JPS61156711A - Faraday rotator - Google Patents

Faraday rotator

Info

Publication number
JPS61156711A
JPS61156711A JP27487384A JP27487384A JPS61156711A JP S61156711 A JPS61156711 A JP S61156711A JP 27487384 A JP27487384 A JP 27487384A JP 27487384 A JP27487384 A JP 27487384A JP S61156711 A JPS61156711 A JP S61156711A
Authority
JP
Japan
Prior art keywords
faraday
magnet
permanent magnet
thickness
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27487384A
Other languages
Japanese (ja)
Inventor
Tsutomu Aoyama
勉 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27487384A priority Critical patent/JPS61156711A/en
Publication of JPS61156711A publication Critical patent/JPS61156711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To massproduce by providing a permanent magnet in a ring at least on either Faraday material or a board. CONSTITUTION:After iron garnet Bi:YIG 11 which is exchanged with Y for Bi as Faraday material is liquid-aepitaxially formed by about 0.2 mm on a transparent gadolinium.gallium.garnet (GGG) plate 10 of 4 mm diameter and 0.3 thickness, permanent magnets 121 and 122 made mainly of needle magnetic powder of Sn-Co system are mixed with epoxy resin, and coated 0.2 mm thickness in a ring with leaving a circle of 1.2 mm diameter in a center. While powder is alignment-magnetized in a strong magnetic field, the resin is hardened. According to a need of magnetic field strength, a magnet 122 is omitted and only the magnetic 121 on the gernet film 11 is left, or only the magnet 122 is left. An element of this composition is high in relibility against a mechanical stress, mass production of permanent magnet is easily done, and is produced in a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光の偏波をファラデー効果により回転する機能
を有し、光アイソレータ、光サーキュレータなどの非相
反回路部品に用いられるファ・ラブ−回転子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a function of rotating the polarization of light by the Faraday effect, and is used for non-reciprocal circuit components such as optical isolators and optical circulators. Regarding the rotor.

〔従来技術及びその問題点〕[Prior art and its problems]

ファラデー回転子は、光の偏波面を回転させる機能を有
し、光アイソレータ、光サーキュレータ。
A Faraday rotator has the function of rotating the plane of polarization of light, and is used as an optical isolator and an optical circulator.

磁気センサーなどファラデー効果を利用した磁気光学効
果デバイスの基本エレメントである。
It is a basic element of magneto-optical effect devices such as magnetic sensors that utilize the Faraday effect.

第2図はファラデー回転子の基本構成を示す斜視図でア
リ、大きな7アラデ一回転係数Fを有する円柱状ファラ
デー材料1及びファラデー材料に磁界を印加する永久磁
石2からなる。中心軸3に対し電界方向が4で示される
光ビームが7アラデ一回転子1を通過すると、偏波方向
は θ=FtyVM8 だけ回転する。ここにtは通過長1Mは光の通過方向の
磁化I M3は飽和磁化である。
FIG. 2 is a perspective view showing the basic structure of a Faraday rotator, which is composed of a cylindrical Faraday material 1 having a large 7-Arad rotation coefficient F, and a permanent magnet 2 that applies a magnetic field to the Faraday material. When a light beam whose electric field direction is indicated by 4 with respect to the central axis 3 passes through the 7Alade rotator 1, the polarization direction is rotated by θ=FtyVM8. Here, t is the passage length 1M is the magnetization I in the direction of light passage, and M3 is the saturation magnetization.

従来、ファラデー材料としては1例えば波長1.3jj
m帯ではYIG(Y3Fe50,2)単結晶が+0.8
.Im帯ではTbをドープした常磁性ガラスが用いられ
ていたが、ファラデー回転係数が小さいので、光アイソ
レータ用として必要な45°の回転角を得るには。
Conventionally, Faraday materials have a wavelength of 1, for example, 1.3jj
In the m band, YIG (Y3Fe50,2) single crystal is +0.8
.. In the Im band, paramagnetic glass doped with Tb has been used, but since the Faraday rotation coefficient is small, it is difficult to obtain the 45° rotation angle required for optical isolators.

