JPS61156205A - Photoelectric composite circuit - Google Patents

Photoelectric composite circuit

Info

Publication number
JPS61156205A
JPS61156205A JP27748184A JP27748184A JPS61156205A JP S61156205 A JPS61156205 A JP S61156205A JP 27748184 A JP27748184 A JP 27748184A JP 27748184 A JP27748184 A JP 27748184A JP S61156205 A JPS61156205 A JP S61156205A
Authority
JP
Japan
Prior art keywords
light
optical
elements
substrate
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27748184A
Other languages
Japanese (ja)
Inventor
Yoshinori Oota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27748184A priority Critical patent/JPS61156205A/en
Publication of JPS61156205A publication Critical patent/JPS61156205A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To suppress light returning to a light emitting source, by providing plural various element on a substrate and means which give light transmitting characteristics unreversible in the transmitting direction between the elements on the substrate and to the light emitting surfaces of elements having laser light emitting functions among the elements of other substrates. CONSTITUTION:Parallel light transmitting signals are converted into parallel electrical signals by means of a photodetector element array 3 and the parallel electric signals are subjected to processes, such as intersignal operation, switching of signal route, etc., at a electronic circuit chip 4. The processed electric signals are inputted in a semiconductor laser array 5 and, after they are converted into optical signals again, sent to an output optical fiber 8. In order to stably operate the individual oscillation of the semiconductor laser array 5 without noises, it is necessary to suppress reflecting lights produced at the connecting point of an optical waveguide 9 which leads the light emitted by the laser array 5 to the optical fiber 8 and the optical fiber 8 and the returning light by reflection from the other end of the optical fiber 8. Since an optical isolator 6 provided at the light outgoing end face of the laser array 5 rotates the polarized light of the above-mentioned reflected returning light by 90 deg., nonoise is induced to the laser array 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多数の光素子、電子素子および光電気複合素子
を一枚の基板上に配した光電気複合回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an opto-electrical composite circuit in which a large number of optical elements, electronic elements and opto-electrical composite elements are arranged on a single substrate.

(従来技術とその問題点) 光信号伝送は、光通信技術の発展によって明らかKなっ
たように、極めて広帯域・高速の信号伝送が可能であシ
、光導波線路の細芯であることによシ、高密度に配置線
しても線路間の漏話が極めて小さい、光の直進性がある
ため導波路の交差が可能であシ、高密度の配線が期待で
きるなどの幾多の特長を有している。この特長を電気回
路における配線に適用し、多チャンネルの光受光素子、
電子回路、光発光素子等を複合集積化した光電気複合素
子や、この光電気複合素子から発する信号光や、これに
入射する信号光を光のまま記憶する光メモリまたは光路
を制御する光スィッチや光ゲート等の光素子や、これら
光素子及び前記光電気複合素子を電気的に制御する電子
素子等を一枚の基板上に配置し、これら素子間を、前記
の特長を有する光配線を介在させて接続することにより
高速高密度の処理・演算性能を有する光・電気複合回路
を形成することができる。
(Prior art and its problems) As has become clear with the development of optical communication technology, optical signal transmission is capable of extremely wide-band and high-speed signal transmission, and the thin core of the optical waveguide makes optical signal transmission possible. It has many features such as extremely low crosstalk between lines even when wires are arranged in a high density, waveguides can cross because the light travels in a straight line, and high-density wiring can be expected. ing. By applying this feature to wiring in electrical circuits, we can create multi-channel photodetectors,
An opto-electrical composite device that integrates electronic circuits, light-emitting devices, etc., an optical memory that stores the signal light emitted from the opto-electrical composite device, and the signal light that enters the device as it is, or an optical switch that controls the optical path. Optical elements such as optical gates, electronic elements for electrically controlling these optical elements and the opto-electrical composite element, etc. are arranged on a single substrate, and optical wiring having the above-mentioned characteristics is interposed between these elements. By connecting them together, it is possible to form an optical/electrical composite circuit with high-speed, high-density processing and calculation performance.

