);BOC−Ala−Gly−Ser(Bzl)−
Gln−Arg(Tos)−OMe
[Table] Dissolve 375 mg of the above C 2 L in 4 ml of 0.1 N acetic acid, charge it to a CM-cellulose column (2.0 x 31 cm), and add 0.01 M ammonium acetate aqueous solution (PH
4.5) 500ml ~ 0.2M ammonium acetate aqueous solution (PH
4.5) Elution was performed using a 500 ml linear concentration gradient. The eluate was fractionated into 7.5 ml portions to obtain the 85th to 103rd fractions C 2 L 2 -C. Secure this classification
Desalting was carried out through an LH-20 column (3.0 x 123 cm). The effluent is fractionated into 6 ml portions and divided into 34th to 42nd sections.
C2L2 - CL1 and 43rd to 50th sections C2L2 - CL2 were obtained. Each section was freeze-dried to obtain the following components. C 2 L 2 −CL 1 80.0mg Amino acid analysis; Asp4.95(5), Thr0.98(1),
Ser2.47(3), Glu5.14(5), Gly1.01(1), Ala3(3),
Val4.05(4), Leu3.02(3), Lys6.16(6), His0.96(1),
Arg0.97(1), Pro1.06(1) C 2 L 2 −CL 2 197.6g Amino acid analysis; Asp5.00(5), Thr0.93(1),
Ser2.30(3), Glu5.17(5), Gly1.01(1), Ala3(3),
Val4.03(4), Leu3.00(3), Lys6.15(6), His0.95(1),
Arg1.01(1), Pro1.04(1) Dissolve 195 mg of the above C 2 L 2 -CL 2 sections in 2 ml of 0.1N acetic acid, and add it to a CM-cellulose column (2.0 x 15 cm).
and elution was performed using a linear concentration gradient of 300 ml of 0.01 M ammonium acetate aqueous solution (PH 4.5) to 300 ml of 0.2 M ammonium acetate aqueous solution (PH 4.5). The eluate was fractionated into 6.4 ml portions, and the 55th to 64th sections C 2 L 2 −CL 2 −C 1 and the 56th to 72nd sections
C2L2 - CL2 - C2 was obtained. Securely index each category
Desalting was carried out through an LH-20 column. Category C 2 L 2
CL 2 −C 1 was passed through a 3.0 x 123 cm column, and the effluent was
Fractionate into 7.4ml portions and divide into 31st to 38th sections C 2 L 2 −CL 2
−C 1 L 1 and the 39th to 43rd divisions C 2 L 2 −CL 2 −C 1 L 2 were obtained. Freeze-dry the division C 2 L 2 −CL 2 −C 1 L 1 and h−
77.2 mg of PTH (51-84) was obtained. TLC; R 10 = 0.89 1 spot reference example 3 h-PTH (46-84); H-Ala-Gly-Ser-Gln
−Arg−Pro−Arg−Lys−Lys−Lys−Glu−Asp
−Asn−Val−Leu−Val−Glu−Ser−His−Glu
−Lys−Ser−Leu−Gly−Glu−Ala−Asp−Lys
−Ala−Asp−Val−Asp−Val−Leu−Thr−Lys
Production example of -Ala-Lys-Ser-Gln-OH. (1) P(49−50); BOC−Gln−Arg(Tos)−OMe
Regarding [7]. H-Arg(Tos)-OMe・HCl11.37g
(30mM) and 13.21g (1.2x M) of BOC-Gln-ONP were dissolved in 200ml of DMF and cooled to 0℃.
After adjusting the pH to 7 with NMM, the mixture was stirred overnight. After the reaction, DMF was distilled off under reduced pressure, and the residue was dissolved in chloroform, and then washed three times with 5% aqueous sodium bicarbonate, twice with 1N hydrochloric acid, and three times with water. The chloroform layer was dried with anhydrous sodium sulfate, and chromatography was performed on a silica gel column packed with chloroform. The chloroform layer was flushed with chloroform-ethanol-ethyl acetate, and when the target product began to elute, the chloroform-
Elution was performed with ethanol-ethyl acetate (1:1:1). Corresponding fractions were collected and concentrated under reduced pressure. The residue was dissolved in ethyl acetate, and while cooling at 0°C, hexane was added to crystallize it to obtain [7]. yield
11.86g Melting point; 103-107℃ (2) P(48-50); BOC-Ser(Bzl)-Gln-Arg
Regarding (Tos)-OMe [8]. [7] 50 ml of TFA was added to 9.39 g (16.5 mM) and stirred at room temperature for 20 minutes, and then TFA was distilled off under reduced pressure. Ether was added to the residue, and the resulting precipitate was collected and dissolved in 50 ml of DMF. in this solution
HOBT3.24g (1.45x M), BOC−Ser(Bzl)−
OH7.07g (1.45xM) and WSCI4.39ml
(1.45 times M) was added and stirred at room temperature overnight. After the reaction, DMF was distilled off under reduced pressure, and the residue was dissolved in 300 ml of ethyl acetate, and then washed with 5% sodium bicarbonate, 1N hydrochloric acid, and water in this order. The ethyl acetate layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the residue was crystallized twice from ethyl acetate-ether.
81.0%). Melting point: 97-102℃ Elemental analysis [as C34H49O10N7S・1 / 2H2O ] C % H% N% Measured value 54.07 6.90 13.29 Calculated value 53.95 6.66 13.00 (3) P (46−50 );BOC−Ala−Gly−Ser(Bzl)−
Gln−Arg(Tos)−OMe

〔9〕について。 〔8〕9.72g(13mM)にTFA50mlを加え、
室温で30分間撹拌した。反応後、TFAを減圧
下で留去し、残渣にエーテルを加えた。生じた
沈澱物を取し、DMF100mlに溶かし、この溶
液にBOC−Ala−Gly−OH3.84g(1.2倍M)、
HOBT2.11g(1.2倍M)およびWSCI2.85ml
(1.2倍M)を加え、室温で2日間撹拌した。反
応後、DMFを減圧下留去し、残渣を酢酸エチ
ル200mlに溶かした後、水洗した。無水芒硝で
乾燥し、減圧濃縮した後、残渣をエタノール−
エーテルで2回結晶化して
Regarding [9]. [8] Add 50ml of TFA to 9.72g (13mM),
Stirred at room temperature for 30 minutes. After the reaction, TFA was distilled off under reduced pressure, and ether was added to the residue. The resulting precipitate was taken and dissolved in 100 ml of DMF, and 3.84 g of BOC-Ala-Gly-OH (1.2 times M) was added to this solution.
HOBT2.11g (1.2xM) and WSCI2.85ml
(1.2xM) was added and stirred at room temperature for 2 days. After the reaction, DMF was distilled off under reduced pressure, the residue was dissolved in 200 ml of ethyl acetate, and then washed with water. After drying with anhydrous sodium sulfate and concentrating under reduced pressure, the residue was diluted with ethanol.
Crystallized twice in ether

〔9〕10.46g(収
率91.9%)を得た。 融点;154−157℃ 元素分析〔C39H57O12N9Sとして〕 C% H% N% 測定値 53.21 6.90 14.38 計算値 53.74 6.56 14.39 (4) P(46−50);BOC−Ala−Gly−Ser(Bzl)−
Gln−Arg(Tos)−NHNH2〔10〕について。
[9] 10.46 g (yield 91.9%) was obtained. Melting point: 154-157℃ Elemental analysis [as C 39 H 57 O 12 N 9 S] C% H% N% Measured value 53.21 6.90 14.38 Calculated value 53.74 6.56 14.39 (4) P (46-50); BOC-Ala- Gly−Ser(Bzl)−
About Gln−Arg(Tos)−NHNH 2 [10].