前者では2 mtx以下の、後者では数a以下の長さに
するのは難しく、小形化できなかった。しかしながら最
近+Bi’にドープしたファラデー回転係数が数千d 
e g/cm以上のファラデー材料たとえばGd2Bi
Fe5012 (0,711mおよび1.1/jm以上
)が開発されつつある。これを用いると、45°の回転
を得るのに数10〜数100μmの厚さで済み、ファラ
デー材料は小形化が可能となる。
In the former case, it was difficult to make the length less than 2 mtx, and in the latter case, it was difficult to make the length less than several a, and it was not possible to make it compact. However, recently the Faraday rotation coefficient of +Bi' doped is several thousand d.
e Faraday material of g/cm or more, such as Gd2Bi
Fe5012 (0,711 m and above 1.1/jm) is being developed. When this is used, a thickness of several tens to several hundreds of micrometers is sufficient to obtain a rotation of 45 degrees, and the Faraday material can be made smaller.

しかしながらこれに対応したファラデー回転子としての
形態については考慮されていない。即ち。
However, no consideration has been given to the form of a Faraday rotator corresponding to this. That is.

ファラデー材料が液相エピタキシャル法を始めとする生
産性にすぐれた方法により低コスト化および量産化が可
能になろうとしているのに対し、永久磁石とファラデー
材料は依然別々に組み込まれ。
While it is becoming possible to reduce costs and mass-produce Faraday materials using highly productive methods such as liquid phase epitaxial methods, permanent magnets and Faraday materials are still assembled separately.

必ずしもファラデー回転子としては生産性が良くなり得
ない。また、永久磁石の形状が従来通りでは磁石の寸法
により大きさが制限され小形化が難しい。ちなみに、永
久磁石としては厚さ数量、内径2朋、外径4〜6朋程度
のものが多く使われている。従って、ファラデー材料の
小形化および厚膜化によるメリットを生かすファラデー
回転子が要求される。
Productivity cannot necessarily be improved as a Faraday rotator. Furthermore, if the shape of the permanent magnet is the same as in the past, the size is limited by the dimensions of the magnet, making it difficult to downsize. By the way, many permanent magnets are used with a thickness of about 2 mm in inner diameter and 4 to 6 mm in outer diameter. Therefore, there is a need for a Faraday rotator that takes advantage of the smaller size and thicker Faraday material.

〔発明の目的〕[Purpose of the invention]

したがって本発明の目的は、最近開発されたファラデー
回転係数の大きいファラデー材料の利点を生かす、小形
でかつ生産性にすぐれたファラデー回転子を提供するこ
とにある。
Accordingly, an object of the present invention is to provide a Faraday rotator that is small and highly productive, taking advantage of the recently developed Faraday material with a large Faraday rotation coefficient.

〔発明の構成〕[Structure of the invention]

本発明のファラデー回転子は2本発明の実施例を示した
第1図の参照数字を援用すると、光学的に透明な基板(
10)と、基板上にエピタキシャル成長したファラデー
材料(11)と、このファラデー材料に磁界を印加する
永久磁石から々る。この永久磁石は塗布又は蒸着により
ファラデー材料上に被着するか(12+)又は反対側の
基板上に被着するか(122)、単一層の磁石で発生す
る磁界が不足の場合は、ファラデー材料と基板をはさん
で同じ位置に双方に被着として(121および122)
形成される。
The Faraday rotator of the present invention includes two optically transparent substrates (using the reference numerals in FIG.
10), a Faraday material (11) epitaxially grown on a substrate, and a permanent magnet that applies a magnetic field to this Faraday material. This permanent magnet can be deposited on the Faraday material by coating or vapor deposition (12+) or on the opposite substrate (122), or if the magnetic field generated by a single layer magnet is insufficient, the Faraday material and the substrate at the same position (121 and 122)
It is formed.