また別なる概念としては、基板の片面に信号光を受光す
る手段を有し、該基板の反対面には光を発光する手段を
有し、これらが基板を介して光帰還回路を形成している
開ゆる面構成双安定デバイスは複数光入力によって光論
理演算機能をもたせることができるため、この面構成双
安定デバイスを一枚の基板面内に2次元アレー状に配列
して光論理演算ボードを形成し、該論理演算ボードを複
数枚面を重ねるように縦属に接続し、ボード間に任意の
一枚のボードの任意の双安定デバイスエレメントの出力
光が他方のボードの任意の双安定デバイスエレメントの
入力光となるように接続する機能をもった光接続ボード
を挿入して、画像情報の如き2次元光信号を、電気的に
現在性なわれている1次元釜列または時間的直列信号に
変換し逐次演算・処理することなく、高速、並列に光の
まま処理する2次元光演算処理が考えられている。
Another concept is to have means for receiving signal light on one side of the substrate, and means for emitting light on the opposite side of the substrate, and these form an optical feedback circuit via the substrate. The bistable device with an open planar configuration can have an optical logic operation function by using multiple optical inputs, so these bistable devices with an open planar structure can be arranged in a two-dimensional array on a single board to create an optical logic operation board. A plurality of logic operation boards are connected vertically so that their surfaces overlap, and the output light of any bistable device element on any one board is transmitted between the boards to any bistable device element on the other board. By inserting an optical connection board that has the function of connecting to the input light of a device element, two-dimensional optical signals such as image information can be transmitted in an electrically current one-dimensional column array or temporal series. Two-dimensional optical calculation processing is being considered in which light is processed in parallel at high speed without converting it into a signal and performing sequential calculations and processing.

このような光電気複合回路の構成ニレメンである1、光
メモリ素子、光電気複合素子等が含んでいる発光エレメ
ントは、動作速度の速さから発光ダイオードではなく、
半導体レーザが用いられる。
The light-emitting elements included in optical memory devices, opto-electrical composite devices, etc., are not light-emitting diodes due to their high operating speed.
A semiconductor laser is used.

よく知られているように、半導体レーザは外部への発振
光が反射面からその僅かの反射光が再び半導体レーザに
入射すると、この戻り光によって誘起される雑音が発振
光に生ずる。この雑音は高速の信号の伝送を行う上で妨
げとなり、上記光電気複合回路を構成する上でも障害と
なる。光通信用の端局装置における光送信モジュールで
は、半導体レーザの出射光を注入する光ファイバの光入
射端や、コネクタ等との接続端から戻る光を遮断するた
めに、磁気光学材料の持つ光測光回転の非相反性を使っ
た光アイソレータが用いられている。
As is well known, in a semiconductor laser, when a small amount of reflected light from a reflecting surface of a semiconductor laser oscillates to the outside enters the semiconductor laser again, noise induced by the returned light occurs in the oscillated light. This noise hinders high-speed signal transmission and also becomes an obstacle in constructing the opto-electrical composite circuit. In optical transmitting modules in terminal equipment for optical communications, the light possessed by magneto-optic materials is used to block light returning from the light input end of the optical fiber into which the emitted light from the semiconductor laser is injected and the connection end with the connector etc. An optical isolator that uses non-reciprocity of photometric rotation is used.

すなわち、イツトリウム鉄ガーネツト結晶に光透過方向
に1000ガウス程度の強磁場を印加すると、ファラデ
ー効果によって前記結晶を透過する偏光は回転を生ずる
。結晶の長さを偏光が450回転するような長さに設定
しておくと、反射して戻った光は往復で900の偏光回
転を受け、半導体レーザ出射光とは偏光が直交する。こ
のため半導体レーザに再入射しても発生させる雑音の強
度は小さい。
That is, when a strong magnetic field of about 1000 Gauss is applied to a yttrium iron garnet crystal in the direction of light transmission, the polarized light transmitted through the crystal is rotated due to the Faraday effect. If the length of the crystal is set so that the polarized light undergoes 450 rotations, the reflected light undergoes 900 polarization rotations in a round trip, and the polarization is perpendicular to that of the light emitted from the semiconductor laser. Therefore, the intensity of noise generated even if the light enters the semiconductor laser again is small.

上記の光アイソレータはこのように半導体レーザの戻り
光を抑圧する素子として極めて有効であるが、10”ガ
ウス程度という強大な磁場を発生する永久磁石を必要と
し、この形状は直径8IrI11長さ3〜5ffと大き
い。また、結晶の光透適長も波長1.3μm光に対して
2.5jff近くと長い。このためレーザ光をレンズを
用いて平行光束化して、結晶を透過させ再びレンズを用
いて集束し、光導波路である光ファイバに入射させると
いう構成が必要となる。このような構成が大きく複雑で
あるため、前述の光プリント板上に装備するのは困難で
あシ、とシわけアレー化された発光源には不向きである
The optical isolator described above is extremely effective as an element for suppressing the return light of a semiconductor laser, but it requires a permanent magnet that generates a strong magnetic field of about 10" Gauss, and the shape is 8IrI11 in diameter and 3 to 30cm in length. It is large at 5ff.Also, the optimum light transmission length of the crystal is long at nearly 2.5jff for light with a wavelength of 1.3μm.For this reason, the laser beam is collimated using a lens, transmitted through the crystal, and then used again by the lens. It is necessary to have a configuration in which the light is focused by the optical fiber, which is an optical waveguide, and then input into an optical fiber, which is an optical waveguide.Since such a configuration is large and complicated, it is difficult to install it on the optical printed circuit board mentioned above. It is not suitable for arrayed light sources.