〔9〕9.64g(11mM)をエタノール50mlに
溶かし、これに50%NH2NH26.4mlを加え室温
で一夜撹拌した。反応液にエタノール100mlを
加え、不溶物を取した。これをエタノール
100mlに懸濁し、加熱し、冷却後、過して
〔10〕9.02g(収率93.6%)を得た。 融点;178〜180℃ 元素分析〔C33H57O11N11Sとして〕 C% H% N% 測定値 52.18 6.86 16.65 計算値 52.10 6.56 17.59 (5) P(46−54);BOC−Ala−Gly−Ser(Bzl)
−Gln−Arg(Tos)−Pro−Arg(Tos)−Lys(Z
−Cl)−Lys(Z−Cl)−PAC〔11〕について。 参考例2に記載の〔3〕8.04g(6.6mM)に
TFA40mlを加え、室温で20分間撹拌した後、
TFAを減圧下留去した。残渣にエーテルを加
え、生じた沈澱物を取して粗製のH−Pro−
Arg(Tos)−Lys(Z−Cl)−Lys(Z−Cl)−
PAC・TFAを得た。 一方、〔10〕6.83g(7.3mM)をDMF30mlに
溶かし、これに−50℃に冷却下4.32N塩化水素
のジオキサン溶液5.42ml(23.4mM)とイソア
ミルニトリル1.10ml(8.09mM)を加えた後、−
20℃で20分間撹拌した。次いで上記H−Pro−
Arg(Tos)−Lys(Z−Cl)−PAC・TFAを加
え、−35℃でEt3N5.46ml(39mM)を加えた後、
0〜5℃で2日間撹拌した。反応後、DMFを
減圧下留去し、残渣をクロロホルム300mlに溶
かした後、5%重曹水、1N塩酸、水の順で洗
浄した。クロロホルム層を無水芒硝で乾燥し、
減圧濃縮し、エタノール−エーテルおよびクロ
ロホルム−エーテルにより精製して〔11〕
13.42gを得た。 TLC;Rf=0.64〔クロロホルム−メタノール
−酢酸(83:18:3.5)〕 元素分析〔C92H120O22N18Cl2S・3H2Oとし
て〕 C% H% N% 測定値 54.68 6.21 12.72 計算値 54.72 6.29 12.49 アミノ酸分析;Ser0.65(1)、Glu1.10(1)、Pro1
(1)、Gly1.02(1)、Ala1.00(1)、Lys1.89(2)、Arg2.02
(2) (6) P−(46−54);BOC−Ala−Gly−Ser(Bzl)
−Gln−Arg(Tos)−Pro−Arg(Tos)−Lys(Z
−Cl)−Lys(Z−Cl)−OH〔12〕について。 亜鉛末15g/酢酸30mlに〔11〕5.31gの酢酸
40ml溶液を加え、室温で2時間撹拌した。反応
後、亜鉛末を別し、液を減圧濃縮した。残
渣にエーテルを加え、生じた沈澱物をエタノー
ル−エーテルで1回、エタノール−酢酸エチル
で2回精製して〔12〕4.41g(収率87.7%)を
得た。 TLC;Rf4=0.22 元素分析〔C84H114O22N18S2Cl2・2H2Oとし
て〕 C% H% N% 測定値 52.89 6.16 13.22 計算値 53.12 6.26 13.28 アミノ酸分析;Ser0.88(1)、Glu1.11(1)、
Pro1.02(1)、Gly1.02(1)、Ala1(1)、Lys2.00(2)、
Arg2.09(2) (6) P(46−84);BOC−Ala−Gly−Ser(Bzl)−
Gln−Arg(Tos)−Pro−Arg(Tos)−Lys(Z−
Cl)−Lys(Z−Cl)−Glu(OBzl)−Asp(OBzl)
−Asn−Val−Leu−Val−Glu(OBzl)−Ser
(Bzl)−His−Glu(OBzl)−Lys(Z−Cl)−Ser
(Bzl)−Leu−Gly−Glu(OBzl)−Ala−Asp
(OBzl)−Lys(Z−Cl)−Ala−Asp(OBzl)−
Val−Asp(OBzl)−Val−Leu−Thr(Bzl)−
Lys(Z−Cl)−Ala−Lys(Z−Cl)−Ser(Bzl)
−Gln−OBzl〔13〕について。 参考例2に記載の〔6〕10.44g(2mM)に
TFA80mlを加え、室温で60分間撹拌した後、
TFAを減圧下留去した。残渣にエーテルを加
え、生じた沈澱物をDMF160mlとNMP160mlの
混液に溶かし、これに0℃に冷却下〔12〕4.28
g(1.15倍M)、HOBT0.32g(1.2倍M)およ
びWSCI0.44ml(1.2倍M)を加えた後、室温で
2日間撹拌した。反応後DMFを減圧下留去し、
残渣に氷水を加えた後、生じた沈澱物を取し
た。これにメタノール200mlを加えて加熱し、
冷却後不溶物を取する操作を2回繰り返して
〔13〕12.17g(収率87.4%)を得た。 (7) h−PTH(46−84) 無水HF60ml120℃に冷却下〔13〕4.18g
(0.6mM)とアニソール10mlを加え、60分間撹
拌した。反応後、HFを減圧下留去し、残渣に
エーテルを加えた。生じた沈澱物を集め、10%
酢酸50mlに溶かし、ダウエツクス×1のカラム
(アセテート型、2.5×24cm)に通じ、流出液を
凍結乾燥して粗生成物2.82gを得た。 これを8M尿素水溶液(PH9.0)50mlに溶か
し、60分間室温で放置した。次いでこの溶液を
8M尿素水溶液で充填したCM−セルロースの
カラム(2.0×33cm)にチヤージし、0.01M酢
酸アンモニウム水溶液(PH4.5)500ml〜0.3M
酢酸アンモニウム水溶液(PH4.5)500mlの直線
型濃度勾配による溶出を行つた。溶出液は7.5
mlづつ分画し、各分画はFolin−Lowry
(500nm)により測定して1〜22本目の区分C1
23〜45本目の区分C2、46〜80本目の区分C3
および81〜120本目の区分C4の溶出液を得た。
各区分をセフアデツクスLH−20のカラムに通
して脱塩した。区分C1は3.0×120cmのカラムに
適し、流出液を7.5mlづつ分画し、28〜42本目
の区分C1Lを得た。区分C2は3.4×120mlに達
し、流出液を7.6mlづつ分画し、33〜40本目の
区分C2L1および41〜62本目の区分C2L2を得た。
区分C3は3.0×120cmのカラムに通し、流出液を
6.0mlづつ分画し、31〜40本目の区分C3L1およ
び41〜51本目の区分C3L2を得た。区分C4は、
3.4×120cmのカラムに通し、流出液を7.5mlづ
つ分画し、35〜48本目の区分C4Lを得た。各区
分を凍結乾燥してC1L区分312mg、C2L1区分
142.3mg、C2L2区分1380mg、C3L1区分104mg、
C3L2区分510mgおよびC4L区分130mgを得た。 前記のC2L2区分1380mgを0.1N酢酸13mlに溶
かし、CM−セルロースのカラム(4.3×6.0cm)
にチヤージし、0.01M酢酸アンモニウム水溶液
(PH4.5)500ml〜0.3M酢酸アンモニウム水溶液
(PH4.5)500mlの直線型濃度勾配による溶出を
行つた。溶出液は7.6mlづつ分画し、40〜50本
目の区分C2L2−および53〜77本目の区分C2L2
−C2を得た。各区分をセフアデツクスLH−20
のカラムに通して脱塩した。区分C2L2−C1
2.9×120cmのカラムに通し、流出液を8.0mlづ
つ分画し、26〜30本目の区分C2L2−C1L1およ
び31〜39本目の区分C2L2−C1L2を得た。区分
C2L2−C2は3.4×120cmのカラムに通し、流出液
を8.0mlづつ分画し、34〜44本目の区分C2L2
C2L1および45〜53本目の区分C2L2−C2L2を得
た。各区分を凍結乾燥してC2L2−C1L1区分79.0
mg、C2L2−C1L2区分455mg、C2L2−C2L1区分
157.3mgおよびC2L2−C2L2区分551.7mgを得た。 C2L2−C2L2区分のアミノ酸分析;Asp4.65
(5)、Thr0.97(1)、Ser3.47(4)、Glu5.99(6)、
Pro0.93(1)、Gly1.96(2)、Ala4(4)、Val3.97(4)、
Leu3.01(3)、Lys6.13(6)、His0.93(1)、Arg1.96(2) 前記のC2L2−C2L2区分を0.1N酢酸5mlに溶
かし、CM−セルロースのカラム(4.2×7.0cm)
にチヤージし、0.01M酢酸アンモニウム水溶液
(PH4.5)300ml〜0.3M酢酸アンモニウム水溶液
(PH4.5)の直線型濃度包配による溶出を行つ
た。溶出液は8.0mlづつ分画し、39〜45本目の
区分C2L2−C2L2−Cを得た。この区分をセフ
アデツクスLH−20のカラム(2.9×120cm)の
カラムに通して脱塩した。流出液を8.0mlづつ
分画し、24〜30本目の区分C2L2−C2L2−CL1
31〜35本目の区分C2L2−C2L2−CL2および36〜
39本目の区分C2L2−C2L2−CL3を得た。各区分
を凍結乾燥してC2L2−C2L2−CL2区分200mgお
よびC2L2−C2L2−CL1区分〔h−PTH(46−
84)〕94.9mgを得た。 TLC;Rf9=0.76 アミノ酸分析;Asp4.86(5)、Thr0.99(1)、
Ser3.5(4)、Glu6.17(6)、Pro0.96(1)、Gly1.97(2)、
Ala4、Val4.02(4)、Leu2.93(3)、Lys6.05(6)、
His0.90(1)、Arg1.87(2) 参考例 4 〔Tyr45〕h−PTH(45−84);H−Tys−Ala
−Gly−Ser−Gln−Arg−Pro−Arg−Lys−Lys
−Glu−Asp−Asn−Val−Leu−Val−Glu−Ser
−His−Glu−Lys−Ser−Leu−Gly−Glu−Ala
−Asp−Lys−Ala−Asp−Val−Asp−Val−Leu
−Thr−Lys−Ala−Lys−Ser−Gln−OHの製造
例。 (1) P(45−84);BOC−Tyr(Bzl−Cl2)−Ala−
Gly−Ser(Bzl)−Gln−Arg(Tos)−Dro−Arg
(Tos)−Lys(Z−Cl)−Lys(Z−Cl)−Glu
(OBzl)−Asp(OBzl)−Asn−Val−Leu−Val
−Glu(OBzl)−Ser(Bzl)−His−Glu(OBzl)−
Lys(Z−Cl)−Ser(Bzl)−Leu−Gly−Glu
(OBzl)−Ala−Asp(OBzl)−Lys(Z−Cl)−
Ala−Asp(OBzl)−Val−Asp(OBzl)−Val−
Leu−Thr(Bzl)−Lys(Z−Cl)−Ala−Lys(Z
−Cl)−Ser(Bzl)−Gln−OBzl〔14〕について。 参考例3に記載の〔13〕6.27g(0.9mM)に
TFA60mlを加え、室温で60分間撹拌した。反
応後、TFAを減圧下留去し、残渣にエーテル
を加える。生じた沈澱物を取して脱BOC化
合6.30gを得た。 上記脱BOC化物2.10g(0.3mM)をDMF35
mlとNMP35mlの混液に溶かし、これに0℃に
冷却下BOC−Tyr(Bzl−Cl2)−OH0.16g(1.2
倍M)、HOBT0.05g(1.2倍M)および
WSCI0.07ml(1.2倍M)を加えて後、室温で一
夜撹拌した。反応後、DMFを減圧下留去し、
残渣に氷水を加え、生じた沈澱物を取して
〔14〕2.00gを得た。 (2) 〔Tyr45〕−h−PTH(45−84) 無水HF20mlに0℃に冷却下〔14〕2.00g
(0.27mM)およびアニソール1.0mlを加え、60
分間撹拌した。反応後、HFを減圧下留去し、
残渣にエーテルを加えた。生じた沈澱物を集
め、0.1N酢酸20mlに溶かし、ダウエツクス×
1のカラム(アセテート型、2.5×15cm)に通
じ、流出液を凍結乾燥して粗生成物1.37gを得
た。 これを8M尿素水溶液(PH9.5)50mlに溶か
し、室温で60分間放置した。次いでこの溶液を
8M尿素水溶液で充填したCM−セルロースの
カラム(4.3×8.0cm)にチヤージし、0.01M酢
酸アンモニウム水溶液(PH4.5)400ml〜0.3M
酢酸アンモニウム水溶液(PH4.5)400mlの直線
型濃度勾配による溶出を行つた。溶出後は6.5
mlづつ分画し、各分画はFolin−Lowry法
(500nm)により測定して30〜43本目の区分C1
51〜68本目の区分C2、69〜83本目の区分C3
よび84〜100本目の区分C4を得た。各区分をセ
フアデツクスLH−20のカラムに通して脱塩し
た。区分C1は3.4×120cmのカラムに通し、流出
液を7.5mlづつ分画し、25〜41本目の区分C1Lを
得る区分C2は3.0×120cmのカラムに通し、流出
液を7.5mlづつ分画し、25〜36本目の区分C2Lを
得た。区分C3は2.9×120cmのカラムに通し、流
出液を8.0mlづつ分画し、24〜27本目の区分
C3L1および28〜38本目の区分C3L2を得た。区
