JPS61156895A - Manufacture of wiring board - Google Patents

Manufacture of wiring board

Info

Publication number
JPS61156895A
JPS61156895A JP27749084A JP27749084A JPS61156895A JP S61156895 A JPS61156895 A JP S61156895A JP 27749084 A JP27749084 A JP 27749084A JP 27749084 A JP27749084 A JP 27749084A JP S61156895 A JPS61156895 A JP S61156895A
Authority
JP
Japan
Prior art keywords
substrate
aluminum
layer
wiring board
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27749084A
Other languages
Japanese (ja)
Inventor
和明 内海
泰弘 黒川
秀男 高見沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27749084A priority Critical patent/JPS61156895A/en
Publication of JPS61156895A publication Critical patent/JPS61156895A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は集積回路用導体配線基板の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a conductor wiring board for an integrated circuit.

(従来技術とその問題点) 集積回路用導体配線セラミック基板の製造方法として従
来から薄膜法、厚膜法の二積類のものが実用化されてい
る。これらの方法はいずれもあらかじめ回路パターンを
形成したマスクあるいはスクリーンなどを用いて導体を
形成するためマスクやスクリーンを作るため工程が必要
であり、このため工程が長くなり、配線基板全製造する
のに時間がかかっていた。
(Prior Art and its Problems) As methods for manufacturing conductor-wiring ceramic substrates for integrated circuits, two-layer thin film methods and thick film methods have been put to practical use. In all of these methods, conductors are formed using a mask or screen on which a circuit pattern has been formed in advance, so a process is required to make the mask or screen, which lengthens the process and takes time to manufacture the entire wiring board. It was taking time.

近年、IC%LSI の発展とともにモラミック配線基
板も数多く使用されているが、ニーズの多様化に伴って
、回路基板についても、少食多品質の傾向が強まり、い
ろいろの異なる回路の基板を少量でしかも短納期で製造
することが必要である。
In recent years, with the development of IC%LSI, a large number of moramic wiring boards have been used, but with the diversification of needs, there has been a growing tendency for circuit boards to be produced in small quantities and in high quality. It is necessary to manufacture within a short lead time.

この要求に対して、コンビ、−タ、マイコンなどを使用
して、厚膜で回路パターンを直接描画すが゛ る方法ψ検討されているが、精度が得られなかったり、
時間がかかるなどの問題があった。
To meet this demand, methods are being considered to directly draw circuit patterns on thick films using combinations, computers, microcomputers, etc., but they do not provide sufficient accuracy or
There were problems such as the time it took.

またこの方法で回路を形成すると、導体の幅やピッチが
大きくなり、回路の高密度化が困難であったO さらにIC,LSIの発達によって、回路の小型化、高
密度化高パワー化が進み、IC,LSI の発熱による
温度上昇も重要な問題となっている。従来からセラミッ
ク回路基板としては純度の異なるアルミナ基板が使用さ
れているが、この二熱伝導化、高パワー化を防げていた
Furthermore, when circuits were formed using this method, the width and pitch of the conductors became large, making it difficult to increase the density of the circuits.Furthermore, with the development of ICs and LSIs, circuits became smaller, denser, and more powerful. , IC, and LSI have also become an important problem due to temperature rise due to heat generation. Conventionally, alumina substrates of different purity have been used as ceramic circuit boards, but this dual thermal conductivity and high power were prevented.

熱伝導率の高いセラミック基板としてべIJ IJヤ、
炭化ケイ素などが使用されているが、毒性、加工性、コ
ストなどの問題から使用範囲が限定されていた。
As a ceramic substrate with high thermal conductivity,
Silicon carbide has been used, but its range of use has been limited due to issues such as toxicity, processability, and cost.

(発明の目的) 本発明ではこれらの従来技術の問題点全会て解決し熱伝
導率が高いセラミック基板上に導体を精度良くしかも生
並性良く、直接描画することによって、少量多品種化し
た回路基板を短納期で低コストで夷造する製造方f:ヲ
提供することを目的としている。
(Objective of the Invention) The present invention solves all of the problems of these conventional techniques, and enables circuits to be manufactured in small quantities and in a wide variety of products by directly drawing conductors with high precision and high quality on a ceramic substrate with high thermal conductivity. The purpose of the present invention is to provide a method of manufacturing circuit boards in a short delivery time and at low cost.