このように、発光源を基板上に有し、その発光源への戻
シ光を抑圧する手段を具備した光電気複合回路は発明さ
れるに至っていない。
As described above, an opto-electrical composite circuit having a light emitting source on a substrate and having means for suppressing light returning to the light emitting source has not yet been invented.

−じ− (発明の目的) 本発明の目的は、上記の構成をとることなく、稠密に配
列せられた発光源に簡便に付加された該発光源への戻シ
光を抑圧する手段を有した光電気複合回路を提供するこ
とにある。
- (Objective of the Invention) An object of the present invention is to have a means for suppressing the return light to the light emitting sources arranged in a dense manner, which is simply added to the light emitting sources arranged densely, without using the above structure. The object of the present invention is to provide an opto-electrical composite circuit.

(発明の構成) 一枚の基板上に複数の光素子、電気素子、光電気複合素
子を配し、前記素子間および前記基板と同様な構成にな
る別なる基板間を電気的並びに光学的に接続し、しかも
前記基板上に配した素子のうちレーザ発光の機能をもつ
素子の発光面に、透過方向に対して非可逆な光透過特性
を与える手段を具備せしめることによシ高性能安定な光
電気複合回路が得られる。
(Structure of the Invention) A plurality of optical elements, electric elements, and opto-electrical composite elements are arranged on one substrate, and connections between the elements and another substrate having the same configuration as the substrate are electrically and optically connected. High performance and stability can be achieved by providing a means for imparting irreversible light transmission characteristics in the transmission direction to the light emitting surface of the element having a laser emission function among the elements connected and disposed on the substrate. A photoelectric composite circuit is obtained.

(発明の作用・原理) 第3図は本発明の原理作用を説明する図である。(Function/principle of invention) FIG. 3 is a diagram explaining the principle operation of the present invention.