分C4は2.9×95cmのカラムに通し、流出液を7.6
mlづつ分画し、20〜25本目の区分C4L1および
26〜30本目の区分C4L2を得た。各区分を凍結
乾燥してC1L区分521.6mg、C2L区分230.2mg、
C3L1区分41.8mg、C3L2区分222.4mg、C4L1区分
74.3mgおよびC4L2区分48.9mgを得た。 前記のC2L区分を0.1N酢酸3mlに溶かし、
CM−セルロースのカラム(2.1×25cm)にチヤ
ージし、0.01M酢酸アンモニウム水溶液(PH
4.5)300ml〜0.3M酢酸アンモニウム水溶液
(PH4.5)300mlの直線型濃度勾配による溶出を
行つた。溶出液は8.0mlづつ分画し、30〜36本
目の区分C2L−Cを得た。この区分をセフアデ
ツクスLH−20のカラム(2.9×90cm)のカラム
に通して脱塩した。流出液を8.0mlづつ分画し、
20〜29本目の区分を凍結乾燥して〔Tyr45〕−
h−PTH(45−84)163.3mgを得た。 TLC;Rf9=0.75 アミノ酸分析;Asp4.86(5)、Thr1.02(1)、
Ser3.51(4)、Glu6.05(6)、Pro0.93(1)、Gly1.90
(2)、Ala4(4)、Val4.00(4)、Leu2.93(3)、Tyr0.88
(1)、Lys6.02(6)、His0.86(1)、Arg1.81(2) 参考例 5 〔Cys(Acm)45〕−h−PTH(45−84);H−
Cys(Acm)−Ala−Gly−Ser−Gln−Arg−Pro−
Arg−Lys−Lys−Glu−Asp−Asn−Val−Leu−
Val−Glu−Ser−His−Glu−Lys−Ser−Leu−
Gly−Glu−Ala−Asp−Lys−Ala−Asp−Val−
Asp−Val−Leu−Thr−Lys−Ala−Lys−Ser−
Gln−OHの製造例。 (1) P(45−84);BOC−Cys(Acm)−Aa−Gly
−Ser(Bzl)−Gln−Arg(Tos)−Pro−Arg
(Tos)−Lys(Z−Cl)−Lys(Z−Cl)−Glu
(OBzl)−Asp(OBzl)−Asn−Val−Leu−Val
−Glu(OBzl)−Ser(Bzl)−His−Glu(OBzl)−
Lys(Z−Cl)−Ser(Bzl)−Leu−Gly−Glu
(OBzl)−Ala−Asp(OBzl)−Lys(Z−Cl)−
Ala−Asp(OBzl)−Val−Asp(OBzl)−Val−
Leu−Thr(Bzl)−Lys(Z−Cl)−Ala−Lys(Z
−Cl)−Ser(Bzl)−Gln−OBzl〔15〕について。 参考例4で得た残りの脱BOC化物4.20mg
(0.6mM)をDMF70mlとNMP70mlの混液に溶
かし、これに0℃に冷却下HOBT0.10g(1.2
倍M)、BOC−Cys(Acm)−OH0.20g(1.2倍
M)およびWSCI0.13ml(1.2倍M)を加えた
後、室温で一夜撹拌した。反応後、DMFを減
圧下留去し、残渣に氷水を加え、生じた沈澱物
を集めた。これをエタノールに懸濁して加熱
し、冷却した後、不溶物を取した。この操作
を2回繰り返して〔15〕4.07g(収率95.0%)
を得た。 (2) 〔Cys(Acm)45〕−h−PTH(45−84)無水
HF60mlに0℃に冷却下〔15〕4.00g
(0.57mM)およびアニソール10mlを加え、60
分間撹拌した。反応後、HFを減圧下留去し、
残渣にエーテルを加えた。生じた沈澱物を集
め、20%酢酸40mlに溶かし、ダウエツクス×1
のカラム(アセテート型、2.8×35cm)に通じ、
流出液を凍結乾燥した。これを8M尿素水溶液
50mlに溶かし、アンモニア水でPH9.0に調節し
た後、30分間放置した。次いでこの溶液を8M
尿素水溶液で充填したCM−セルロース(3.4×
35cm)にチヤージし、0.01M酢酸アンモニウム
水溶液(PH4.5)700ml〜0.3M酢酸アンモニウ
ム水溶液(PH4.5)700mlの濃度勾配による溶出
を行つた。溶出液は8.0mlづつ分画し、各分画
はFolin−Lowry法(500nm)により測定して
25〜35本目の区分C1、36〜45本目の区分C2
よび46〜84本目の区分C3を得た。各区分をセ
フアデツクスLH−20のカラムに通して脱塩し
た。区分C2は3.0×120cmのカラムに通し、流出
液を8.0mlづつ分画し、27〜33本目の区分C2L1
および34〜40本目の区分C2L2を得た。区分C3
は3.4×120cmのカラムに通し、流出液を8.0ml
づつ分画し、35〜47本目の区分C3L1および48
〜53本目の区分C3L2を得た。各区分を凍結乾
燥してC2L1区分148mg、C2L2区分620mg、C3L1
区分212mgおよびC3L2区分605mgを得た。 前記のC2L2区分を0.1N酢酸6mlに溶かし、
これをCM−セルロースのカラム(5.0×12cm)
にチヤージし、0.0M酢酸アンモニウム水溶液
(PH4.5)400ml〜0.3M酢酸アンモニウム水溶液
(PH4.5)400mlの直線型濃度勾配による溶出を
行い、溶出液は6.0mlづつ分画し、110〜126本
目の区分C2L2−Cを得た。これをセフアデツ
クスLH−20のカラム(4.0×120cm)に通して
脱塩した。流出液は8.0mlづつ分画し、38〜54
本目の区分C2L2−CLを得た。この区分を凍結
乾燥して〔Cys(Acm)45〕−h−PTH(45−84)
246.8mgを得た。 TLC;Rf9=0.74 アミノ酸分析;Asp4.91(5)、Thr0.98(1)、
Ser3.50(1)、Glu6.11(6)、Pro0.98(1)、Gly1.98
(2)、Ala4(4)、Val4.04(4)、Cys0.42(0.5)、
Leu2.90(3)、Lys5.99(6)、His0.87(1)、Ars1.87(2) 参考例 6 〔Cys45〕−h−PTH(45−84);H−Cys−Ala
−Gly−Ser−Gln−Arg−Pro−Arg−Lys−Lys
−Glu−Asp−Asn−Val−Leu−Val−Glu−Ser
−His−Glu−Lys−Ser−Leu−Gly−Glu−Ala
−Asp−Lys−Ala−Asp−Val−Asp−Val−Leu
−Thr−Lys−Ala−Lys−Ser−Gln−OHの製造
例。 参考例5で得た〔Cys(Acm)45〕−h−PTH
(45−84)88mg(0.02mM)を50%酢酸2mlに溶
かし、これに酢酸第二水銀57.24mg(0.18mM)を
加えた後、室温で70分間撹拌した。次いで、β−
メルカプトエタノール3.4mlを加え、室温で24時
間撹拌した。反応液を遠心分離し、上澄液をセフ
アデツクスLH−20のカラム(3.5×42cm)にチヤ
ージし、0.1M酢酸で溶出した。溶出液は5mlづ
つ分画し、ニンヒドリン反応陽性の9〜14本目の
区分を集め、これを凍結乾燥して〔Cys45〕−h−
PTH(45−84)76.1mgを得た。 TLC;Rf9=0.73 尚、本明細書中に記載の略記号は次の意味を有
する。 Gln;L−グルタミン Ser;L−セリン Lys;L−リジン Ala;L−アラニン Thr;L−スレオニン Leu;L−ロイシン Val;L−バリン Asp;L−アスパラギン酸 Glu;L−グルタミン酸 Gly;グリシン His;L−ヒスチジン Asn;L−アスパラギン Arg;L−アルギニン Pro;L−プロリン Tyr;Lチロシン Cys;L−システイン BOC;t−ブチルオキシカルボニル AOC;t−アミルオキシカルボニル Z−Cl;o−クロロベンジルオキシカルボニル Bzl;ベンジル Tos;トシル OMe;メチルエステル OEt;エチルエステル OBzl;ベンジルエステル OSU;N−ヒドロキシコハク酸イミドエステ
ル ONP;p−ニトロフエニルエステル PAC;フエナシルエステル Acm;アセトアミドメチル TosOH;p−トルエンスルホン酸 TFA;トリフルオロ酢酸 Et3N;トリエチルアミン TBA;トリベンジルアミン NMM;N−メチルモルホリン HOBT;1−ヒドロキシベンゾトリアゾール DMF;ジメチルホルムアミド THF;テトラヒドロフラン NMP;N−メチル−2−ピロリドン MeOH;メタノール EtOH;エタノール BuOH;ブタノール エーテル;ジエチルエーテル WSCI;N−エチル,N−3−ジメチルアミノ
プロピル−カルボジイミド また使用した薄層クロマトグラフイー(TLC)
の担体および展開溶媒は次の通りである。 担体;メルク社製シリカゲルG 展開溶媒; 1;CHCl3−MeOH−酢酸 (95:5:3) 2; 〃 (85:15:5) 3; 〃 (85:10:5) 4; 〃 (80:25:2) 5;ベンゼン−酢酸エチル (1:1) 6;ベンゼン−酢酸エチル (2:1) 7;CHCl3−EtOH−酢酸エチル (5:2:5) 8; 〃 (10:1:5) 担体;メルク社製セルロース 展開溶媒; 9;BuOH−ピリジン−酢酸−水
(2:2:2:3) 10;BuOH−ピリジン−酢酸−水
(1:1:1:2)
[9] 9.64 g (11 mM) was dissolved in 50 ml of ethanol, 6.4 ml of 50% NH 2 NH 2 was added thereto, and the mixture was stirred at room temperature overnight. 100 ml of ethanol was added to the reaction solution to remove insoluble matter. Add this to ethanol
The suspension was suspended in 100 ml, heated, cooled, and filtered to obtain 9.02 g (yield: 93.6%) of [10]. Melting point: 178-180℃ Elemental analysis [as C 33 H 57 O 11 N 11 S] C% H% N% Measured value 52.18 6.86 16.65 Calculated value 52.10 6.56 17.59 (5) P (46−54); BOC−Ala− Gly-Ser (Bzl)
−Gln−Arg(Tos)−Pro−Arg(Tos)−Lys(Z
-Cl)-Lys(Z-Cl)-PAC [11]. [3] 8.04g (6.6mM) described in Reference Example 2
After adding 40 ml of TFA and stirring at room temperature for 20 minutes,
TFA was distilled off under reduced pressure. Ether was added to the residue, the resulting precipitate was collected and the crude H-Pro-
Arg(Tos)−Lys(Z−Cl)−Lys(Z−Cl)−
Obtained PAC/TFA. On the other hand, [10] 6.83g (7.3mM) was dissolved in 30ml of DMF, and 5.42ml (23.4mM) of a 4.32N hydrogen chloride dioxane solution and 1.10ml (8.09mM) of isoamyl nitrile were added to this while cooling at -50°C. ,−
Stirred at 20°C for 20 minutes. Then the above H-Pro-
After adding Arg(Tos)-Lys(Z-Cl)-PAC・TFA and adding Et 3 N 5.46ml (39mM) at -35℃,
Stirred at 0-5°C for 2 days. After the reaction, DMF was distilled off under reduced pressure, and the residue was dissolved in 300 ml of chloroform, followed by washing in the order of 5% aqueous sodium bicarbonate, 1N hydrochloric acid, and water. Dry the chloroform layer with anhydrous sodium sulfate,