(発明の構成) 本発明は高エネルギー線を窒化アルミニウム基板上に照
射することによって、該基板上の照射部分に導体配線を
形成することを特徴とする◎(構成の詳a(な説E!A
) ミニラム上に直接導体層を形成することに成功したもの
である。
(Structure of the Invention) The present invention is characterized in that by irradiating an aluminum nitride substrate with high-energy radiation, conductive wiring is formed on the irradiated portion of the substrate. A
) We succeeded in forming a conductor layer directly on the miniram.

すなわち、窒化アルミニウムは多くの場合融点は常圧又
は減圧下では存在せず分解反応を起す。
That is, in many cases, aluminum nitride does not have a melting point under normal pressure or reduced pressure, and a decomposition reaction occurs.

窒化アルミニウム(A、FN)は常圧下では1900℃
程度で次の反応式に従って金属アルミニウムとこの場合
分解温度ではアルミニウム、窒素トモに気体でおるが、
近に温度の低い部分があると、金属成分は凝縮を起して
、液体又は固体となって基板上に析出して導体層となる
Aluminum nitride (A, FN) has a temperature of 1900°C under normal pressure.
In this case, at the decomposition temperature, aluminum and nitrogen gas form together with metallic aluminum according to the following reaction formula.
If there is a low-temperature area nearby, the metal component will condense and become a liquid or solid that will be deposited on the substrate to form a conductive layer.

ここで例えは空気中で上記反応を起した場合空気中の酸
素による金属の酸化が考えられるが、分解の際に生じた
窒素ガスが反応の起っている近傍に存在するため、酸化
反応を起すことなく、AJN表面上に付着して導体層を
形成することが可能となる。
For example, if the above reaction occurs in the air, the metal may be oxidized by the oxygen in the air, but the nitrogen gas generated during decomposition is present near the reaction, so the oxidation reaction is not possible. It becomes possible to form a conductor layer by adhering to the AJN surface without causing any damage.

このように本発明の方法によれば、レーザー光線、電子
線などの高エネルキーmt−窒化物セラミックス表面に
照射し、一部分を窒化物セラミックスの分解温度以上に
することによって、窒化物の分解反応を起し、しかも窒
化アルミニウムの熱伝導率の良い性質を利用し、分解反
応の起っている基板上の高エネルギー線照射部分でビー
ムの通過した部分lに分解した金属アルミニウム金析出
させ導体層とするものである。また基板上の直接の照射
部分のごく近傍にも金属アルミニウムが形成基板上へ導
体全直接描画でき、しかも密度の高い回路を精度良く描
画することが可能となった。
As described above, according to the method of the present invention, a high-energy mt-nitride ceramic surface is irradiated with a laser beam, an electron beam, etc., and a part of the surface is heated to a temperature higher than the decomposition temperature of the nitride ceramic, thereby causing a nitride decomposition reaction. Moreover, by taking advantage of the good thermal conductivity of aluminum nitride, decomposed metal aluminum gold is deposited on the high-energy beam irradiated area of the substrate where the decomposition reaction is occurring and the beam passes through to form a conductor layer. It is something. In addition, it has become possible to directly draw all conductors on the substrate on which metallic aluminum is formed, even in the vicinity of the directly irradiated area on the substrate, and it has become possible to draw high-density circuits with high precision.

以下実施例によって本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

(実施例1) 窒化アルミニウムセラミック基板上に炭酸ガスレーザー
元全次に示す朱件で空気中で照射した。
(Example 1) An aluminum nitride ceramic substrate was irradiated with a carbon dioxide laser under the following conditions in air.

照射モード    パルスモード ピーク出力     1kw パルス周波a     IKHz ビーム径       50μm その結果照射した部分はV型に削られV型の溝が形成さ
れその表面に金属アルミニウム層が形成さ几た。この層
が金、@アルミニウムであることは(実施例2) 窒化アルミニウムセラミック基板上にγAG レーザー
光を次の条件で空気中で照射した。
Irradiation mode Pulse mode Peak output 1 kW Pulse frequency a IKHz Beam diameter 50 μm As a result, the irradiated area was cut into a V-shape to form a V-shaped groove and a metal aluminum layer was formed on the surface. This layer is made of gold and aluminum (Example 2) An aluminum nitride ceramic substrate was irradiated with γAG laser light in air under the following conditions.