1は通常よく用いられるへき開によってレーザ共振器を
形成するストライプ形の半導体レーザのチップであシ、
2は活性領域、該半導体レーザチップの光放射面には、
S10.のような光学的なパッ6一 ファ層3を介して、希土類鉄ガーネット膜4が形成され
ている。光学的なバッファ層3あ厚さは、ガーネット膜
4が半導体レーザチップのへき開面に設けられたとき、
レーザ共振器を構成するために、必要な反射率が得られ
るように、例えばb波長程度の厚さを設けである。半導
体レーザチップで発振された大部分が活性層と平行に振
動する電界成分の光はバッファ層3を通じて、希土類鉄
ガーネット膜4を通過する。このとき偏光方向はガーネ
ット膜4のもつファラデー効果によって450の回転を
受ける。半導体レーザの外部に存在する反射面からの反
射光は再びガーネット膜4を透過すると更に45’の偏
光回転を受け、その偏光方向は半導体レーザの発振光と
直交しているため、活性領域2に入射しても発振光の雑
音を誘起することはない。ガーネット膜に高濃度にビス
マス原子を有する鉄ガーネツト膜を使用すると、この厚
さは0.8μmのレーザに対しては15μm程度の厚さ
でよく、スパッタ法や分子線エピタキシ法などの物理的
成膜法(PVD法)によって設けることができる。更に
高濃度ビスマス鉄ガーネツト膜では膜面に垂直力方向を
磁化容易軸とすることができ、成膜した後200ガウス
程度の磁場5をひとたび印加すれは単磁区化し、この磁
場を取去っても磁区構造は保持されるため、前に述べた
磁場印加用の大きな磁石を必要としない。ガーネッ)9
の組成R,FasO* (Rは希土類原子)のうち酸素
原子を硫黄原子で置き換えた、たとえばR@F@%S”
1404−6の組成では、更にファラデー回転能が増大
するため偏光を450回転させるに要する膜の厚さは薄
くなる。このため、ガーネット膜4の面のすぐ近傍に光
導波路を設けると、結合レンズ等を用いることなく効率
良く半導体レーザの発振光が光導波路中に励起される。
1 is a striped semiconductor laser chip that forms a laser resonator by cleavage, which is commonly used;
2 is an active region, and the light emitting surface of the semiconductor laser chip includes:
S10. A rare earth iron garnet film 4 is formed with an optical buffer layer 3 interposed therebetween. The thickness of the optical buffer layer 3 is as follows when the garnet film 4 is provided on the cleavage plane of the semiconductor laser chip.
In order to construct a laser resonator, a thickness of, for example, about wavelength b is provided so as to obtain the necessary reflectance. Light oscillated by the semiconductor laser chip and having an electric field component mostly vibrating parallel to the active layer passes through the buffer layer 3 and the rare earth iron garnet film 4 . At this time, the polarization direction is rotated by 450 degrees due to the Faraday effect of the garnet film 4. When the reflected light from the reflective surface existing outside the semiconductor laser passes through the garnet film 4 again, it undergoes a further 45' polarization rotation, and since the direction of polarization is perpendicular to the oscillation light of the semiconductor laser, the light is reflected into the active region 2. Even if it is incident, it does not induce noise in the oscillated light. If an iron garnet film with a high concentration of bismuth atoms is used as the garnet film, the thickness may be about 15 μm for a 0.8 μm laser, and physical processes such as sputtering and molecular beam epitaxy can be used. It can be provided by a film method (PVD method). Furthermore, in a highly concentrated bismuth iron garnet film, the direction of the force perpendicular to the film surface can be set as the axis of easy magnetization, and once a magnetic field 5 of about 200 Gauss is applied after the film is formed, it becomes a single magnetic domain, and even if this magnetic field is removed, Since the magnetic domain structure is maintained, the large magnet for applying the magnetic field described above is not required. Garnet) 9
The composition R, FasO* (R is a rare earth atom), where the oxygen atom is replaced with a sulfur atom, for example, R@F@%S”
With the composition of 1404-6, the Faraday rotation ability further increases, so the film thickness required to rotate polarized light by 450 becomes thinner. Therefore, if an optical waveguide is provided in the immediate vicinity of the surface of the garnet film 4, the oscillation light of the semiconductor laser can be efficiently excited into the optical waveguide without using a coupling lens or the like.

このように磁石、レンズ等の部品を必要としないためア
レー発光源とアレー導波路との結合が容易に実現できる
In this way, since components such as magnets and lenses are not required, coupling between the array light source and the array waveguide can be easily realized.

(実施例1) 第1図は前述の本発明の原理作用を使用して光プリント
板を構成した一例である。1は電子回路チップや発受光
素子、光スィッチ等を実装するためのシリコン基板、2
は並列光信号が伝送されてくる入力光ファイバ3はシリ
コン基板1上に設け−られた光導波路9を通して入力並
列光信号を受光する受光素子アレー、4は受光素子アレ
ー3によって光電変換された電気信号を演算処理する電
子回路チップ、5は電子回路チップ4の演算出力信号を
電光変換する半導体レーザアレー、6は半導体レーザ5
の端面に設けられた光アイソレータ、8は半導体レーザ
アレー5の出力する並列出力光信号を出力伝送する出力
光ファイバである。また10.11は高速時間多重光信
号を伝送する入力光ファイバ、及び出力光ファイバであ
シ、12は入力光ファイバを伝送されてきた時間多重光
信号を4つの光メモリアレーにタイムスロット毎に切換
えるための光スィッチ、13は逆に4つの光メモリアレ
ーの光出力信号を1本の時間多重信号に多重化して出力
光ファイバに送シ出す光スィッチであり、15は光スィ
ッチを制御する電子回路チップであり、16は光メモリ
アレーの発光端面に設けた光アイソレータである。
(Example 1) FIG. 1 is an example of an optical printed board constructed using the principle operation of the present invention described above. 1 is a silicon substrate for mounting electronic circuit chips, light emitting/receiving elements, optical switches, etc., 2
An input optical fiber 3 to which parallel optical signals are transmitted is a photodetector array that receives the input parallel optical signals through an optical waveguide 9 provided on a silicon substrate 1, and 4 is an electric signal that is photoelectrically converted by the photodetector array 3. An electronic circuit chip that performs arithmetic processing on signals; 5 is a semiconductor laser array that converts the arithmetic output signal of the electronic circuit chip 4 into light; 6 is a semiconductor laser 5;
An optical isolator 8 provided on the end face of the semiconductor laser array 5 is an output optical fiber for outputting and transmitting parallel output optical signals output from the semiconductor laser array 5. In addition, 10.11 is an input optical fiber and an output optical fiber for transmitting high-speed time-multiplexed optical signals, and 12 is for switching the time-multiplexed optical signals transmitted through the input optical fibers to four optical memory arrays every time slot. 13 is an optical switch that multiplexes the optical output signals of the four optical memory arrays into one time-multiplexed signal and sends it to the output optical fiber, and 15 is an electronic circuit chip that controls the optical switch. 16 is an optical isolator provided on the light emitting end surface of the optical memory array.