〔実施例〕〔Example〕

次に本発明につき詳細に説明する。 Next, the present invention will be explained in detail.

第1図は本発明の一実施例であるファラデー回転子の正
面(、)及びA−Aで切断した個所(b)を示す図であ
る。第1図において、基板10は直径4朋厚さ0,3朋
の光学的に透明なガドリニウム・ガリウム・ガーネット
(以下GGGと略称する)板である。ファラデー材料で
あるガーネット膜11は。
FIG. 1 is a front view (,) and a section (b) taken along line A-A of a Faraday rotator according to an embodiment of the present invention. In FIG. 1, a substrate 10 is an optically transparent gadolinium gallium garnet (hereinafter abbreviated as GGG) plate having a diameter of 4 mm and a thickness of 0.3 mm. The garnet film 11 is a Faraday material.

BiをYと交換ドープした鉄ガーネッ) Bi : Y
IGであって、 GGG板上に0.2順の厚さに液相エ
ピタキシャル成長させたものである。永久磁石12゜お
よび122はSn −Co系の針状磁性粉体を主体とす
るもので、この粉体をエポキシ樹脂中に混合し、上記の
Bi : YIG上及びGGG基板上に中央に内径1.
21111の円状部を残してリング状に0.2 mtn
の厚さに塗付し1強磁界中で粉体を整列磁化しつつ工I
キシ樹脂を固化することにより形成したものである。1
3は光ビームを示している。
Iron garnet doped by exchanging Bi with Y) Bi: Y
The IG was grown by liquid phase epitaxial growth on a GGG plate to a thickness of 0.2. The permanent magnets 12° and 122 are mainly made of Sn-Co-based acicular magnetic powder, and this powder is mixed into epoxy resin and placed on the Bi: YIG and GGG substrates with an inner diameter of 1 at the center. ..
0.2 mtn in a ring shape leaving the circular part of 21111
The powder was coated to a thickness of
It is formed by solidifying xylene resin. 1
3 indicates a light beam.

以上のようにして作られたファラデー回転子は。The Faraday rotator made as described above is.

全体の寸法としては直径4+lIK、厚さ0.9 ax
の円筒状体であジ、磁界強度は3500eが得られ、波
長1、3μmにおいてファラデー回転角として45°が
得られた。
Overall dimensions: diameter 4+lIK, thickness 0.9 ax
With the cylindrical body, a magnetic field strength of 3500e was obtained, and a Faraday rotation angle of 45° was obtained at wavelengths of 1 and 3 μm.

上記において、磁界強度に対する要求がやや弱いときは
、 GGG基板10の上の永久磁占12□を形成せずガ
ーネ7)膜ll上の永久磁石121だけですますことが
出来る。更に要求度が弱いときは、永久磁石12!を形
成せず122だけですますことができる。なお永久磁石
121 +12zk形成するのに、 GGG基板10及
びファラデー材料11の中央の有効部分に対応するマス
クをつけ。
In the above, when the requirement for magnetic field strength is a little weak, it is possible to omit the permanent magnet 12□ on the GGG substrate 10 and use only the permanent magnet 121 on the Gurnet film 11. If the requirement is even weaker, use permanent magnet 12! It is possible to eliminate the need to form only 122. In addition, to form the permanent magnet 121 +12zk, a mask corresponding to the central effective part of the GGG substrate 10 and the Faraday material 11 is attached.

強磁界中で磁性材料を蒸着するようにしてもよい。The magnetic material may be deposited in a strong magnetic field.