波   長         1:60μm出   力
          60Wパルス周波数     1
7KH2 スキャンピングスピード 30 mm/、71 e c
ローム住      80μm その結果照射した部分はV型に削られ、■型の溝が形成
され、その表面に金属アルミニウムの層が形成さILで
いた。
Wavelength 1: 60μm output 60W pulse frequency 1
7KH2 Scanning speed 30 mm/, 71 e c
ROHM Sumi 80 μm As a result, the irradiated area was cut into a V-shape, a ■-shaped groove was formed, and a layer of metallic aluminum was formed on the surface.

表面層が金属アルミニウムであることはX線回折分析に
よって確認された。
It was confirmed by X-ray diffraction analysis that the surface layer was metallic aluminum.

この導体層の幅は58μへ深さは38μm であり、導
体の抵抗は250〆1であった。
The width of this conductor layer was 58 .mu.m and the depth was 38 .mu.m, and the resistance of the conductor was 250.mu.m.

(実施例3) 窒化アルミニウムセラミック基板上に電子線ヒームを次
の業件で照射した。
(Example 3) An aluminum nitride ceramic substrate was irradiated with an electron beam beam in the following manner.

出   力            60Wスキヤンニ
ングスピード jrnm/Binビーム径      
   30μm その結果照射した部分はV型に削られ、■型の溝が形成
され、その表面に金属アルミニウム層が形成されていた
Output 60W Scanning speed jrnm/Bin beam diameter
30 μm As a result, the irradiated area was cut into a V-shape, a ■-shaped groove was formed, and a metal aluminum layer was formed on the surface.

表面が金属アルミニウムでおること+xX線回折分析に
よって確認された。
It was confirmed by xX-ray diffraction analysis that the surface was covered with metallic aluminum.

この導体層の幅は50μm深さは30μmであり、導体
の抵抗に10Ω/iであった。
The width of this conductor layer was 50 μm, the depth was 30 μm, and the resistance of the conductor was 10 Ω/i.

(実施例4) 窒化アルミニウムセラミック基板上にYA(iレーザー
光を実施例2と同じ一部で栄件で窒素ガス中で照射した
(Example 4) An aluminum nitride ceramic substrate was irradiated with YA (i laser light) under the same conditions as in Example 2 in a nitrogen gas atmosphere.

その結果照射された部分はv型に削られ、■型の溝が形
成さ几、その表面に金属アルミニウムの層が形成された
As a result, the irradiated area was cut into a V-shape, a square-shaped groove was formed, and a layer of metallic aluminum was formed on the surface.

表面層が金属アルミニウムであることQl X線回折分
析によって確認された。
It was confirmed by Ql X-ray diffraction analysis that the surface layer was metallic aluminum.

この導体層は幅60μm 深さ40μm でらり、導体
の抵抗は8Ω/iであった。
This conductor layer had a width of 60 μm and a depth of 40 μm, and the resistance of the conductor was 8Ω/i.

(発明の効果) 不発明の製造方法によって、熱伝4率の商い窒化アルミ
ニウム基板上に高エネルギー線によって直接導体層を形
成することが可能になった。
(Effects of the Invention) The uninvented manufacturing method has made it possible to directly form a conductor layer on an aluminum nitride substrate with high thermal conductivity using high-energy beams.

これにより、従来のようにマスク、スクリーンなどを用
意することなく、基板上に直接導体層l路を形成するこ
とが可能となり、コンピュータ、マイクロコンピュータ
などによって、短納期でしかも精度の高い0路基板を低
コストで製造することが可能となった。
This makes it possible to form a conductor layer directly on the board without preparing a mask or screen as in the past, and with computers, microcomputers, etc. has become possible to manufacture at low cost.