e− 並列光伝送信号は受光素子アレー3で並列電気信号に変
換され、この並列電気信号は電子回路チップ4によりて
信号間の演算あるいは信号径路の切換等の処理を施こさ
れ、半導体レーザアレー5に印加され再び光信号に変換
されて出力光ファイバ8へ送出される。半導体レーザア
レー5の個々の発振動作が一音なく安定に動作するため
には、半導体レーザアレー5の出射光を出力光ファイバ
8に導びく光導波路9と出力光ファイバ8との接続点で
生ずる反射光や出力光ファイバ8の他端からの反射戻電
光を抑圧することが必要である。半導体レーザアレー5
の光出射端面に設けられた光アイソレータ6は、前述の
原理作用に述ぺたとおシ、上記反射戻り光の偏光を90
0回転させるため、半導体レーザアレー5に雑音を誘起
することはない。
e- The parallel optical transmission signal is converted into a parallel electrical signal by the photodetector array 3, and this parallel electrical signal is processed by the electronic circuit chip 4, such as calculations between the signals or signal path switching, and then processed by the semiconductor laser array 5. is applied to the optical fiber 8, is converted into an optical signal again, and is sent to the output optical fiber 8. In order for each oscillation operation of the semiconductor laser array 5 to operate smoothly and stably, the reflected light generated at the connection point between the optical waveguide 9 that guides the emitted light of the semiconductor laser array 5 to the output optical fiber 8 and the output optical fiber 8 is required. It is also necessary to suppress reflected return light from the other end of the output optical fiber 8. Semiconductor laser array 5
As described above, the optical isolator 6 provided on the light emitting end face of
Since the rotation is zero, no noise is induced in the semiconductor laser array 5.

また、第1図シリコン基板1上の下部に形成されている
光電気複合回路は次のような動作を行う。
Further, the opto-electrical composite circuit formed in the lower part of the silicon substrate 1 in FIG. 1 operates as follows.

高速時間多重された光信号は100入力光フアイバによ
って光電気複合回路に入射される。入力さ−【O− れた光信号は光スィッチ12を制御する電子回路15の
制御に基づき光スィッチ12によって信号の時間スロッ
ト毎に経路を切換えられ、光メモリアレー14の異なる
光メモリに書き込まれる。光メモリアレー14の出射光
は、光スィッチ13を制御する電子回路16の制御に基
づいて動作する光スィッチ13によって信号の時間配列
順序を組立角され、再び時間多重光信号として出力ファ
イバ11へ送出される。この光回路全体は光時間スイッ
チの働きをなしている。この回路系においても発光素子
である光メモリアレー14の発光面には、前述の原理動
作で述べたような光アイソレータ17が装備しである。
The high speed time multiplexed optical signals are coupled into the opto-electrical composite circuit by 100 input optical fibers. The input optical signal is route-switched for each signal time slot by the optical switch 12 under the control of the electronic circuit 15 that controls the optical switch 12, and is written into different optical memories of the optical memory array 14. The light emitted from the optical memory array 14 is reassembled into a time-sequenced signal order by the optical switch 13, which operates under the control of the electronic circuit 16 that controls the optical switch 13, and is sent out again to the output fiber 11 as a time-multiplexed optical signal. Ru. This entire optical circuit functions as an optical time switch. In this circuit system as well, the light-emitting surface of the optical memory array 14, which is a light-emitting element, is equipped with the optical isolator 17 as described in the above-mentioned operation principle.

これによって光メモリアレー14と光導波路との接続部
、光導波路と光スィッチ13との接合部及び光フアイバ
入射面等から反射して戻る光の光メモリへの再入射を防
止し、光メモリアレー14の雑音の無い安定した動作が
確保される。
This prevents the light reflected from the connection part between the optical memory array 14 and the optical waveguide, the joint part between the optical waveguide and the optical switch 13, the optical fiber entrance surface, etc., from entering the optical memory again, thereby reducing noise in the optical memory array 14. Stable operation without any problems is ensured.