Concentrate under reduced pressure and purify with ethanol-ether and chloroform-ether [11]
13.42g was obtained. TLC; Rf=0.64 [chloroform-methanol-acetic acid (83:18:3.5)] Elemental analysis [as C 92 H 120 O 22 N 18 Cl 2 S・3H 2 O] C% H% N% Measured value 54.68 6.21 12.72 Calculated value 54.72 6.29 12.49 Amino acid analysis; Ser0.65(1), Glu1.10(1), Pro1
(1), Gly1.02(1), Ala1.00(1), Lys1.89(2), Arg2.02
(2) (6) P-(46-54); BOC-Ala-Gly-Ser(Bzl)
−Gln−Arg(Tos)−Pro−Arg(Tos)−Lys(Z
-Cl)-Lys(Z-Cl)-OH [12]. 15g of zinc powder/30ml of acetic acid [11] 5.31g of acetic acid
40 ml of solution was added and stirred at room temperature for 2 hours. After the reaction, the zinc powder was separated and the liquid was concentrated under reduced pressure. Ether was added to the residue, and the resulting precipitate was purified once with ethanol-ether and twice with ethanol-ethyl acetate to obtain 4.41 g (87.7% yield) of [12]. TLC; Rf 4 = 0.22 Elemental analysis [as C 84 H 114 O 22 N 18 S 2 Cl 2・2H 2 O] C% H% N% Measured value 52.89 6.16 13.22 Calculated value 53.12 6.26 13.28 Amino acid analysis; Ser0.88( 1), Glu1.11(1),
Pro1.02(1), Gly1.02(1), Ala1(1), Lys2.00(2),
Arg2.09(2) (6) P(46−84); BOC−Ala−Gly−Ser(Bzl)−
Gln−Arg(Tos)−Pro−Arg(Tos)−Lys(Z−
Cl)−Lys(Z−Cl)−Glu(OBzl)−Asp(OBzl)
−Asn−Val−Leu−Val−Glu(OBzl)−Ser
(Bzl)-His-Glu(OBzl)-Lys(Z-Cl)-Ser
(Bzl)−Leu−Gly−Glu(OBzl)−Ala−Asp
(OBzl)−Lys(Z−Cl)−Ala−Asp(OBzl)−
Val−Asp(OBzl)−Val−Leu−Thr(Bzl)−
Lys(Z-Cl)-Ala-Lys(Z-Cl)-Ser(Bzl)
Regarding −Gln−OBzl [13]. [6] 10.44g (2mM) described in Reference Example 2
After adding 80 ml of TFA and stirring at room temperature for 60 minutes,
TFA was distilled off under reduced pressure. Ether was added to the residue, the resulting precipitate was dissolved in a mixture of 160 ml of DMF and 160 ml of NMP, and the mixture was cooled to 0°C [12] 4.28
After adding 0.32 g of HOBT (1.2 times M) and 0.44 ml of WSCI (1.2 times M), the mixture was stirred at room temperature for 2 days. After the reaction, DMF was distilled off under reduced pressure.
After adding ice water to the residue, the resulting precipitate was collected. Add 200ml of methanol to this and heat.
The operation of removing insoluble matter after cooling was repeated twice to obtain 12.17 g (yield: 87.4%) of [13]. (7) h-PTH (46-84) Anhydrous HF 60ml Cooled to 120℃ [13] 4.18g
(0.6mM) and 10ml of anisole were added and stirred for 60 minutes. After the reaction, HF was distilled off under reduced pressure, and ether was added to the residue. Collect the resulting precipitate and add 10%
It was dissolved in 50 ml of acetic acid, passed through a Dowex x 1 column (acetate type, 2.5 x 24 cm), and the effluent was freeze-dried to obtain 2.82 g of a crude product. This was dissolved in 50 ml of 8M urea aqueous solution (PH9.0) and left at room temperature for 60 minutes. Then this solution
Charge a CM-cellulose column (2.0 x 33 cm) packed with 8M urea aqueous solution, and add 500ml to 0.3M of 0.01M ammonium acetate aqueous solution (PH4.5).
Elution was performed using a linear concentration gradient of 500 ml of ammonium acetate aqueous solution (PH4.5). Eluate is 7.5
Fractionate by ml, each fraction is Folin-Lowry
(500nm) 1st to 22nd division C1 ,
23rd to 45th division C 2 , 46th to 80th division C 3 ,
And the 81st to 120th eluate of category C4 was obtained.
Each fraction was desalted by passing it through a Sephadex LH-20 column. Division C 1 was suitable for a 3.0×120 cm column, and the effluent was fractionated into 7.5 ml portions to obtain the 28th to 42nd divisions C 1 L. Division C 2 reached 3.4×120 ml, and the effluent was fractionated into 7.6 ml portions to obtain the 33rd to 40th division C 2 L 1 and the 41st to 62nd division C 2 L 2 .
Section C 3 passes the effluent through a 3.0 x 120 cm column.
It was fractionated into 6.0 ml portions to obtain the 31st to 40th sections C 3 L 1 and the 41st to 51st sections C 3 L 2 . Category C 4 is
The effluent was passed through a 3.4 x 120 cm column and fractionated into 7.5 ml portions to obtain 4 L of the 35th to 48th fractions. Freeze-dry each section to obtain 312 mg for C 1 L section and 1 C 2 L section.
142.3mg, C2L 2 divisions 1380mg, C3L 1 division 104mg,
510 mg of C 3 L 2 fraction and 130 mg of C 4 L fraction were obtained. Dissolve 1380 mg of the above C 2 L 2 sections in 13 ml of 0.1N acetic acid and apply it to a CM-cellulose column (4.3 x 6.0 cm).
Elution was performed using a linear concentration gradient from 500 ml of 0.01 M ammonium acetate aqueous solution (PH 4.5) to 500 ml of 0.3 M ammonium acetate aqueous solution (PH 4.5). The eluate was fractionated into 7.6 ml portions, and the 40th to 50th sections C 2 L 2 - and the 53rd to 77th sections C 2 L 2
−C2 was obtained. Sephadex LH-20 for each category
It was desalted by passing it through a column. The division C 2 L 2 −C 1 is
Pass through a 2.9 x 120 cm column and fractionate the effluent into 8.0 ml portions . Obtained. classification
C 2 L 2 - C 2 is passed through a 3.4 x 120 cm column, the effluent is fractionated into 8.0 ml portions, and the 34th to 44th sections C 2 L 2 -
C2L1 and 45th to 53rd sections C2L2 - C2L2 were obtained. Freeze-dry each section to obtain C 2 L 2 −C 1 L 1 section 79.0
mg, C 2 L 2 −C 1 L 2 divisions 455 mg, C 2 L 2 −C 2 L 1 division
157.3 mg and 551.7 mg of C2L2 - C2L2 fraction were obtained. Amino acid analysis of C 2 L 2 −C 2 L 2 division; Asp4.65
(5), Thr0.97(1), Ser3.47(4), Glu5.99(6),
Pro0.93(1), Gly1.96(2), Ala4(4), Val3.97(4),
Leu3.01(3), Lys6.13(6), His0.93(1), Arg1.96(2) Dissolve the above C 2 L 2 −C 2 L 2 division in 5 ml of 0.1N acetic acid and prepare CM-cellulose. Column (4.2 x 7.0cm)