本発明でに高エネルギー線として炭酸ガスレーサー、Y
AGレーザ−、電子線と用いた実施例について述べたが
、本発明の原理は基板の一部に扁エネルギーを加えて分
解反応を記させることであるため、実施例以外のレーサ
ー光線、高エネルギー線でも同様の効果が得られる。
In the present invention, carbon dioxide racer, Y
Although the embodiments using an AG laser and an electron beam have been described, since the principle of the present invention is to record a decomposition reaction by applying flat energy to a part of the substrate, laser beams and high-energy laser beams other than those in the embodiments have been described. A similar effect can be achieved with lines.

また雰囲気についても空気中、窒素中、真空中などの他
にも中性、還元性雰囲気中でも同様の効果が得られる。
Furthermore, the same effect can be obtained in a neutral or reducing atmosphere as well as in air, nitrogen, vacuum, etc.

Claims (1)

【特許請求の範囲】[Claims] 窒化アルミニウム基板上に高エネルギー線を照射し該基
板上の照射部分に導体配線を形成することを特徴とする
配線基板の製造方法。
1. A method of manufacturing a wiring board, which comprises irradiating an aluminum nitride substrate with high-energy radiation and forming conductor wiring on the irradiated portion of the substrate.
JP27749084A 1984-12-28 1984-12-28 Manufacture of wiring board Pending JPS61156895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27749084A JPS61156895A (en) 1984-12-28 1984-12-28 Manufacture of wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27749084A JPS61156895A (en) 1984-12-28 1984-12-28 Manufacture of wiring board

Publications (1)

Publication Number Publication Date
JPS61156895A true JPS61156895A (en) 1986-07-16

Family

ID=17584320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27749084A Pending JPS61156895A (en) 1984-12-28 1984-12-28 Manufacture of wiring board

Country Status (1)

Country Link
JP (1) JPS61156895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797530A (en) * 1985-12-11 1989-01-10 Kabushiki Kaisha Toshiba Ceramic circuit substrates and methods of manufacturing same
JP2009195840A (en) * 2008-02-22 2009-09-03 Kanto Auto Works Ltd Drying furnace for coating and drying method for coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113696A (en) * 1984-06-28 1986-01-21 本州四国連絡橋公団 Radio wave absorbing sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113696A (en) * 1984-06-28 1986-01-21 本州四国連絡橋公団 Radio wave absorbing sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797530A (en) * 1985-12-11 1989-01-10 Kabushiki Kaisha Toshiba Ceramic circuit substrates and methods of manufacturing same
JP2009195840A (en) * 2008-02-22 2009-09-03 Kanto Auto Works Ltd Drying furnace for coating and drying method for coating

Similar Documents

Publication Publication Date Title
US5145741A (en) Converting ceramic materials to electrical conductors and semiconductors
KR100999907B1 (en) Method of plugging through-holes in silicon substrate
JPH0247893A (en) Method of forming conductive layer in substrate surface
JPS58207699A (en) Method of producing circuit board
JPS61156895A (en) Manufacture of wiring board
JP3136682B2 (en) Method for manufacturing multilayer wiring board
JPS61156897A (en) Manufacture of wiring board
JPS60253294A (en) Multilayer ceramic board
JP3265289B2 (en) Manufacturing method of aluminum nitride substrate
JPS6381997A (en) Method of forming conductor path by laser beam
JPS61182894A (en) Laser-scribe method on alumina substrate
JPS6345886A (en) Circuit formation
JPH0447999B2 (en)
JPS62264689A (en) Manufacture of metal-ceramics junction unit with circuit
JP3112460B2 (en) Manufacturing method of aluminum nitride substrate
JP3190908B2 (en) Aluminum nitride substrate
JPS566434A (en) Manufacture of semiconductor device
GB2144922A (en) Substrate for thick-film electrical circuits
JPH1117331A (en) Manufacture of flexible circuit board
JPS61296792A (en) Substrate and manufacture thereof
JP3208290B2 (en) Method of forming thin film member
JPH0541406A (en) Forming method of solder layer
JPH01140695A (en) Manufacture of electronic circuit component
JPS63115303A (en) Manufacture of electric resistance element
JPS6273798A (en) Multilayer ceramic circuit substrate