このような光電気複合回路は次のように製作することが
できる。良好な研磨を施したシリコン基板上に1石英や
光透過性樹脂金属薄膜等を用いて必要な光導波路や電気
的線路を予め形成し、受光素子アレー、電子回路チップ
、半導体レーザアレー、光スィッチ等は、ハンダ融着等
の手法を用いてシリコン基板上に設置される。然る後に
各チップ間の必要な電気的接続をワイヤボンディング等
を用いて行う。半導体レーザアレーや光メモリアレー等
の発光機能を有するチップの発光面には、前述の原理作
用の欄で述べたようなPVD法(フィジカル・ペイパー
・ディポジション法)によってファラデー回転性能の優
れたガーネット膜を、これらのチップをシリコン基板上
に融着する前に形成しておく。光プリント板全体の組立
が終ったところで、発光機能を有するチップに強力な永
久磁石を近づけるか、または電磁コイル中に該光プリン
ト板を挿入して、光アイソレータの自発磁化の方向を揃
える。勿論、永久磁石を発光デバイスのチップの近傍に
固定しておいたままでもよい。
Such a photoelectric composite circuit can be manufactured as follows. Necessary optical waveguides and electrical lines are formed in advance on a well-polished silicon substrate using quartz, a light-transparent resin-metal thin film, etc., to form photodetector arrays, electronic circuit chips, semiconductor laser arrays, optical switches, etc. is installed on a silicon substrate using a technique such as solder fusion. Thereafter, necessary electrical connections between each chip are made using wire bonding or the like. Garnet films with excellent Faraday rotation performance are applied to the light-emitting surfaces of chips with light-emitting functions, such as semiconductor laser arrays and optical memory arrays, using the PVD method (physical paper deposition method) as described in the section on principle of operation. , these chips are formed before being fused onto a silicon substrate. When the entire optical printed board has been assembled, a strong permanent magnet is brought close to the chip having a light emitting function, or the optical printed board is inserted into an electromagnetic coil to align the direction of the spontaneous magnetization of the optical isolator. Of course, the permanent magnet may remain fixed near the chip of the light emitting device.

(実施例2) 第2図は本発明の別なる実施例の構成図であシ、tot
、102は電子回路チップ103や面発光レーザ104
.受光素子105が融着等によって実装され、回路チッ
プ間及び電子回路チップと面発光レーザや受光素子との
それぞれの間に電気配線を施こしたプリント板の基板を
なすシリコン基板である。シリコン基板101に実装さ
れた電子回路によって演算処理された信号は、プリント
板間の電気的接続106のみならず面発光レーザアレー
104に供給され光波を介して、別なるプリント板であ
るシリコン基板102上に設けられた受光素子105に
該シリコン基板を通して伝送される。
(Embodiment 2) Figure 2 is a configuration diagram of another embodiment of the present invention.
, 102 is an electronic circuit chip 103 and a surface emitting laser 104
.. The light receiving element 105 is mounted by fusion bonding or the like, and is a silicon substrate forming a printed board substrate on which electrical wiring is provided between the circuit chips and between the electronic circuit chip and the surface emitting laser and the light receiving element. The signals processed by the electronic circuit mounted on the silicon substrate 101 are supplied not only to the electrical connection 106 between the printed boards but also to the surface emitting laser array 104, and then transmitted via light waves to the silicon substrate 102, which is another printed board. The light is transmitted through the silicon substrate to a light receiving element 105 provided in the silicon substrate.

このように光による面間の接続の方法をとることによね
、基板の端から端まで電気信号が伝搬し、電気結線10
6を介して別なる基板に伝わり、該基板上の更に端まで
信号が伝送されるような信号遅延を経ることなく、高速
に基板間の信号の伝送が実現される。
By using this method of connection between surfaces using light, electrical signals are propagated from one end of the board to the other, and electrical connections 10
6 to another board, and the signal is transmitted between the boards at high speed without undergoing a signal delay such that the signal is transmitted further to the end of the board.

ここにおいても、面発光レーザ104へは放射した光が
シリコン基板1020表面から9反射し、再び戻シ入射
し、前述の発振の不安定、レーザ発振雑音の増大を引き
起す。
In this case as well, the emitted light to the surface emitting laser 104 is reflected from the surface of the silicon substrate 1020 and enters back again, causing the aforementioned instability of oscillation and increase in laser oscillation noise.

このため本実施例ではの面発光レーザアレーの個々のレ
ーザにたいしては、第4図に示すように面発光レーザチ
ップ2010発光面にバッファ層202を介してガーネ
ット膜203が設けである。
For this reason, in this embodiment, for each laser of the surface emitting laser array, a garnet film 203 is provided on the light emitting surface of the surface emitting laser chip 2010 with a buffer layer 202 interposed therebetween, as shown in FIG.