The elution was performed using a linear concentration gradient from 300 ml of 0.01M ammonium acetate aqueous solution (PH4.5) to 0.3M ammonium acetate aqueous solution (PH4.5). The eluate was fractionated into 8.0 ml portions to obtain the 39th to 45th fractions C 2 L 2 -C 2 L 2 -C. This fraction was desalted by passing it through a Sephadex LH-20 column (2.9 x 120 cm). The effluent was fractionated into 8.0 ml portions, and the 24th to 30th divisions C 2 L 2 −C 2 L 2 −CL 1 ,
31st to 35th division C 2 L 2 −C 2 L 2 −CL 2 and 36~
The 39th segment C 2 L 2 −C 2 L 2 −CL 3 was obtained. Freeze-dry each portion to obtain 200 mg of C 2 L 2 −C 2 L 2 −CL 2 portions and 1 portion of C 2 L 2 −C 2 L 2 −CL [h-PTH (46−
84)] 94.9 mg was obtained. TLC; Rf 9 = 0.76 Amino acid analysis; Asp4.86(5), Thr0.99(1),
Ser3.5(4), Glu6.17(6), Pro0.96(1), Gly1.97(2),
Ala4, Val4.02(4), Leu2.93(3), Lys6.05(6),
His0.90(1), Arg1.87(2) Reference example 4 [Tyr 45 ] h-PTH (45-84); H-Tys-Ala
−Gly−Ser−Gln−Arg−Pro−Arg−Lys−Lys
−Glu−Asp−Asn−Val−Leu−Val−Glu−Ser
−His−Glu−Lys−Ser−Leu−Gly−Glu−Ala
−Asp−Lys−Ala−Asp−Val−Asp−Val−Leu
Production example of -Thr-Lys-Ala-Lys-Ser-Gln-OH. (1) P(45−84); BOC−Tyr(Bzl−Cl 2 )−Ala−
Gly−Ser(Bzl)−Gln−Arg(Tos)−Dro−Arg
(Tos)−Lys(Z−Cl)−Lys(Z−Cl)−Glu
(OBzl)−Asp(OBzl)−Asn−Val−Leu−Val
−Glu(OBzl)−Ser(Bzl)−His−Glu(OBzl)−
Lys(Z−Cl)−Ser(Bzl)−Leu−Gly−Glu
(OBzl)-Ala-Asp(OBzl)-Lys(Z-Cl)-
Ala−Asp(OBzl)−Val−Asp(OBzl)−Val−
Leu−Thr(Bzl)−Lys(Z−Cl)−Ala−Lys(Z
-Cl)-Ser(Bzl)-Gln-OBzl [14]. [13] 6.27g (0.9mM) described in Reference Example 3
60 ml of TFA was added and stirred at room temperature for 60 minutes. After the reaction, TFA is distilled off under reduced pressure, and ether is added to the residue. The resulting precipitate was collected to obtain 6.30 g of a BOC-free compound. 2.10g (0.3mM) of the above BOC removed product was added to DMF35
ml and NMP (35 ml), and add 0.16 g (1.2
times M), HOBT0.05g (1.2 times M) and
After adding 0.07 ml of WSCI (1.2 times M), the mixture was stirred at room temperature overnight. After the reaction, DMF was distilled off under reduced pressure.
Ice water was added to the residue, and the resulting precipitate was collected to obtain 2.00 g of [14]. (2) [Tyr 45 ]-h-PTH (45-84) 2.00 g of [14] in 20 ml of anhydrous HF while cooling to 0℃
(0.27mM) and 1.0ml of anisole, 60
Stir for a minute. After the reaction, HF was distilled off under reduced pressure,
Ether was added to the residue. Collect the resulting precipitate, dissolve it in 20 ml of 0.1N acetic acid, and add Dowex
1 column (acetate type, 2.5×15 cm), and the effluent was freeze-dried to obtain 1.37 g of crude product. This was dissolved in 50 ml of 8M urea aqueous solution (PH9.5) and left at room temperature for 60 minutes. Then this solution
Charge a CM-cellulose column (4.3 x 8.0 cm) packed with 8M urea aqueous solution, and add 400ml to 0.3M 0.01M ammonium acetate aqueous solution (PH4.5).
Elution was performed using a linear concentration gradient of 400 ml of ammonium acetate aqueous solution (PH4.5). 6.5 after elution
Fractionate by ml, each fraction is measured by Folin-Lowry method (500nm), and the 30th to 43rd division C1 ,
The 51st to 68th sections C2 , the 69th to 83rd sections C3 , and the 84th to 100th sections C4 were obtained. Each fraction was desalted by passing it through a Sephadex LH-20 column. Section C 1 passes through a 3.4 x 120 cm column and the effluent is fractionated into 7.5 ml portions to obtain 25th to 41st sections C 1 L. Section C 2 passes through a 3.0 x 120 cm column and the effluent is fractionated into 7.5 ml. The 25th to 36th fractions C 2 L were obtained. Section C 3 is passed through a 2.9 x 120 cm column, and the effluent is fractionated into 8.0 ml portions.
C 3 L 1 and 28th to 38th sections C 3 L 2 were obtained. Section C 4 passes through a 2.9 x 95 cm column and the effluent is 7.6
Fractionate by ml and divide into 20th to 25th sections C 4 L 1 and
The 26th to 30th segment C4L2 was obtained . Freeze-dry each section to obtain 521.6 mg for C 1 L section, 230.2 mg for C 2 L section,
C 3 L 1 category 41.8 mg, C 3 L 2 category 222.4 mg, C 4 L 1 category
74.3 mg and 48.9 mg of C 4 L 2 fractions were obtained. Dissolve the above C 2 L fraction in 3 ml of 0.1N acetic acid,
Charge a CM-cellulose column (2.1 x 25 cm) and add 0.01M ammonium acetate aqueous solution (PH
4.5) Elution was performed using a linear concentration gradient from 300 ml to 300 ml of a 0.3 M ammonium acetate aqueous solution (PH4.5). The eluate was fractionated into 8.0 ml portions to obtain the 30th to 36th fractions C 2 L-C. This fraction was desalted by passing it through a Sephadex LH-20 column (2.9 x 90 cm). Fractionate the effluent into 8.0ml portions,
Freeze-dry the 20th to 29th sections [Tyr 45 ]−
163.3 mg of h-PTH (45-84) was obtained. TLC; Rf 9 = 0.75 Amino acid analysis; Asp4.86(5), Thr1.02(1),
Ser3.51(4), Glu6.05(6), Pro0.93(1), Gly1.90
(2), Ala4(4), Val4.00(4), Leu2.93(3), Tyr0.88
(1), Lys6.02(6), His0.86(1), Arg1.81(2) Reference example 5 [Cys(Acm) 45 ]-h-PTH(45-84);H-
Cys(Acm)−Ala−Gly−Ser−Gln−Arg−Pro−
Arg−Lys−Lys−Glu−Asp−Asn−Val−Leu−
Val−Glu−Ser−His−Glu−Lys−Ser−Leu−
Gly−Glu−Ala−Asp−Lys−Ala−Asp−Val−
Asp−Val−Leu−Thr−Lys−Ala−Lys−Ser−
Example of manufacturing Gln-OH. (1) P(45−84); BOC−Cys(Acm)−Aa−Gly
−Ser(Bzl)−Gln−Arg(Tos)−Pro−Arg
(Tos)−Lys(Z−Cl)−Lys(Z−Cl)−Glu
(OBzl)−Asp(OBzl)−Asn−Val−Leu−Val
−Glu(OBzl)−Ser(Bzl)−His−Glu(OBzl)−
Lys(Z−Cl)−Ser(Bzl)−Leu−Gly−Glu
(OBzl)-Ala-Asp(OBzl)-Lys(Z-Cl)-
Ala−Asp(OBzl)−Val−Asp(OBzl)−Val−
Leu−Thr(Bzl)−Lys(Z−Cl)−Ala−Lys(Z