〔発明の効果〕〔Effect of the invention〕

以上詳細に述べたように1本発明のファラデー回転子は
板状で小形かつ実装が容易でアリ、構成素子が一体化さ
れで振動や衝撃などの機構的なストレスに対して高信頼
である。さらに永久磁石が塗布又は蒸着により同時に大
量にできるので生産性が高く、低コスト化が可能である
。そして本発明のファラデー回転子を光アイソレータや
光サーキュレータなどの磁気光学デバイスに用いるとき
わめて有効である。
As described above in detail, the Faraday rotator of the present invention is plate-shaped, small, and easy to mount, and the constituent elements are integrated, so it is highly reliable against mechanical stresses such as vibrations and shocks. Furthermore, since permanent magnets can be produced in large quantities simultaneously by coating or vapor deposition, productivity is high and costs can be reduced. The Faraday rotator of the present invention is extremely effective when used in magneto-optical devices such as optical isolators and optical circulators.

した斜視図、第2図は従来のファラデ〜回転子の構成を
示した図である。
FIG. 2 is a perspective view showing the configuration of a conventional Faraday rotor.

記号の説明:10はGGG基板、11はガーネット膜(
ファラデー材料)+121と12゜は永久磁石をそれぞ
れあられしている。
Explanation of symbols: 10 is GGG substrate, 11 is garnet film (
Faraday material) +121 and 12° are permanent magnets, respectively.

絶1図 (α)(b) 光2図Absolutely 1 picture (α) (b) light 2 diagram

Claims (1)

【特許請求の範囲】[Claims] 1、光学的に透明な基板と、該基板上にエピタキシャル
成長したファラデー材料と、このファラデー材料を磁化
する永久磁石とからなるファラデー回転子であって、前
記永久磁石を前記ファラデー材料および基板の少なくと
も一方の上にリング状に被着して形成したことを特徴と
するファラデー回転子。
1. A Faraday rotator comprising an optically transparent substrate, a Faraday material epitaxially grown on the substrate, and a permanent magnet that magnetizes the Faraday material, wherein the permanent magnet is connected to at least one of the Faraday material and the substrate. A Faraday rotator characterized in that it is formed in a ring shape on top of the Faraday rotator.
JP27487384A 1984-12-28 1984-12-28 Faraday rotator Pending JPS61156711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27487384A JPS61156711A (en) 1984-12-28 1984-12-28 Faraday rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27487384A JPS61156711A (en) 1984-12-28 1984-12-28 Faraday rotator

Publications (1)

Publication Number Publication Date
JPS61156711A true JPS61156711A (en) 1986-07-16

Family

ID=17547746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27487384A Pending JPS61156711A (en) 1984-12-28 1984-12-28 Faraday rotator

Country Status (1)

Country Link
JP (1) JPS61156711A (en)

Similar Documents

Publication Publication Date Title
JP2697354B2 (en) Manufacturing method of optical isolator
CA2263780C (en) Faraday rotator
JP3493119B2 (en) Faraday rotation angle variable device
JPS61156711A (en) Faraday rotator
JP2001075063A (en) Faraday rotator
JP3704429B2 (en) Faraday rotation angle variable device
JP2565945B2 (en) Optical isolator
JP4070479B2 (en) Magnetization method
JP2763015B2 (en) Optical isolator and method of manufacturing the same
JPS63267912A (en) Temperature self-compensation type optical isolator
JP2757045B2 (en) Manufacturing method of optical isolator
JP3581030B2 (en) Faraday rotation angle variable device
JPH07104224A (en) Nonreciprocity optical device
JPH0642026B2 (en) Magneto-optical element material
JPS5749917A (en) Epitaxial-film faraday rotator
JP2000298247A (en) Optical isolator and irreversible phase reciprocal component
JPH0492403A (en) Manufacture of magnetic optical device
JPS59147320A (en) Optical non-reciprocal element
JPH0277716A (en) Optical isolator
JP2512941B2 (en) Optical isolator
JP2000105355A (en) Optical isolator and manufacture thereof
JPS63110417A (en) Magnetooptic element
JPH103059A (en) Polarization-independent optical isolator
JPS6319618A (en) Optical nonreciprocal element
JPS61205698A (en) Magnetooptical material