面発光レーザの発振光は直線偏光であることが経験的に
知られている。このため、第3図に示した通常のへき開
によって共振器を構成したストライプ型の半導体レーザ
と同様に、本構成によって戻〕光によシ誘起される雑音
の発生を抑圧することができる。
It is empirically known that the oscillation light of a surface emitting laser is linearly polarized light. Therefore, similar to the striped semiconductor laser in which the resonator is formed by ordinary cleavage shown in FIG. 3, this structure can suppress the generation of noise induced by the returning light.

第2図においては、面発光レーザ104の光出射面は直
接空気に接している構成を示したが、基板を透過させて
出射させてもよい、即ち第2図において基板102側に
面発光レーザアレーを配し、面発光レーザの光放射面は
シリコン基板に接し、これを透過して光全放射させる配
置をとってもより・ 以上2つの実施例の説明では光、電気、光電気複合各章
子は、電気回路のパタンを形成してないシリコン基板上
にハンダ融着して設ける場合を述べた。近年二層構造の
LSIを実現するための新らしい積層プロセス技術が開
発されている。すなわち一層構造のチップの接続点のみ
金属を開田させ、他はポリイミド等の誘電体で覆い平坦
化したバタン形成面を重ね合せ、熱圧着をし、接続点の
金属による垂直配線を介して、2層の回路を実現するも
のである。
In FIG. 2, the light emitting surface of the surface emitting laser 104 is shown to be in direct contact with the air, but the surface emitting laser 104 may be emitted through the substrate. In other words, in FIG. The light emitting surface of the surface emitting laser is in contact with the silicon substrate, and the light is transmitted through this to emit all of the light. A case has been described in which the electrical circuit is provided by solder welding on a silicon substrate on which no pattern of an electrical circuit is formed. In recent years, new stacking process techniques have been developed to realize two-layer LSIs. In other words, metal is opened only at the connection points of the single-layer chip, the rest is covered with a dielectric material such as polyimide, and the flattened batten forming surfaces are stacked and thermocompressed, and the two are connected via vertical metal wiring at the connection points. It realizes a layered circuit.

この技術を用いれば、回路パタンを形成したミリコン基
板に各素子を取付けたシ、上記の方法で複合的に2層構
造に形成したチップをシリコン基板に取付けることがで
き、実装密度の増大、配線長の減少による高速化を計る
ことができる。
Using this technology, it is possible to attach each element to a microcontroller board on which a circuit pattern is formed, and then attach a chip formed in a composite two-layer structure using the above method to a silicon substrate, increasing the packaging density and wiring. Speed-up can be achieved by reducing the length.

(発明の効果) 以上のように本発明によれば、多数の光素子。(Effect of the invention) As described above, according to the present invention, a large number of optical elements.

電気素子および光電気複合素子を一枚の基板上に実装し
、しかも素子間の光接続機能が安定に動作する光電気複
合回路が実現できる。
It is possible to realize an opto-electrical composite circuit in which an electric element and an opto-electrical composite element are mounted on a single substrate, and the optical connection function between the elements operates stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例を示す図で、1・・・
シリコン基板、3・・・受光素子アレー、4・・・電子
回路チップ、5・・・半導体レーザアレー、12゜13
・・・光スィッチ、14・・・光メモリアレー、103
−11を子回路チップ、104・・・面発光レーザアレ
ー、105−・・受光素子アレー、第3図、第4図は光
アイソレータを備えた発光素子の構成を示す図である。 、八 十瑠人弁!士 内反  肩1・゛ 4、力―ネット片受
1 and 2 are diagrams showing embodiments of the present invention, 1...
Silicon substrate, 3... Light receiving element array, 4... Electronic circuit chip, 5... Semiconductor laser array, 12°13
... Optical switch, 14 ... Optical memory array, 103
-11 is a sub-circuit chip, 104... surface-emitting laser array, 105-... light receiving element array, FIGS. 3 and 4 are diagrams showing the structure of a light emitting element equipped with an optical isolator. , Yaso Rutoben! shi varus shoulder 1・゛4, force - net single side

Claims (2)