-Cl)-Ser(Bzl)-Gln-OBzl [15]. 4.20 mg of the remaining BOC removed product obtained in Reference Example 4
(0.6mM) was dissolved in a mixture of 70ml of DMF and 70ml of NMP, and 0.10g of HOBT (1.2
After adding 0.20 g (1.2 times M) of BOC-Cys(Acm)-OH (1.2 times M) and 0.13 ml (1.2 times M) of WSCI, the mixture was stirred at room temperature overnight. After the reaction, DMF was distilled off under reduced pressure, ice water was added to the residue, and the resulting precipitate was collected. This was suspended in ethanol, heated, cooled, and then the insoluble matter was removed. Repeat this operation twice [15] 4.07g (yield 95.0%)
I got it. (2) [Cys (Acm) 45 ]-h-PTH (45-84) anhydrous
4.00g in HF60ml cooled to 0℃ [15]
(0.57mM) and 10ml of anisole, 60
Stir for a minute. After the reaction, HF was distilled off under reduced pressure,
Ether was added to the residue. Collect the resulting precipitate, dissolve it in 40ml of 20% acetic acid, and add Dowex x 1.
column (acetate type, 2.8 x 35 cm),
The effluent was lyophilized. Add this to 8M urea aqueous solution.
After dissolving in 50 ml and adjusting the pH to 9.0 with aqueous ammonia, it was left for 30 minutes. This solution was then diluted to 8M
CM-cellulose filled with urea aqueous solution (3.4×
35 cm), and elution was performed using a concentration gradient of 700 ml of 0.01 M ammonium acetate aqueous solution (PH4.5) to 700 ml of 0.3 M ammonium acetate aqueous solution (PH4.5). The eluate was fractionated into 8.0ml portions, and each fraction was measured using the Folin-Lowry method (500nm).
A 25th to 35th segment C1 , a 36th to 45th segment C2 , and a 46th to 84th segment C3 were obtained. Each fraction was desalted by passing it through a Sephadex LH-20 column. Section C 2 is passed through a 3.0 x 120 cm column, the effluent is fractionated into 8.0 ml portions, and the 27th to 33rd sections C 2 L 1
and the 34th to 40th divisions C2L2 were obtained. Category C 3
is passed through a 3.4 x 120 cm column and the effluent is 8.0 ml.
The 35th to 47th fractions C 3 L 1 and 48
~53rd segment C3L2 was obtained . Freeze-dry each section to obtain 148 mg of C 2 L 1 section, 620 mg of C 2 L 2 sections, and 620 mg of C 3 L 1.
212 mg of fraction and 605 mg of C 3 L 2 fraction were obtained. Dissolve the 2 portions of C 2 L in 6 ml of 0.1N acetic acid,
This is a CM-cellulose column (5.0 x 12 cm)
and elute with a linear concentration gradient of 400 ml of 0.0 M aqueous ammonium acetate solution (PH4.5) to 400 ml of 0.3 M aqueous ammonium acetate solution (PH4.5), and fractionate the eluate into 6.0 ml portions of 110 to 126 The main classification C 2 L 2 -C was obtained. This was desalted by passing it through a Sephadex LH-20 column (4.0 x 120 cm). The effluent was fractionated into 8.0 ml portions, 38 to 54
The main segment C 2 L 2 −CL was obtained. Freeze-dry this section to obtain [Cys (Acm) 45 ]-h-PTH (45-84).
246.8mg was obtained. TLC; Rf 9 = 0.74 Amino acid analysis; Asp4.91(5), Thr0.98(1),
Ser3.50(1), Glu6.11(6), Pro0.98(1), Gly1.98
(2), Ala4(4), Val4.04(4), Cys0.42(0.5),
Leu2.90(3), Lys5.99(6), His0.87(1), Ars1.87(2) Reference example 6 [Cys 45 ]-h-PTH (45-84); H-Cys-Ala
−Gly−Ser−Gln−Arg−Pro−Arg−Lys−Lys
−Glu−Asp−Asn−Val−Leu−Val−Glu−Ser
−His−Glu−Lys−Ser−Leu−Gly−Glu−Ala
−Asp−Lys−Ala−Asp−Val−Asp−Val−Leu
Production example of -Thr-Lys-Ala-Lys-Ser-Gln-OH. [Cys(Acm) 45 ]-h-PTH obtained in Reference Example 5
88 mg (0.02 mM) of (45-84) was dissolved in 2 ml of 50% acetic acid, and 57.24 mg (0.18 mM) of mercuric acetate was added thereto, followed by stirring at room temperature for 70 minutes. Then β-
3.4 ml of mercaptoethanol was added, and the mixture was stirred at room temperature for 24 hours. The reaction solution was centrifuged, and the supernatant was charged to a Sephadex LH-20 column (3.5 x 42 cm) and eluted with 0.1M acetic acid. The eluate was fractionated into 5 ml portions, the 9th to 14th fractions that were positive for ninhydrin reaction were collected, and this was lyophilized to give [Cys 45 ]-h-
76.1 mg of PTH (45-84) was obtained. TLC; Rf 9 =0.73 In addition, the abbreviations described in this specification have the following meanings. Gln; L-glutamine Ser; L-serine Lys; L-lysine Ala; L-alanine Thr; L-threonine Leu; L-leucine Val; L-valine Asp; L-aspartic acid Glu; L-glutamic acid Gly; glycine His ; L-histidine Asn; L-asparagine Arg; L-arginine Pro; L-proline Tyr; L-tyrosine Cys; L-cysteine BOC; t-butyloxycarbonyl AOC; t-amyloxycarbonyl Z-Cl; o-chlorobenzyl Oxycarbonyl Bzl; benzyl Tos; tosyl OMe; methyl ester OEt; ethyl ester OBzl; benzyl ester OSU; N-hydroxysuccinimide ester ONP; p-nitrophenyl ester PAC; phenacyl ester Acm; acetamidomethyl TosOH; p- Toluenesulfonic acid TFA; trifluoroacetic acid Et3N ; triethylamine TBA; tribenzylamine NMM; N-methylmorpholine HOBT; 1-hydroxybenzotriazole DMF; dimethylformamide THF; tetrahydrofuran NMP; N-methyl-2-pyrrolidone MeOH; methanol EtOH; Ethanol BuOH; Butanol ether; Diethyl ether WSCI; N-ethyl, N-3-dimethylaminopropyl-carbodiimide Also used thin layer chromatography (TLC)
The carrier and developing solvent are as follows. Support: Silica Gel G manufactured by Merck & Co., Ltd. Developing solvent: 1; CHCl 3 -MeOH-acetic acid (95:5:3) 2; 〃 (85:15:5) 3; 〃 (85:10:5) 4; 〃 (80) :25:2) 5; Benzene-ethyl acetate (1:1) 6; Benzene-ethyl acetate (2:1) 7; CHCl3 - EtOH-ethyl acetate (5:2:5) 8; (10:1) :5) Support: Cellulose manufactured by Merck & Co., Ltd. Developing solvent: 9; BuOH-pyridine-acetic acid-water
(2:2:2:3) 10;BuOH-pyridine-acetic acid-water
(1:1:1:2)

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図および第4図は検量線
を示す。
Figures 1, 2, 3 and 4 show calibration curves.

Claims (1)

【特許請求の範囲】 1 ヒト−PTHまたはそのC末端フラグメント
を含有する被検液に、免疫反応媒体中、標識抗原
として酵素標識したヒト−PTHのC末端フラグ
メントおよび抗体として下記一般式〔〕 R2−Ala−Gly−Ser−Gln−Arg−Pro−Arg−
Lys−Lys−Glu−Asp−Asn−Val−Leu−
Val−Glu−Ser−His−Glu−Lys−Ser−
Leu−Gly−Glu−Ala−Asp−Lys−Ala−
Asp−Val−Asp−Val−Leu−Thr−Lys−
Ala−Lys−Ser−Gln−OH 〔〕 (ただし式中、R2はHまたはH−R3−基、R3
はCys基を示す)で表わされるペプチドを用いて
ヒト以外の哺乳動物に感作せしめて得られる特異
的抗体を反応せしめ、次いで反応によつて結合し
た部分と結合していない遊離部とを分離し、その
後結合した部分または結合していない遊離部の酵
素活性を測定することを特徴とする被検液のヒト
−PTHまたはそのC末端フラグメントの測定法。 2 抗体が、R2がH−R3−基であり、R3がCys
基である一般式〔〕で表わされるペプチドを用
いて得られる抗体である特許請求の範囲第1項記
載の測定法。 3 抗体が、R2がH−R3−基であり、R3がCys
基である一般式〔〕で表わされるペプチド−蛋
白質結合体を用いて得られる抗体である特許請求
の範囲第1項記載の測定法。 4 酵素標識したヒト−PTHのC末端フラグメ
ントが、下記一般式〔〕 R−Lys−Lys−Glu−Asp−Asn−Val−Leu−
Val−Glu−Ser−His−Glu−Lys−Ser−
Leu−Gly−Glu−Ala−Asp−Lys−Ala−
Asp−Val−Asp−Val−Leu−Thr−Lys−
Ala−Lys−Ser−Gln−OH 〔〕 (式中、RはHまたはR1−Pro−Arg−基、R1
はHまたはR2−Ala−Gly−Gln−Arg−基、R2
はHまたはH−R3−基、R3はCys基を示す)で表
わされるペプチドの酵素標識体である特許請求の
範囲第1項記載の測定法。 5 一般式〔〕で表わされるペプチドが、R2
がH−R3−基であり、R3がCys基である一般式
〔〕で表わされるペプチドである特許請求の範
囲第4項記載の測定法。 6 酵素標識に用いる酵素が、β−ガラクトシダ
ーゼである特許請求の範囲第1項記載の測定法。
[Scope of Claims] 1. In a test solution containing human PTH or its C-terminal fragment, the following general formula [] R 2 −Ala−Gly−Ser−Gln−Arg−Pro−Arg−
Lys−Lys−Glu−Asp−Asn−Val−Leu−
Val−Glu−Ser−His−Glu−Lys−Ser−
Leu−Gly−Glu−Ala−Asp−Lys−Ala−
Asp−Val−Asp−Val−Leu−Thr−Lys−
Ala-Lys-Ser-Gln-OH [] (wherein, R 2 is H or H-R 3 - group, R 3
(represents a Cys group) is used to sensitize a non-human mammal to react with a specific antibody obtained, and then the bound part and the unbound free part are separated by the reaction. 1. A method for measuring human-PTH or its C-terminal fragment in a test liquid, which comprises the steps of: and then measuring the enzymatic activity of the bound portion or the unbound free portion. 2 The antibody is such that R 2 is an H-R 3 - group and R 3 is a Cys
The measuring method according to claim 1, which is an antibody obtained using a peptide represented by the general formula [ ], which is a group. 3 In the antibody, R 2 is an H-R 3 - group, and R 3 is a Cys
The assay method according to claim 1, which is an antibody obtained using a peptide-protein conjugate represented by the general formula [ ], which is a group. 4 The enzyme-labeled C-terminal fragment of human-PTH has the following general formula [] R-Lys-Lys-Glu-Asp-Asn-Val-Leu-
Val−Glu−Ser−His−Glu−Lys−Ser−
Leu−Gly−Glu−Ala−Asp−Lys−Ala−
Asp−Val−Asp−Val−Leu−Thr−Lys−
Ala-Lys-Ser-Gln-OH [] (wherein, R is H or R 1 -Pro-Arg- group, R 1
is H or R 2 -Ala-Gly-Gln-Arg- group, R 2
2. The measuring method according to claim 1, which is an enzyme-labeled peptide of the peptide represented by H or H- R3- group, R3 is Cys group. 5 The peptide represented by the general formula [] is R 2
5. The measuring method according to claim 4, wherein the peptide is a peptide represented by the general formula [ ], in which is an H-R 3 - group and R 3 is a Cys group. 6. The measuring method according to claim 1, wherein the enzyme used for enzyme labeling is β-galactosidase.
JP5769181A 1980-12-29 1981-04-16 Measuring method for immunity of homo-pth Granted JPS57184969A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP5769181A JPS57184969A (en) 1981-04-16 1981-04-16 Measuring method for immunity of homo-pth
SE8107687A SE453510B (en) 1980-12-29 1981-12-21 PEPTIME FOR ANALYSIS OF HUMANT PARATYROID HORMON
DE19813151738 DE3151738A1 (en) 1980-12-29 1981-12-29 PEPTID FOR ANALYSIS OF THE HUMAN HORMONE OF THE PARALIDAL GLANCE
US06/335,401 US4409141A (en) 1980-12-29 1981-12-29 Peptides for assaying human parathyroid hormone
FR8124412A FR2497198B1 (en) 1980-12-29 1981-12-29 PEPTIDE FOR DETERMINATION OF HUMAN PARATHYROID HORMONE
CH8335/81A CH661735A5 (en) 1980-12-29 1981-12-29 FRAGMENT OF HUMAN PARALIDAL HORMONE PEPTIDE.
GB8139060A GB2092160B (en) 1980-12-29 1981-12-30 Peptide for assaying human parathyroid hormone
US07/332,801 USRE33188E (en) 1980-12-29 1989-04-03 Peptides for assaying human parathyroid hormone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5769181A JPS57184969A (en) 1981-04-16 1981-04-16 Measuring method for immunity of homo-pth