【特許請求の範囲】[Claims] (1)一枚の基板上に複数の光素子、電気素子、光電気
複合素子を配し、前記素子間及び前記基板と同様な構成
になる別なる基板間を電気的並びに光学的に接続し、し
かも前記基板上に配した前記素子のうちレーザ発光の機
能を有する素子の発光面に、透過方向に対して非可逆な
光透過特性を与える手段を具備せしめたことを特徴とす
る光電気複合回路。
(1) A plurality of optical elements, electric elements, and opto-electrical composite elements are arranged on one substrate, and the elements and other substrates having the same configuration as the substrate are electrically and optically connected. , and further comprising means for imparting irreversible light transmission characteristics in the transmission direction to the light emitting surface of the element having a laser emission function among the elements disposed on the substrate. circuit.
(2)複数の光素子、電気素子、光電気複合素子を配し
た基板間の光学的な接続を、一方の基板から発した光波
を該基板と、該基板と接続する他方の基板のいずれか又
は両方を透過させて行うことを特徴とする前記第1項記
載の光電気複合回路。
(2) Optical connections between substrates on which multiple optical elements, electric elements, and opto-electrical composite elements are arranged can be made by connecting the light waves emitted from one substrate to the other substrate and connecting to the other substrate. 2. The opto-electrical composite circuit according to item 1 above, wherein the opto-electrical composite circuit is constructed by transmitting either one or both of them.
JP27748184A 1984-12-28 1984-12-28 Photoelectric composite circuit Pending JPS61156205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27748184A JPS61156205A (en) 1984-12-28 1984-12-28 Photoelectric composite circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27748184A JPS61156205A (en) 1984-12-28 1984-12-28 Photoelectric composite circuit

Publications (1)

Publication Number Publication Date
JPS61156205A true JPS61156205A (en) 1986-07-15

Family

ID=17584191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27748184A Pending JPS61156205A (en) 1984-12-28 1984-12-28 Photoelectric composite circuit

Country Status (1)

Country Link
JP (1) JPS61156205A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758106A (en) * 1980-09-25 1982-04-07 Nec Corp Optical isolator
JPS58169106A (en) * 1982-03-31 1983-10-05 Hitachi Ltd Optical isolator
JPS59101604A (en) * 1982-12-01 1984-06-12 Hitachi Ltd Optical isolator
JPS59121008A (en) * 1982-12-27 1984-07-12 Tokyo Inst Of Technol Three-dimensional optical integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758106A (en) * 1980-09-25 1982-04-07 Nec Corp Optical isolator
JPS58169106A (en) * 1982-03-31 1983-10-05 Hitachi Ltd Optical isolator
JPS59101604A (en) * 1982-12-01 1984-06-12 Hitachi Ltd Optical isolator
JPS59121008A (en) * 1982-12-27 1984-07-12 Tokyo Inst Of Technol Three-dimensional optical integrated circuit

Similar Documents

Publication Publication Date Title
US6804423B2 (en) Optical-electrical wiring board, mounted board and method of manufacturing optical-electrical wiring board
TWI390264B (en) A photoelectric hybrid circuit mounting substrate and a transfer device using the same
US9179584B2 (en) Method of assembling an electro-optical device
JP2010191365A (en) Optical interconnection mounting circuit
JP2003294964A (en) Optical communication module
EP4111246A1 (en) Optical coupler comprising a molded optical interposer together with a pic and 2 polarization selective elements enabling isolation and/or polarization management
US4859013A (en) Magneto-optical waveguide device with artificial optical anisotropy
JP2943436B2 (en) Semiconductor laser module
US10830949B2 (en) Optoelectronic circuit having one or more double-sided substrates
US5224184A (en) Optical multi-chip interconnect
JPS6076707A (en) Semiconductor laser duplex module
JPS61156205A (en) Photoelectric composite circuit
JP2986140B2 (en) Multi-chip module
JPH0645584A (en) Optically coupled integrated circuit
US8540434B2 (en) Optical edge connector
JP2001042145A (en) Opto-electric wiring board
KR20040106674A (en) Structures of optical waveguide laminated printed circuit board and optical connection blocks and method for constructing waveguide layer
JPH0427904A (en) Substrate for optical surface packaging circuit and its production
JP2004233894A (en) Optical wiring substrate, its manufacturing method, and manufacturing method of optical element of optical wiring substrate
JP2001083346A (en) Electric/optic mixed loading wiring board, electricity- light mixed loading module and method for its production
Hutcheson et al. Gigabit per second optical chip-to-chip interconnects
JP2897371B2 (en) Semiconductor waveguide polarization controller
JP2004037704A (en) Optical switch module and its manufacturing method
JPH04106977A (en) Optical module
JP2626208B2 (en) Semiconductor waveguide polarization controller