Publications (2)

Publication Number Publication Date
JPS57184969A JPS57184969A (en) 1982-11-13
JPH0123059B2 true JPH0123059B2 (en) 1989-04-28

Family

ID=13062963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5769181A Granted JPS57184969A (en) 1980-12-29 1981-04-16 Measuring method for immunity of homo-pth

Country Status (1)

Country Link
JP (1) JPS57184969A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064417B2 (en) * 1985-02-12 1994-01-19 本田技研工業株式会社 Electric power steering device
JPH0672880B2 (en) * 1985-10-09 1994-09-14 ヤマサ醤油株式会社 Immunoassay reagents

Also Published As

Publication number Publication date
JPS57184969A (en) 1982-11-13

Similar Documents

Publication Publication Date Title
US4423034A (en) Process for the preparation of antibodies
JP2594259B2 (en) Membrane anchor / active compound conjugate and method for producing the same
US5049654A (en) Calcitonin gene related peptide derivatives
USRE33188E (en) Peptides for assaying human parathyroid hormone
GB2062644A (en) Glucagon fragment and utility hereof
JP2815582B2 (en) Primary biliary cirrhosis autoantigen
US4376760A (en) Tridecapeptide
EP0095351B1 (en) A precursor of a c-terminal amidated peptide and production thereof
WO1983004028A1 (en) The manufacture and expression of genes for calcitonin and polypeptide analogs thereof
JPH0123059B2 (en)
JPS61246199A (en) Immunogenic hav peptide
CA1238312A (en) Antigenic linear peptide compound
Chersi et al. Isolation, chemical and immunologic characterization of κ-and λ-type light chains from IgG of normal rabbits with b9 allotype
JP2634683B2 (en) Antibodies to fibrin; immunogenic peptides suitable for antibody preparation, methods for determining fibrin, and antibody-based preparations
JPH0122902B2 (en)
US4370312A (en) Decapeptide
JP2793216B2 (en) Sorbin and derived peptides to enhance mucosal absorption
JPS6332145B2 (en)
JPH0659231B2 (en) Monoclonal antibody
JPH08269094A (en) Isolation of protein from shell of hawkbill turtle, antibody and dna using the same obtained by the isolation
JPS6345680B2 (en)
DANHO et al. Human Proinsulin, IV. Synthesis of a Protected Peptide Fragment Corresponding to the Sequence 1-23 of the Prohormone
JPH0427996B2 (en)
JPH0320237B2 (en)
JPH0350759B2 (en)